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ABSTRACT
The various proposed DHT routing algorithms embody sev-
eral different underlying routing geometries. These geome-
tries include hypercubes, rings, tree-like structures, and but-
terfly networks. In this paper we focus on how these ba-
sic geometric approaches affect the resilience and proximity
properties of DHTs. One factor that distinguishes these
geometries is the degree of flexibility they provide in the se-
lection of neighbors and routes. Flexibility is an important
factor in achieving good static resilience and effective prox-
imity neighbor and route selection. Our basic finding is that,
despite our initial preference for more complex geometries,
the ring geometry allows the greatest flexibility, and hence
achieves the best resilience and proximity performance.
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1. INTRODUCTION
The unexpected and unprecedented explosion of peer-to-

peer file-sharing, ignited by Napster and refueled by a suc-
cession of less legally vulnerable successors (e.g., Gnutella,
Kazaa), inspired the development of distributed hash ta-
bles (DHTs). DHTs offer a promising combination of ex-
treme scalability (scaling typically as log n) and useful se-
mantics (supporting a hash-table-like lookup interface), and
have been proposed as a substrate for many large-scale dis-
tributed applications (see, for example, [5, 12, 22]).

Our focus here is not on the uses of DHTs but on the un-
derlying DHT routing algorithms. A wide variety of DHT
routing algorithms have been proposed, and the list grows
longer with each passing conference. However, the DHT
routing literature is still very much in its infancy; as a re-
sult, most DHT routing papers describe new algorithms and
very few provide more general insight across algorithms or
usefully compare between algorithms.

In this paper we attempt to take a very small step in this
direction by looking at the basic geometry underlying DHT
routing algorithms and how it impacts their performance in
two important areas: static resilience and proximity routing.
While the current collection of DHT routing algorithms dif-
fers in many respects, perhaps the most fundamental distinc-
tion between them lies in their different routing geometries.
For instance, CAN [19] (when the dimension is taken to be
log n) routes along a hypercube, Chord [25] routes along
a ring, Viceroy [14] uses a butterfly network, and PRR’s
algorithm [16] uses a tree-like structure. These geometries
have differing degrees of flexibility in choosing neighbors and
next-hop paths. The importance of geometry, and the re-
sulting flexibility, isn’t clear when looking only at the typical
metrics of concern – state (the number of neighbors) and ef-
ficiency (the average path length) – because many of these
algorithms can achieve the same state/efficiency trade offs.
However, geometry (and flexibility) becomes more relevant
when looking at other performance issues.

One of the crucial questions facing DHTs is whether they
can operate in an extremely transient environment where a
significant fraction of the nodes are down at any one time.
There are many facets to this issue, most notably the speed
and overhead of recovery algorithms, but one relatively (but
not completely; see [13, 22]) unexplored area is static re-
silience, which is how well the DHT can route even before
the recovery algorithms have had a chance to work their
magic. We discuss this issue in Section 3.

Another crucial question is how well DHTs can adapt to
the underlying Internet topology. Much research has been



devoted to incorporating proximity into DHT routing pro-
tocols, and there are two areas of concern. The first is the
total latency of the DHT routing path, which should be no
more than a small multiple of the underlying Internet la-
tency. We discuss path latency in Section 4. The second is
whether such paths converge; the various tasks of providing
efficient caching, building parsimonious multicast trees, and
finding the closest server out of many are all made easier if
DHT routing paths have a local convergence property that
we explore in Section 5.

Our paper examines the extent to which geometry impacts
the performance in these two areas, and thus we begin our
paper by discussing geometry in Section 2. However, before
embarking on this discussion, which we hope provides some
insight, we readily confess that our paper is a very initial
stab at the problem and is undoubtedly incomplete. Our
various sins include (1) only picking a few, not all, of the
currently proposed DHT routing algorithms, (2) not consid-
ering factors, such as symmetry, that may affect the state
management overhead and (3) only focusing on two perfor-
mance issues (resilience and proximity), and not considering
interactions between these various properties. Rectifying
these omissions is the subject of future work.

