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Abstract amount of available parallelism (for example, one per

UNIX applications not wishing to block when do- CPU), and to use non-blocking I/O in conjunction with
ing 1/0 often use theselect()system call, to wait for ~an efficient mechanism for deciding which descriptors
events on multiple file descriptors. Tiselect()mech-  are ready for processing[17]. We focus on the design of
anism works well for small-scale applications, but scalesthis mechanism, and in particular on its efficiency as the
poorly as the number of file descriptors increases. Manyumber of file descriptors grows very large.
modern applications, such as Internet servers, use hun- Early computer applications seldom managed many
dreds or thousands of file descriptors, and suffer greatlyile descriptors. UNIX, for example, originally sup-
from the poor scalability oselect() Previous work has Ported at most 15 descriptors per process[14]. How-
shown that while the traditional implementationsg-  ever, the growth of large client-server applications such
lect() can be improved, the poor scalability is inherent in @s database servers, and especially Internet servers, has
the design. We present a new event-delivery mechanisméd to much larger descriptor sets.
which allows the application to register interestin one or  Consider, for example, a Web server on the Inter-
more sources of events, and to efficiently dequeue newet. Typical HTTP mean connection durations have been

events. We show that this mechanism, which requiregneasured in the range of 2-4 seconds[8, 13]; Figure 1
0n|y minor Changes to app”cations, performs indepenShOWS the distribution of HTTP connection durations

dently of the number of file descriptors. measured at one of Compag’s firewall proxy servers. In-
ternet connections last so long because of long round-trip
1 Introduction times (RTTs), frequent packet loss, and often because of

An application must often manage large numbers ofslow (modem-speed) links used for downloading large
file descriptors, representing network connections, diskmages or binaries. On the other hand, modern single-
files, and other devices. Inherent in the use of a file deCPU servers can handle about 3000 HTTP requests per
scriptor is the possibility of delay. A thread that invokes asecond[19], and multiprocessors considerably more (al-
blocking I/0 call on one file descriptor, such as the UNIX Peitin carefully controlled environments). Queueing the-
read() or write() systems calls, risks ignoring all of its Ory shows that an Internet Web server handling 3000
other descriptors while it is blocked waiting for data (or connections per second, with a mean duration of 2 sec-
for output buffer space). onds, will have about 6000 open connections to manage

UNIX supports non-blocking operation fezad()and @t once (assuming constant interarrival time).
write(), but a naive use of this mechanism, in which the In @ previous paper[4], we showed that the BSD

application polls each file descriptor to see if it might be UNIX event-notification mechanism, tiselect()system
usable, leads to excessive overheads. call, scales poorly with increasing connection count. We

Alternatively, one might allocate a single thread to showed that large connection counts do indeed occur in

each activity, allowing one activity to block on I/O with- actual servers, and that the traditional implementation of
out affecting the progress of others. Experience withselect()could be improved significantly. However, we
UNIX and similar systems has shown that this scaleslso found that even our improveglect()implementa-
badly as the number of threads increases, because §Pnaccounts foran unacceptably large share of the over-
the costs of thread scheduling, context-switching, anchll CPU time. This implies that, no matter how carefully
thread-state storage space[6, 9]. The use of a single prdt-is implementedselect()scales poorly. (Some UNIX
cess per connection is even more costly. systems use a different system cpbh)l(), but we believe

The most efficient approach is therefore to allocatethatthis call has scaling properties at least as bad as those
a moderate number of threads, corresponding to th&f select() if not worse.)
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The key problem with theelect()interface is that it  value, whichis a system-specific parameter. idaelfds
requires the application to inform the kernel, on eachwritefds andexceptfdsre in-out arguments, respectively
call, of the entire set of “interesting” file descriptor®.j.  corresponding to the sets of file descriptors that are “in-
those for which the application wants to check readinessteresting” for reading, writing, and exceptional condi-
For each event, this causes effort and data motion propotions. A given file descriptor might be in more than
tional to the number of interesting file descriptors. Sinceone of these sets. Th&@dsargument gives the largest
the number of file descriptors is normally proportional bitmap index actually used. Thameoutargument con-
to the event rate, the total cost &élect()activity scales trols whether, and how sooselect()will return if no file
roughly with the square of the event rate. descriptors become ready.

In this paper, we explain the distinction between state- Before select()is called, the application creates one

based mechanisms, such salect() which check the or more of thereadfds writefds or exceptfdsitmaps,
current status of numerous descriptors, and event-basdu asserting bits corresponding to the set of interesting
mechanisms, which deliver explicit event notifications.file descriptors. On its returrselect()overwrites these
We present a new UNIX event-based API (applicationbitmaps with new values, corresponding to subsets of the
programming interface) that an application may use, ininput sets, indicating which file descriptors are available
stead ofselect() to wait for events on file descriptors. for I/O. A member of theeadfdsset is available if there
The API allows an application to register its interest inis any available input data; a membervaitefdsis con-
a file descriptor once (rather than every time it waits forsidered writable if the available buffer space exceeds a
events). When an event occurs on one of these interessystem-specific parameter (usually 2048 bytes, for TCP
ing file descriptors, the kernel places a notification on asockets). The application then scans the result bitmaps
gueue, and the API allows the application to efficientlyto discover the readable or writable file descriptors, and
dequeue event notifications. normally invokes handlers for those descriptors.