2. GEOMETRIES AND ALGORITHMS
To provide context for the technical material to follow,

we first discuss the philosophy that motivates this work. As
noted before, there are a myriad of DHT designs in the liter-
ature, all extensively analyzed and energetically promoted.
However, we envision that there will be only one or a few
very large-scale DHT infrastructures. Thus, out of the cor-
nucopia of routing choices we must select one (or a few) on
which to build future systems. The question is: how do we
make that choice?

One approach is to view these systems as complete coher-
ent proposals and have a bake-off among them, comparing
their performance in real-world situations. This black-box
approach, which is taken in [1, 24] and elsewhere, compares
the designs as turn-key systems. While this provides per-
formance comparisons for a fixed set of designs and a given
environment, it doesn’t provide much guidance for designing
new DHTs. A very different approach is to view each pro-
posal as a set of somewhat independent design choices and
to evaluate the wisdom of each design choice in the hope
that this insight will eventually lead to a superior hybrid
design. This paper adopts the latter approach. Thus, we
do not intend our observations to be rankings of the current
DHT proposals, but rather to be hints about how one might
better design a future DHT routing algorithm.

2.1 Geometries
One can roughly divide DHT design issues into two cate-

gories:

Routing-level This category is confined to two well-defined
issues: neighbor selection – how one picks the set of
neighbors for a node – and route selection – how one
chooses the next hop when routing a message. These
choices determine what we call the routing behavior of
a DHT.

System-level This category contains everything else. These
are higher-level design decisions that apply across all
routing-level choices. Examples of system-level issues

are caching and replication and whether the actual de-
livery of messages is done iteratively or recursively.

Routing-level and system-level choices are not always com-
pletely independent, in that some routing-level design choices
affect the feasibility or performance of a system-level design
choice, but often they are largely orthogonal and should be
treated as such.

Another useful distinction is between the routing algo-
rithm and the routing geometry.

Algorithm This refers to the precise details of how neigh-
bors and next-hops are chosen. Any change in these
details is a change in the routing algorithm.

Geometry This is not a precise term, and we present no
formal definition, but often the way in which neigh-
bors and routes are chosen has a compelling geomet-
ric interpretation. Conversely, the choice of a routing
geometry constrains the way in which neighbor and
routing choices are made. Small changes to the rout-
ing algorithm do not change the underlying routing
geometry.

Our work here focuses on the impact of routing geome-
try, rather than on the particular algorithmic details. As
noted earlier, most of the current DHT routing proposals
have very clear geometric interpretations. The question is
which properties of these various DHT routing algorithms
derive from their basic choice of geometry, and which can
be altered by small algorithmic changes. Understanding the
constraints and possibilities inherent in an underlying rout-
ing geometry will help guide us when designing future DHT
routing algorithms.

Note that all of these geometries are capable of providing
O(log n) path lengths with O(log n) neighbors (and Viceroy
can improve that to O(1) neighbors). Thus, we don’t focus
on how geometry effects space and efficiency. We instead
note that these geometries place very different constraints on
route and neighbor selection. The resulting varying degrees
of flexibility each geometry provides has significant impact
on the resilience and proximity properties of the system. We
now discuss flexibility in somewhat greater depth.

2.2 Flexibility
Flexibility is nothing more than the algorithmic freedom

left after the basic routing geometry has been chosen. This
freedom is exercised in the selection of neighbors and routes.
We discuss these issues in turn:

2.2.1 Neighbor Selection
DHTs have a routing table comprised of neighbors. In

the original set of DHT proposals, some algorithms made
this choice of neighbors purely deterministic (i.e., given the
set of identifiers in the system, the neighbor tables were
completely determined), and others allowed some freedom
to choose neighbors based on other criteria in addition to
the identifiers; most notably, proximity (i.e., latencies) have
been used to select neighbors. However, the question is
not whether the initial proposal included this feature, but
whether the basic routing geometry precludes it. That is,
if the routing geometry precludes choosing neighbors based
on proximity, then that it is a true loss of flexibility; if the
routing geometry allows such a choice, then the omission is
merely a small algorithmic detail that can be changed.