We will show that this new interface is simple, easily  Figure 2 is an oversimplified example of how an ap-
implemented, and performs independently of the numbeplication typically useselect() One of us has shown[15]
of file descriptors. For example, with 2000 connections,that the programming style used here is quite inefficient

our APl improves maximum throughput by 28%. for large numbers of file descriptors, independent of the
] problems withselect() For example, the construction
2 The problem with select() of the input bitmaps (lines 8 through 12 of Figure 2)
We begin by reviewing the design and implementationshould not be done explicitly before each calsadect()
of theselect()API. The system call is declared as: instead, the application should maintain shadow copies
_ of the input bitmaps, and simply copy these shadows to
int sel eic:n( o ds readfdsandwritefds Also, the scan of the result bitmaps,
fd set *readfds, which are usually quite sparse, is best done word-by-
fd_set *writefds, word, rather than bit-by-bit.
fd_set *exceptfds, Once one has eliminated these inefficiencies, how-

struct timeval *timeout); ever,select()is still quite costly. Part of this cost comes

from the use of bitmaps, which must be created, copied

An fd_setis simply a bitmap; the maximum size (in . _
jnto the kernel, scanned by the kernel, subsetted, copied

bits) of these bitmaps is the largest legal file descripto



1 fd_set readfds, witefds;

2 struct tineval tineout;

3 int i, nunready;

4

5 timeout.tv_sec = 1; tineout.tv_usec = O;

6

7 while (TRUE) {

8 FD_ZERQ( &r eadf ds); FD_ZERQ(&w it efds);

9 for (i =0; i <= mxfd; i++) {
10 if (want ToReadFD(i)) FD_SET(i, &readfds);
11 if (wantTowiteFD(i)) FD_SET(i, &witefds);
12 }
13 nunr eady = sel ect (maxfd, &readfds,
14 &writefds, NULL, &tineout);
15 if (nunready < 1) {
16 DoTi meout Pr ocessi ng() ;
17 continue;
18 }
19
20 for (i =0; i <= mxfd; i++) {
21 if (FD_I SSET(i, &readfds)) |nvokeReadHandl er(i);
22 if (FD_I SSET(i, &witefds)) InvokeWiteHandl er(i);
23 }
24 '}

Fig. 2: Simplified example of howelect()is used

out of the kernel, and then scanned by the applicationing the Digital UNIX V4.0B operating system, and ver-
These costs clearly increase with the number of descripsion 1.1.20 of the Squid proxy software[5, 18]. After
tors. doing our best to improve the kernel’s implementation

Other aspects of treelect(implementation also scale of select() and Squid’s implementation of the procedure
poorly. Wright and Stevens provide a detailed discussiornthat invokesselect() we measured the system’s perfor-
of the 4.4BSD implementation[23]; we limit ourselves mance on a busy non-caching proxy, connected to the
to a sketch. In the traditional implementatigelect() Internet and handling over 2.5 million requests/day.
starts by checking, for each descriptor present in the in- We found that we had approximately doubled the sys-
put bitmaps, whether that descriptor is already availabléem’s efficiency (expressed as CPU time per request), but
for I/O. If none are available, theselect()blocks. Later,  select()still accounted for almost 25% of the total CPU
when a protocol processing (or file system) module’stime. Table 1 shows a profile, made with the DCPI [1]
state changes to make a descriptor readable or writablégols, of both kernel and user-mode CPU activity during
that module awakens the blocked process. a typical hour of high-load operation.

In the traditional implementation, the awakened pro- In the profilecommselect() the user-mode proce-
cess has no idea which descriptor has just become readure that creates the input bitmaps &mlect()and that
able or writable, so it must repeat its initial scan. This isscans its output bitmaps, takes only 0.54% of the non-
unfortunate, because the protocol module certainly knevidle CPU time. Some of the 2.85% attributedrn@m-
what socket or file had changed state, but this informaCopy()andmemSet(should also be charged to the cre-
tion is not preserved. In our previous work on improv- ation of the input bitmaps (because the modified Squid
ing select()performance[4], we showed that it was fairly uses the shadow-copy method). (The profile also shows a
easy to preserve this information, and thereby improvdot of time spent irmalloc(}-related procedures; a future
the performance ddelect()in the blocking case. version of Squid will use pre-allocated pools to avoid the

We also showed that one could avoid most of the ini-overhead of too many calls toalloc()andfree()22].)
tial scan by remembering which descriptors had previ- However, the bulk of theelect(Jrelated overhead is
ously been interesting to the calling process (i.e., hadn the kernel code, and accounts for about two thirds of
been in the input bitmap of a previogelect()call), the total non-idle kernel-mode CPU time. Moreover, this
and scanning those descriptors only if their state hadneasurement reflectsselect()implementation that we
changed in the interim. The implementation of this tech-had already improved about as much as we thought pos-
nigue is somewhat more complex, and depends on sesible. Finally, our implementation could not avoid costs
manipulation operations whose costs are inherently dedependent on the number of descriptors, implying that
pendent on the number of descriptors. the select(Jrelated overhead scales worse than linearly.

In our previous work, we tested our modifications us- Yet these costs did not seem to be related to intrinsically



fields of its in-out argument. However, the former ad-

CPU % | Non-idle | Procedure Mode vantage is probably illusory, sineelect()only copies
CPU % 3 bits per file descriptor, whilpoll() copies 64 bits. If
65.43%| 100.00%| all non-idle time kernel the number of interesting descriptors exceeds 3/64 of the
34.57% all idle time kernel highest-numbered active file descriptoo]l() does more
16.02%| 24.49%] all select functions | kernel copying thanselect() In any event, it shares the same
942% | 14.40%| select kernel scaling problem, doing work proportional to the number
3.71% 567% | newsoaselect kernel of interesting descriptors rather than constant effont, pe
2.82%| 4.31%| newselscanone | kernel event.
0.03%] 004%]| newundascan | kemel| 3 pyentpased vs. state-based notification
| 15.45%]| 23.61%] mallocrelated code] user | mechanisms
| 4.10% | 6.27% | m-pcblookup_ | kernel | Recall that we wish to provide an application with an
| 2.88%| 4.40%] all TCP functions [ kemnel]  efficient and scalable means to decide which of its file
0.94% 1.44% | memCopy user descriptors are ready for processing. We can approach
0.92% 1.41% | memset user this in either of two ways:
0.88% 1.35% | bcopy kernel _ ) _ )
0.84% 1.28% | read.io_port kernel 1. A state-_bas_ednew, in which the kernel_ mforms_
0.72% 1.10% | doprnt User the application of the cu_rrent state of afile descrlp-
tor (e.g., whether there is any data currently avail-
| 0.36%]| 0.54% | commselect | user |

able for reading).
Profile on 1998-09-09 from 11:00 to 12:00 PDT
mean load = 56 requests/sec.
peak load ca. 131 requests/sec

2. Anevent-basediew, in which the kernel informs
the application of the occurrence of a meaningful
event for a file descriptor (e.g., whether new data

Table 1: Profile - modified kernel, Squid on live proxy has been added to a socket's input buffer).

The select()mechanism follows the state-based ap-
proach. For example, gelect()says a descriptor is ready
forreading, then there is data in its input buffer. If the ap-
plication reads just a portion of this data, and then calls

useful work. We decided to design a scalable replace
ment forselect()

2.1 Thepoll() system call select(Jagain before more data arriveglect(will again
In the System V UNIX environment, applications use report that the descriptor is ready for reading.
thepoll() system call instead afelect() This call is de- The state-based approach inherently requires the ker-
clared as: nel to check, on every notification-wait call, the status
of each member of the set of descriptors whose state is
st rUCti ﬁ?' I'fd Ed. being tested. As in our improved implementatiorsef
short  events: lect(), one can elide part of this overheagl by watching for
short revents: events that change the state of a descriptor from unready
H to ready. The kernel need not repeatedly re-test the state

of a descriptor known to be unready.

int poll gt ruct polIfd filedes[]: However, onceselect()has told the application that a
unsi gned int nfds; descriptor is ready, the application might or might not
int timeout /* in nilliseconds */); perform operations to reverse this state-change. For ex-

] ) _ _ ample, it might not read anything at all from a ready-
The filedesargument is an in-out array with one el- for_reading input descriptor, or it might not read all of
ement for each file descriptor of interesffisgives the  the pending data. Therefore, onselect()has reported
array length. On input, theventsfield of each element  hat a descriptor is ready, it cannot simply ignore that de-
tells the kernel which of a set of conditions are of inter- criptor on future calls. It must test that descriptor'sesta

est for the associated file descripfdr On return, the ¢ |east until it becomes unready, even if no further 1/O
reventsfield shows what subset of those conditions holdeyents occur. Note that elementsvaitefdsare usually

true. These fields represent a somewhat broader set gfaqy,

conditions than the three bitmaps usedsblect() Although select()follows the state-based approach,
The poll() APl appears to have two advantages overihe kernel's I/0 subsystems deal with events: data pack-

select() its array compactly represents only the file de- gts arrive, acknowledgements arrive, disk blocks arrive,

scriptors of interest, and it does not destroy the inpuigtc. Therefore, theelect()implementation must trans-



form notifications from an internal event-based view tothread to declare its interest (or lack of interest) in a file
an external state-based view. But the “event-driven” ap-descriptor:
plications that useselect()to obtain notifications ulti-

. #def i ne EVENT_READ Ox1
mately follow the event-based view, and thus spend ef- . qcfine EVENT VR TE 0x2
fort tranforming information back from the state-based #define EVENT_EXCEPT 0x4

model. These dual transformations create extra work. _ _ _
Our new API follows the event-based approach. In !'nt declarei mereSt(i' m ifgierest sk
this model, the kernel simply reports a stream of events to int *statenask);
the application. These events are monotonic, in the sense
that they never decrease the amount of readable data (or The thread calls this procedure with the file descriptor
writable buffer space) for a descriptor. Therefore, oncdn question. Thenterestmaskndicate whether or not
an event has arrived for a descriptor, the application cafhe thread is interested in reading from or writing to the
either process the descriptor immediately, or make notélescriptor, or in exception events.ititerestmaslks zero,
of the event and defer the processing. The kernel does n#fien the thread is no longer interested in any events for
track the readiness of any descriptor, so it does not peithe descriptor. Closing a descriptor implicitly removes
form work proportional to the number of descriptors; it any declared interest.
only performs work proportional to the number of events.  Once the thread has declared its interest, the kernel
Pure event-based APIs have two problems: tracks event arrivals for the descriptor. Each arrival is
added to a per-thread queue. If multiple threads are in-
1. Frequent event arrivals can create excessive CoMtgrested in a descriptor, a per-socket option selects be-
munication overhead, especially for an applicationtween two ways to choose the proper queue (or queues).
that is not interested in seeing every individual The defaultis to enqueue an event-arrival record for each
event. interested thread, but by setting the S@KEUP_ONE
flag, the application indicates that it wants an event ar-
rival delivered only to the first eligible thread.
If the statemaskargument is non-NULL, therde-
clare_interest()also reports the current state of the file