Several DHT proposals make use of what we will call se-
quential neighbors. These are neighbors to which one can
route and be sure of making progress towards all destina-
tions. The leafset in Pastry and the successors in Chord
are examples of sequential neighbors. Some geometries nat-
urally support such sequential neighbors, and some don’t.
Since such neighbors play a crucial role in recovery algo-
rithms, several DHT proposals whose basic geometries don’t
naturally support sequential neighbors have augmented their
design to include them. The result is a somewhat hybrid ge-
ometry.

2.2.2 Route Selection
Given a set of neighbors, and a destination, the routing

algorithm determines the choice of the next hop. However,
flexibility is relevant here, for two reasons. First, when the
determined next-hop is down, flexibility describes how many
other options are there for the next-hop. If there are none,
or only a few, then the routing algorithm is likely to fare
poorly under high failure rates.

Second, analogous to choosing neighbors based on proxim-
ity, one might want to choose next hops based on proximity.
To some extent, this reflects the same degree of freedom al-
luded to above (for picking other options under failure) but
it arises in a different context.

2.3 Algorithms
We now discuss some basic routing geometries. We do so

by reviewing several DHTs and describing how their rout-
ing algorithm can be interpreted geometrically. We make
special note of the flexibility in neighbor and route selection
provided by these different geometries. However, it is im-
portant to note that we consider such flexibility only when
it can be exercised without significantly altering the state-
efficiency tradeoff for that geometry. For instance, for Chord
we could pick O(n) neighbors and choose routes with O(n)
path lengths with a spectacular degree of flexibility but that
would not represent a desirable design.

In the discussion that follows, we assume systems with n

nodes and log n bit node identifiers. In practice, these al-
gorithms typically use log N bit identifiers where N � n,
so the identifier space is not wholly populated by nodes,
but for clarity and conciseness we assume wholly populated
identifier spaces in the following discussion. Likewise, our
description treats identifiers as binary strings but in practice
they will be to some base b. Neither of these assumptions
will affect the correctness of our comments, but both will
help facilitate the presentation.1 Finally, we abuse terminol-
ogy and frequently use the term node to refer to the node’s
identifier.

We consider the following DHTs: PRR [16], CAN [19, 18],
Chord [25], Viceroy [14], Pastry [22] and Kademlia [15]. For
reasons of space and time, there are many algorithms that
we do not consider, among them being Tapestry [28] (though
our discussion of PRR should mostly apply to Tapestry as
well), a recent de Bruijn inspired algorithm [6], and a ran-
domized algorithm due to Kleinberg [11].

1Our simulation results, presented later in the paper, do not
assume dense identifier space. However, they all use base 2
to allow us to work with reasonable path lengths (typically
6-8 hops); clearly however, our results would be less relevant
for DHTs with very short paths of 1-2 hops [7].

2.3.1 Tree
The tree’s hierarchical organization makes it a likely can-

didate for efficient routing, and in fact it is the geometry un-
derlying PRR’s algorithm, which is perhaps the first DHT
routing algorithm. The basic routing algorithms in Tapestry
and Pastry are both rather similar in spirit to this original
algorithm although Pastry (as we describe later) also uses a
ring-like geometry in addition to the tree. In a tree geome-
try, node identifiers constitute the leaf nodes in a binary tree
of depth log n; the “distance” between any two nodes is the
height of their smallest common subtree. Each node holds
log n neighbors, where the ith neighbor is at distance i from
the given node and routing works by greedy routing towards
the destination. In other words, a node has neighbor nodes
that match each prefix of its own identifier but differ in the
next bit. Routing is achieved by successively “correcting”
the highest order bit on which the forwarding node differs
from the destination, effectively increasing the length of the
longest prefix match by one at each hop.

We make the following observation on the flexibility a
node has in choosing its neighbors: any given node has
2i−1 options in choosing a neighbor at distance i from it-
self, corresponding to the subtree of nodes that share the
first log n − i bits with the given node but differ on the
log n − i + 1 bit. Thus, these “unconstrained” lower or-
der bits give a great deal of freedom in choosing neighbors,
with the amount of freedom increasing exponentially with
increasing distance i. This yields a total of approximately
n(log n)/2(= Πlog n

i=1 2i) possible routing tables per node. Of
course, a node will choose exactly one of these possible rout-
ing tables.