Our API does not deliver events asynchronously (aglescriptor. For example, if the EVENREAD bit is set
would a signal-based mechanism; see Section 8.2)n this value, then the descriptor is ready for reading.
which helps to eliminate the first problem. Instead, theThis feature avoids a race in which a state change occurs
APl allows an application to efficiently discover descrip- after the file has been opened (perhaps viaerept()

tors that have had event arrivals. Once an event has agystem call) but befordeclareinterest()has been called.
rived for a descriptor, the kernel coalesces subsequerfthe implementation guarantees that stetemaskalue
event arrivals for that descriptor until the application reflects the descriptor’s state before any events are added
learns of the first one; this reduces the communicatiorfo the thread’s queue. Otherwise, to avoid missing any
rate, and avoids the need to store per-event informatiorgvents, the application would have to perform a non-

We believe that most applications do not need explicitblockingreador write after callingdeclareinterest()
per-event information, beyond that available in-band in  To wait for additional events, a thread invokes another

2. If the API promises to deliver information about
each individual event, it must allocate storage pro-
portional to the event rate.

the data stream. new system call:

By simplifying the semantics of_ the API _(Comp_ared typedef struct {
to select(), we remove the necessity to maintain infor- int fd:
mation in the kernel that might not be of interest to the unsi gned mask;

application. We also remove a pair of transformations ! €vent_descr_t;

between the event-based and state-based views. Thisim-  nt get next _event (int array nax,
proves the scalability of the kernel implementation, and event _descr_t *ev_array,
leaves the application sufficient flexibility to implement struct timeval *tineout);

the appropriate event-management algorithms. The evarray argument is a pointer to an array, of

4 Details of the programming interface lengtharray_max of values of typeeventdescrt. If any
. ; . . events are pending for the thread, the kernel dequeues, in
An application might not be always interested in

- . ' . FIFO order, up t@rray_maxevents. It reports these de-
events arriving on all of its open file descriptors. For P Y P

example, as mentioned in Section 8.1, the Squid IorOX\(/queued events in the/array result array. Thenaskbits

server temporarily ignores data arriving in dribbles; it 'AFIFO ordering is not intrinsic to the design. In anothergd],
would rather process Iarge buffers. if possible. we describe a new kernel mechanism, calledource containers

. . which allows an application to specify the priority in whitte ker-
Therefore, our APl includes a system call allowing a engueues events.




in eacheventdescrt record, with the same definitions as tion. Therefore, theaccept()call at line 30 will never
used indeclareinterest() indicate the current state of the block, even if a race with thget nextevent()call some-
corresponding descriptdd. The function return value how causes this code to run too often. (For example, a
gives the number of events actually reported. remote client might close a new connection before we
By allowing an application to request an arbitrary have a chance to accept it.)d€cept()Jdoes successfully
number of event reports in one call, it can amortize thereturn the socket for a new connection, line 31 sets it to
cost of this call over multiple events. However, if at least use non-blocking I/O. At line 32jeclareinterest()tells
one event is queued when the call is made, it returns imthe kernel that the application wants to know about future
mediately; we do not block the thread simply to fill up its read and write events. Line 34 tests to see if any data be-
ev.array. came available before we calldéclareinterest() if so,
If no events are queued for the thread, then the callve read it immediately.
blocks until at least one event arrives, or until the timeout .
expires. 6 Implementation
Note that in a multi-threaded application (or inan ap- We implemented our new API by modifying Digital
plication where the same socket or file is simultaneouslyJNIX V4.0D. We started with our improveselect()im-
open via several descriptors), a race could make the dgslementation [4], reusing some data structures and sup-
scriptor unready before the application reads iteessk  port functions from that effort. This also allows us to
bits. The application should use non-blocking operationsneasure our new API against the best kn@etect()m-
to read or write these descriptors, even if they appear tplementation without varying anything else. Our current
be ready. The implementation getnextevent()does implementation works only for sockets, but could be ex-
attempt to try to report the current state of a descriptorfended to other descriptor types. (References below to
rather than simply reporting the most recent state tranthe “protocol stack” would then include file system and
sition, and internally suppresses any reports that are ndevice driver code.)
longer meaningful; this should reduce the frequency of For the new API, we added about 650 lines of code.
such races. The getnextevent()call required about 320 linesle-
The implementation also attempts to coalesce multiclare.interest()required 150, and the remainder covers
ple reports for the same descriptor. This may be of valuehanges to protocol code and support functions. In con-
when, for example, a bulk data transfer arrives as a seriesast, our previous modifications szlect()added about
of small packets. The application might consume all 0f1200 lines, of which we reused about 100 lines in imple-
the buffered data in one system call; it would be ineffi- menting the new API.
cient if the application had to consume dozens of queued For each application thread, our code maintains four
event notifications corresponding to one large buffereddata structures. These include INTERESTED.read, IN-
read. However, it is not possible to entirely eliminate du-TERESTED.write, and INTERESTED.except, the sets
plicate notifications, because of races between new evemf descriptors designated vikeclareinterest()as “inter-

arrivals and theead, write, or similar system calls. esting” for reading, writing, and exceptions, respectivel
o The other is HINTS, a FIFO queue of events posted by
5 Use of the programming interface the protocol stack for the thread.