We now consider routing flexibility. Given a particular
choice of routing table, how much flexibility does a node
have in selecting the next hop to a given destination? We
observe that in a tree, a node has only one neighbor that re-
duces the distance to the destination; i.e., only one neighbor
can increase the length of the longest prefix match. Thus,
in contrast to the generous flexibility in choosing neighbors,
a tree offers no flexibility in route selection.

2.3.2 Hypercube
The routing used in CAN resembles a hypercube geome-

try. CAN uses a d-torus that is partitioned amongst nodes
such that every node “owns” a distinct zone within the
space. As explained in [18], a CAN node’s identifier is a
binary string representing its position in the space. When
d = log n dimensions the neighbor sets in CAN are exactly
those of a log n-dimensional hypercube.2 Each node has
log n neighbors; neighbor i differs from the given node on
only the ith bit. The “distance” between two nodes is the
number of bits on which their identifiers differ and routing
works by greedy forwarding to reduce this distance. Thus
routing is effectively achieved by “correcting” bits on which
forwarding node differs from the destination. The key differ-
ence between routing on the hypercube and the tree is that
the hypercube allows bits to be corrected in any order while
on the tree bits have to be corrected in strictly left-to-right
order. The reason the hypercube can use out-of-order bit

2This hypercube-like interpretation of CAN is also extend-
able to d < log n; however, for the purposes of this paper
we restrict ourselves to the case where CAN has log n di-
mensions and routes in log n hops so that it is more directly
comparable to the other DHTs.



fixing is because, unlike on the tree, a node’s neighbor only
differs from itself on a single bit and hence previous correc-
tions of lower order bits are maintained as higher order bits
are corrected. Thus, the hypercube offers greater flexibility
in route selection. Specifically, in routing from a source to
destination that are at a distance of log n, the first node
has log n next hop choices, the second node has log n − 1
choices, and so on yielding a total of approximately (log n)!
routes between two nodes. Note that each of these paths is
of the same length – they only differ on the order in which
destination bits were fixed. The hypercube however pays a
price for this flexibility in route selection. Because a node’s
neighbors differ from itself on exactly one bit, it has only
one possible choice for each of its neighbors. Thus a node
has no flexibility in selecting its neighbors. This is the oppo-
site of what occurs with the tree, which has much neighbor
selection flexibility but no route selection flexibility.

2.3.3 Butterfly
The Viceroy algorithm emulates the operation of a tra-

ditional butterfly network but adapts this structure to be
self-organizing and robust in the face of node arrivals and
departures. Viceroy improves on the state-efficiency trade-
off of previously proposed DHTs by routing in O(log n) hops
with constant state at each node. The details of Viceroy are
fairly involved, so we only provide a very sketchy overview.
In a traditional butterfly, the nodes are organized in a series
of log n “stages” where all the nodes at stage i are capa-
ble of (essentially) correcting the ith bit in the identifier.
To ensure correctness in the face of node dynamics, Viceroy
imposes a global ordering on all the nodes in the system
and requires each node to hold, as neighbors, its immedi-
ate successor and predecessor in this ordering. A node also
holds, as neighbors, its immediate successor and predeces-
sor from among the nodes in its own stage. Viceroy routing
consists of three phases: the first uses O(log n) hops to move
up to the first stage, the second uses another O(log n) hops
to traverse down the stages until it reaches the vicinity of
the destination at which point routing enters its third phase
and uses the successor/predecessor neighbors to reach the
destination in a O(log n) additional hops. We note that this
final routing phase, which uses O(log n) hops, does not per-
mit flexibility in either route or neighbor selection. Thus,
while the butterfly achieves greater efficiency than the other
DHTs we consider, it results in far less flexibility. We stress
that this is not a “flaw” in the particular Viceroy design;
rather, we conjecture that this limitation is fundamental to
constant state algorithms.3