Figure 3 shows a highly simplified example of how A thread’s first call todeclareinterest() causes cre-
one might use the new API to write parts of an event-ation of its INTERESTED sets; the sets are resized
driven server. We omit important details such as erroras necessary when descriptors are added. The HINTS
handling, multi-threading, and many procedure defini-queue is created upon thread creation. All four sets are
tions. destroyed when the thread exits. When a descriptor is

The mainloop() procedure is the central event dis- closed, it is automatically removed from all relevant IN-
patcher. Each iteration starts by attempting to dequeu@ ERESTED sets.

a batch of events (here, up to 64 per batch), using Figure 4 shows the kernel data structures for an ex-
getnextevent()at line 9. If the system call times out, ample in which a thread has declared read interest in
the application does its timeout-related processing. Othdescriptors 1 and 4, and write interest in descriptor O.
erwise, it loops over the batch of events, and dispatche$he three INTERESTED sets are shown here as one-
event handlers for each event. At line 16, there is a spebyte bitmaps, because the thread has not declared inter-
cial case for the socket(s) on which the application is lis-est in any higher-numbered descriptors. In this example,
tening for new connections, which is handled differentlythe HINTS queue for the thread records three pending
from data-carrying sockets. events, one each for descriptors 1, 0, and 4.

We show only one handler, for these special listen- A call to declareinterest()also adds an element to
sockets. In initialization code not shown here, thesethe corresponding socket’s “reverse-mapping” list; this
listen-sockets have been set to use the non-blocking opelement includes both a pointer to the thread and the de-
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#def i ne MAX_EVENTS 64
struct event_descr_t event_array[ MAX_EVENTS] ;

mai n_| oop(struct timeval tineout)
int i, n

while (TRUE) {

n = get_next_event (MAX_EVENTS, &event_array, &timeout);

if (n<1) {
DoTi meout Processi ng(); continue;

}

for (i =0; i <n; i++) {
if (event_array[i].msk & EVENT_READ)
if (ListeningOn(event_array[i].fd))

I nvokeAccept Handl er (event _array[i].fd);

el se
| nvokeReadHandl er (event _array[i].fd);
if (event_array[i].msk & EVENT_WRI TE)
I nvokeW it eHandl er (event _array[i].fd);
}

}
}

I nvokeAccept Handl er (i nt |i stenfd)
int newfd, statenask;

while ((newfd = accept(listenfd, NULL, NULL))
Set Nonbl ocki ng( newf d) ;

>= 0) {

decl are_i nterest (newfd, EVENT_READ| EVENT_WRI TE,

&st at emask) ;
if (statemask & EVENT_READ)
| nvokeReadHandl er (newf d) ;

Fig. 3: Simplified example of how the new API might be used
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Fig. 4: Per-thread data structures

scriptor’s index number. Figure 5 shows the kernel data
structures for an example in which Process 1 and Process
2 hold references to Socket A via file descriptors 2 and
4, respectively. Two threads of Process 1 and one thread
of Process 2 are interested in Socket A, so the reverse-
mapping list associated with the socket has pointers to
all three threads.

When the protocol code processes an event (such as
data arrival) for a socket, it checks the reverse-mapping
list. For each thread on the list, if the index number is
found in the thread’s relevant INTERESTED set, then
a notification element is added to the thread’s HINTS
queue.

To avoid the overhead of adding and deleting the
reverse-mapping lists too often, we never remove a
reverse-mapping item until the descriptor is closed. This
means that the list is updated at most once per descrip-
tor lifetime. It does add some slight per-event overhead
for a socket while a thread has revoked its interest in that
descriptor; we believe this is negligible.

We attempt to coalesce multiple event notifications for
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Descriptor Descriptor
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(1) Thread 1 0

Thread 2 >
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Fig. 5: Per-socket data structures

a single descriptor. We use another per-thread bitmap, insoftware [2], designed to generate realistic request loads
dexed by file descriptor number, to note that the HINTScharacteristic of WAN clients. As in our earlier work [4],
gueue contains a pending element for the descriptor. Theve also use dad-adding cliento generate a large num-
protocol code tests and sets these bitmap entries; thdyer of “cold” connections: long-duration dummy con-
are cleared oncgetnextevent()has delivered the cor- nections that simulate the effect of large WAN delays.
responding notification. Thugy events on a socket be- The load-adding client process opens as many as sev-
tween calls togetnextevent()lead to just one notifica- eral thousand connections, but does not actually send any
tion. requests. In essence, we simulate a load with a given

Each call togetnextevent() unless it times out, arrival rate and duration distribution by breaking it into
dequeues one or more notification elements from théwo pieces: S-Clientsfor the arrival rate, and load-adding
HINTS queue in FIFO order. However, the HINTS queueclients for the duration distribution.
has a size limit; if it overflows, we discard it and de-  The proxy relays all requests to a Web server, a single-
liver events in descriptor order, using a linear search oprocess event-driven program derived from thttpd [20],
the INTERESTED sets — we would rather deliver thingswith numerous performance improvements. (This is an
in the wrong order than block progress. This policy early version of the Flash Web server [17].) We take care
could lead to starvation, if tharray_maxparameter to to ensure that the clients, the Web server, and the net-
getnextevent()is less than the number of descriptors, work itself are never bottlenecks. Thus, the proxy server
and may need revision. system is the bottleneck.

We note that there are other possible implementati0n§ 1 Experi tal . t
for the new API. For example, one of the anonymous re- - permentat environmen .
viewers suggested using a linked list for the per-thread 1N€ Systeém under test, where the proxy server runs, is
queue of pending events, reserving space for one list eléd 900MHz Digital Personal Workstation (Alpha 21164,
ment in each socket data structure. This approach seeml€8MB RAM, SPECInt95 = 15.7), running our modified

to have several advantages when the\SISKEUP_ONE version of Digital UNIX V4.0D. The client processes run
option is set, but might not be feasible when each evenp" four identical 166Mhz Pentium Pro machines (64MB
is delivered to multiple threads. RAM, FreeBSD 2.2.6). The Web server program runs on

a 300 MHz Pentium Il (128MB RAM, FreeBSD 2.2.6).
7 Performance A switched full-duplex 100 Mbit/sec Fast Ethernet
gr:onnects all machines. The proxy server machine has
two network interfaces, one for client traffic and one for
eb-server traffic.

We measured the performance of our new API usin
a simple event-driven HTTP proxy program. This proxy
does not cache responses. It can be configured to u
eitherselect()or our new event API. 7.2 API function costs

In all of the experiments presented here, we gener-  \ya performed experiments to find the basic costs of
ate load using two kinds of clients. The *hot” connec- - new API calls, measuring how these costs scale with
tions come from a set of processes running the S-Clienfhe number of connections per process. Ideally, the costs



should be both low and constant. tween O and 2000. The hot-connection S-Clients are

In these tests, S-Client software simulates HTTPconfigured to generate requests as fast as the proxy sys-
clients generating requests to the proxy. Concurrently, &em can handle; thus we saturated the proxy, but never
load-adding client establishes some number of cold coneverloaded it. Figure 8 plots the throughput achieved
nections to the proxy server. We started measurement®r three kernel configurations: (1) the “classical” im-
only after a dummy run warmed the Web server’s file plementation ofelect() (2) our improved implementa-
cache. During these measurements, the proxy’s CPWon of select() and (3) the new API described in this
is saturated, and the proxy application never blocks irpaper. All kernels use a scalable version of wfieloc()
getnextevent() there are always events queued for de-file-descriptor allocation function [4]; the normal vensio
livery. does not scale well. The results clearly indicate that our

The proxy application uses the Alpha’s cycle counternew API performs independently of the number of cold
to measure the elapsed time spent in each system call; wepnnections, whileelect()does not. (We also found that
report the time averaged over 10,000 calls. the proxy’s throughput is independentarfay_max)

To measure the cost gfetnextevent() we used S- In the second series of tests, we fixed the number of
Clients generating requests for a 40 MByte file, thuscold connections at 750, and measured response time (as
causing thousands of events per connection. We ran trialseen by the clients). Figure 9 shows the results. When us-
with array_max(the maximum number of events deliv- ing our new API, the proxy system exhibits much lower
ered per call) varying between 1 and 10; we also variedatency, and saturates at a somewhat higher request load
the number of S-Client processes. Figure 6 shows thaf1348 requests/sec., vs. 1291 request/sec. for the im-
the cost per call, with 750 cold connections, varies lin-provedselect()implementation).
early witharray_max up to a point limited (apparently) Table 2 shows DCPI profiles of the proxy server in the
by the concurrency of the S-Clients. three kernel configurations. These profiles were made

For a givenarray_maxvalue, we found that varying using 750 cold connections, 50 hot connections, and a
the number of cold connections between 0 and 2000 hatotal load of 400 requests/sec. They show that the new
almost no effect on the cost getnextevent() account-  event API significantly increases the amount of CPU idle
ing for variation of at most 0.005% over this range. time, by almost eliminating the event-notification over-

We also found that increasing the hot-connectionhead. While the classicaklect()implementation con-
rate did not appear to increase the per-event cost afumes 34% of the CPU, and our improwslect()im-
getnextevent() In fact, the event-batching mechanism plementation consumes 12%, the new API consumes less
reduces the per-event cost, as the proxy falls further bethan 1% of the CPU.
hind. The cost of all event API operations in our imple-
mentation is independent of the event rate, as long as th@ Related work
maximum size of the HINTS queue is configured large  To place our work in context, we survey other inves-
enough to hold one entry for each descriptor of the protigations into the scalability of event-management APIs,
cess. and the design of event-management APIs in other oper-

To measure the cost of tleclareinterest()system  ating systems.

](c:_all, we used 32 S-Clients making requests for a 1“KByte 1 Event support in NetBIOS and Win32

ile. We made separate measurements for the “declar- : o
ing interest” case (adding a new descriptor to an INTER-  1he NetBIOS interface[12] allows an application to
ESTED set) and the “revoking interest” case (removingwa'tfor incoming data on multiple network c_onnectlon_s.
a descriptor); the former case has a longer code paﬂ{\_letBIOS does_not_prowdeaprocedure-call interface; in-
Figure 7 shows slight cost variations with changes in the>t®@d, an application creates a “Network Control Block”
number of cold connections, but these may be measurd NCB), loads its address into specific registers, and then

ment artifacts. invokes NetBIOS via a software interrupt. NetBIOS pro-
vides a command’s result via a callback.
7.3 Proxy server performance The NetBIOS “receive any” command returns (calls

We then measured the actual performance of our simback) when data arrives on any network “session” (con-
ple proxy server, using eitheelect()or our new API. In  nection). This allows an application to wait for arriving
these experiments, all requests are for the same (static)data on an arbitrary number of sessions, without having
Kbyte file, which is therefore always cached in the Webto enumerate the set of sessions. It does not appear pos-
server's memory. (We ran additional tests using 8 Kbytesible to wait for received data on a subset of the active
files; space does not permit showing the results, but thegessions.
display analogous behavior.) The “receive any” command has numerous limita-

In the first series of tests, we always used 32 hot contions, some of which are the result of a non-extensible
nections, but varied the number of cold connections bedesign. The NCB format allows at most 254 sessions,



9.4

- X - X=X
g 9.2+ -
= 9 X’
E =
@
o
% 8.6
o | A X----- X 4 S-Clients
© gal- .
' +———+ 3 S-Clients
8.2 | | | |
0 2 4 6 8
array_max
Fig. 6: getnextevent()scaling
1400

1300

1200

1100
e ---0 NewAPI

HTTP throughput (conn./sec.)

1000~ » — -X Improved select()
+—— Classical select()
900 | | |
0 500 1000 1500

Number of cold connections
Fig. 8: HTTP rate vs. cold connections

4 —
8 38-
3 4
= s T
o
8 34 oxeeeeeexe T Ty
)
S 3ol +————+ Declaring interest
X - - ---- X Revoking interest
3 | | | |
0 500 1000 1500 2000
Number of cold connections
Fig. 7: declareinterest()scaling
80—

+——— Classical select()
» — — X Improved select()
e----eNewAP

o2}
o
I

(750 cold connections)

N
(]

Response time (msec.)
N
o
|

0
0 200 400 600 800 1000 1200 1400
Requests per second
Fig. 9: Latency vs. request rate

which obviates the need for a highly-scalable imple-to large numbers of file handles, for a similar reason: it
mentation. The command does not allow an applicapasses information about all potential event sources ev-
tion to discover when a once-full output buffer becomesery time it is called. (In any case, the object-handle ar-

writable, nor does it apply to disk files.

ray may contain no more than 64 elements.) Also, since

In the Win32 programming environment[10], the use WaitForMultipleObjectsnust be called repeatedly to ob-
of NetBIOS is strongly discouraged. Win32 includes atain multiple events, and the array is searched linearly, a

procedure named/aitForMultipleObjects()declared as:

DWORD Wi t For Mul ti pl eObj ect s(
DWORD cObj ect s,

/'l nunmber of handles in handle array

CONST HANDLE * | phObj ect s,
/] address of object-handle array
BOOL fwaitAll,

/1 flag: wait for all or for just one

DWORD dwTi neout

);

/1 time-out interval in mlliseconds

frequent event rate on objects early in the array can starve
service for higher-indexed objects.

Windows NT 3.5 added a more advanced mechanism
for detecting 1/0O events, called an 1/O completion port
(IOCP)[10, 21]. This ties together the threads mech-
anism with the 1/O mechanism. An application calls
CreateloCompletionPort(jo create an IOCP, and then
makes an additional call t€reateloCompletionPort()
to associate each interesting file handle with that IOCP.
Each such call also provides an application-specified
“CompletionKey” value that will be associated with the

This procedure takes an array of Win32 objectsﬁle handle

(which could include I/O handles, threads, processes,

An application thread waits for I/O completion events

mutexes, etc.) and waits for either one or all of themusing theGetQueuedCompletionStatusd)!:

to complete. If theWaitAll flag is FALSE, then the re-

turned value is the array index of the ready object. Itis BoOL Get QueuedConpl eti onSt at us(

not possible to learn about multiple objects in one call,
unless the application is willing to wait for completion

on all of the listed objects.

This procedure, likselect() might not scale very well

HANDLE Conpl eti onPort,

LPDWORD | pNunber O Byt esTr ansf err ed,
LPDWORD Conpl et i onKey,

LPOVERLAPPED *| pOver | apped,

DWORD dwM | | i secondTi neout ) ;



Classical | Scalable | New event
select()| select() API
CPU% | CPU% CPU % | Procedure Mode
| 18.09%| 33.01%] 59.01%] allidle time | kernel]
33500 | 12.026 0.68% | all kernelselector event functiong kernel
13.78% N.A. N.A. | soaselect() kernel
9.11% N.A. N.A. | selscan() kernel
8.40% N.A. N.A. | undascan() kernel
2.22%| 12.02% N.A. | select() kernel
N.A. 0.57% N.A. | newsoaselect() kernel
N.A. 0.47% N.A. | newselscanone() kernel
N.A. N.A. 0.40% | getnextevent() kernel
N.A. N.A. 0.15% | declareinterest() kernel
N.A. N.A. 0.13% | revokeinterest() kernel
2.01% 1.95% 1.71% | Xsyscall() kernel
1.98% 1.88% 1.21% | main() user
1.91% 1.90% 1.69% | _doprnt() user
1.63% 1.58% 1.54% | memset() user
1.29% 1.31% 1.47% | read.io_port() kernel
1.11% 1.15% 1.20% | syscall() kernel
1.09% 1.11% 1.11% | XentInt() kernel
1.08% 1.06% 1.19% | malloc() kernel

750 cold connections, 50 hot connections, 400 requestsidetKB/request

Table 2: Effect of event APl on system CPU profile

Upon return, theCompletionKeyariable holds the of small dribbles. This is easily done with the UNIX
value associated, viareateloCompletionPort(yiththe  select()call, by removing that descriptor from the input
corresponding file handle. Several threads might beitmap; it is not clear if this can be done using an IOCP.
blocked in this procedure waiting for completion events  Hu et al.[11] discuss several different NT event dis-
on the same IOCP. The kernel delivers the I/O eventpatching and concurrency models in the context of a Web
in FIFO order, but selects among the blocked threads iserver, and show how the server’s performance varies ac-
LIFO order, to reduce context-switching overhead. cording to the model chosen. However, they did not mea-

The IOCP mechanism seems to have no inherent limsure how performance scales with large numbers of open
its on scaling to large numbers of file descriptors orconnections, but limited their measurements to at most
threads. We know of no experimental results confirmingl6 concurrent clients.
its scalability, however. In summary, the IOCP mechanism in Windows NT is

Once a handle has been associated with an IOCRimilar to the API we propose for UNIX, and predates
there is no way to disassociate it, except by closing theur design by several years (although we were initially
handle. This somewhat complicates the programmer’'sinaware of it). The differences between the designs may
task; for example, it is unsafe to use as the Completioner may not be significant; we look forward to a careful
Key the address of a data structure that might be realanalysis of IOCP performance scaling. Our contribution
located when a file handle is closed. Instead, the appliis not the concept of a pending-event queue, but rather its
cation should use a nonce value, implying another levebpplication to UNIX, and our quantitative analysis of its
of indirection to obtain the necessary pointer. And whilescalability.

Lhe appllgatlon_mlght use s_everal IOCP_s to segregate fl|§.2 Queued 1/0 completion signals in POSIX
andles into different priority classes, it cannot move a

file handle from one IOCP to another as a way of adjust- '€ POSIX[16] AP allows an application to request
ing its priority. the delivery of a signal (software interrupt) when 1/O is

Some applications, such as the Squid proxy[5, 18] possible for a given file descriptor. The POSIX Realtime
temporarily ignore 1/0 events on an active file descrip->19nals Extension allows an application to request that
tor, to avoid servicing data arriving as a lengthy seriesd€livered signals be queued, and that the signal handler



be invoked with a parameter giving the associated filetional synchronization to avoid handling the same de-
descriptor. The combination of these facilities providesscriptor. Our event-based APl should make writing
a scalable notification mechanism. threaded applications more natural, because (with the
We see three problems that discourage the use of sigsO_ WAKEUP_ONE option described in Section 4) it de-
nals. First, signal delivery is more expensive than thdivers each event at most once. We have not yet explored
specialized event mechanism we propose. On our teghis area in detail.
system, signal delivery (for SIGIO) requires 10.7 usec, Our existing API requires each thread in a process to
versus about 8.4 usec fgetnextevent()(see figure 6), call declareinterest()for each descriptor that it is inter-
and (unlikeget nextevent() the signal mechanism can- ested in. This requirement might add excessive overhead
not batch notifications for multiple descriptors in one for a multi-threaded program using a large pool of inter-
invocation. Second, asynchronous invocation of hanchangeable worker threads. We could augment the API
dlers implies the use of some sort of locking mechanismwith another system call:
which adds overhead and complexity. Finally, the use of
signals eliminates application control over which thread
is invoked.

8.3 Port sets in Mach
The Mach operating system[24] depends on messages;

based Communication, using “ports™ to represent MeSy, o4 of the calling process. (It might also implicitly set
sage end-points. Ports are protected with Capab'l'ty'l'k%O_WAKEUP_ONE for the descriptor.) After this call,

_send rights” and receive rights.” All system opera- any thread of the process could wait for events on this
tions are performed using messages; for example, V'r('jescriptorusingyet_nextevent()

tual memory faults are converted into messages sent to An application handling thousands of descriptors

gehbacklng-stqre port of (tjhle assoElate_Ian;e?ory ObJeCIi’night want to set event-delivery priorities, to control the
ther communication mo e's, such as _yte Streamyy; ger in which the kernel delivers events. In another pa-
are constructed on top of this message-passing layer. r [3], we introduced theesource containerbstrac-
Each rf[?]rt has a queue oftpendlr}?tmestsgges. A threzﬁgn, which (among other benefits) allows an application
may use amsgrecelve()sys_ €m call o retrieve a mes- , set kernel-level priorities for descriptor processitrg.
sage from f[he_queue ofa ?'”g'e port, or wait for a MESthat paper we showed how an event-based API, such as
Sa?; tho ar:jlve_lfhthe queue 'i errf1pty. the one presented here, is a useful component of end-to-
thread with receive rights for many ports may cre- oy priority control in networked applications. We look

ate a “port set’, a first-class object containing an arbl'forward to gaining experience with the combination of

trary subset of these receive rights[7]. The thread ma)f)riority control and an event-based API in complex ap-
then invokemsgreceive()on that port set (rather than on eplications

the underlying ports), receiving messages from all of th
contained ports in FIFO order. Each message is marked0 Summary

with the identity of the original receiving port, allowing We showed that the scalability of an operating sys-

the thread to dem_u_lt|ple>f the messages. The port Set 8z event notification mechanism has a direct effect on
proach scales efficiently: the time requwed to retrieve aapplication performance scalability. We also showed that
message from a port set should be independent of thﬁtleselect()APl has inherently poor scalability, but that

number of ports in that set. it can be replaced with a simple event-oriented API. We

P(_)rt s_ets_are apprqprlate for a model In Wh'(_:h all Com'implemented this APl and showed that it does indeed im-
munication is done with messages, and in which the sys:

; o rove performance on a real application.
tem provides the necessary facilities to manage message

ports (not necessarily a simple problem(7]). Introducing11  Acknowledgments
port sets into UNIX, where most communication follows We would like to thank Mitch Lichtenberg for helping
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int declare_processwi de_interest(int fd,
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int *statemask);

The result of this system call would be the equivalent
nvokingdeclareinterest()in every existing and future

The select()mechanism can be confusing in multi-
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