2.3.4 Ring
In a Ring geometry, nodes lie on a one-dimensional cyclic

identifier space on which the “distance” from an identifier
A to B is calculated as the clockwise numeric distance from
A to B on the circle.4 Chord embodies such a ring geome-

3Moreover, there are likely ways to restore some flexibility
by keeping more state, but making that state less “critical”
to the operation of the algorithm (and hence not imposing
the same recovery requirement as the critical state). This is
the subject of future work, and we do not pursue it here.
4Different ring-based DHTs measure distance on the ring
in slightly different ways; Chord uses the clockwise distance
while Viceroy uses the minimum of the clockwise and anti-
clockwise distance. This difference only changes the con-
stants in our flexibility bounds.

try. In Chord, a node with identifier (say) a maintains log n

neighbors (called fingers) where the ith neighbor is the node
closest to a + 2i on the circle. Hence, a node can route
to an arbitrary destination in log n hops because each hop
cuts the distance to the destination by half. Although the
original Chord proposal defines a specific set of neighbors
for a given node identifier, this rigidity in neighbor selection
is in no way fundamental to a ring geometry.5 Specifically,
routing on a ring can be achieved in O(log n) hops even if
node a were to pick its ith neighbor as any node in the range
[(a + 2i), (a + 2i+1)] rather than the exact node closest to
a +2i on the circle as originally defined by Chord. This im-
plies that in terms of the flexibility of neighbor selection, a
ring geometry (like the tree) has 2i possible options in pick-

ing its ith neighbor for a total of approximately n(log n)/2

possible routing tables for each node. Having selected one
of its possible routing tables, we examine the flexibility in
route selection now available to the node in terms of which of
its neighbors make progress towards a destination. For two
nodes that are initially O(n) distance apart, the first node
has approximately log n of its neighbors that make progress
towards the destination. After the first hop, the next node
will have approximately (log n)−1 possible next hops and so
on to yield a total of approximately (log n)! possible routes
for a typical path. Note that all these paths respect the
efficiency bound of O(log n) hops. This is because routing
from the source to destination uses log n hops that span ex-
ponentially different distances – while greedy routing takes
these hops in the decreasing order of their spans, any path
that takes each of the different spans just once will reach the
destination in log n hops irrespective of the order in which
the spans are taken. Later, in section 4.1, we will define a
rule that allows Chord to take each of these different spans
just once without imposing any order.

While our discussion above is limited to paths that are
bounded by log n hops, Chord also allows paths that are
much longer than log n. This is accomplished by taking
multiple hops of smaller spans instead of a single hop of
large span. For example, one could take two successive hops
using i− 1th neighbors of span 2i−1 each instead of a single
hop using ith neighbor of span 2i.

2.3.5 XOR
Kademlia [15] defines a novel routing metric – the distance

between two nodes is the numeric value of the exclusive OR

(XOR) of their identifiers. For lack of a more intuitive name,
we use the term XOR geometry to refer to the geometry in-
terpretation yielded by this XOR metric. A Kademlia node
picks log n neighbors, where the ith neighbor is any node
within an XOR distance of [2i, 2i+1] from itself. Examina-
tion of the above definition of neighbors reveals that Kadem-
lia’s routing table permits exactly the same routing entries
as for tree geometries such as PRR. Moreover, by routing
greedily on the XOR metric, Kademlia chooses exactly the
same routes as PRR when the routing table is fully popu-
lated (i.e., no failures); successive hops “fix” bits from left
to right. Under failures, however, Kademlia behaves differ-
ently since, unlike on the tree, even if a node cannot fix the
highest differing bit it can still make progress in the XOR
distance to the destination, effectively fixing a lower order

5This is a fairly well recognized fact in the DHT community
and by the developers of Chord, and we do not claim to be
the first to make this observation.



property tree hypercube ring butterfly xor hybrid

Neighbor Selection nlog n/2 1 nlog n/2 1 nlog n/2 nlog n/2

Route Selection (optimal paths) 1 c1(log n) c1(log n) 1 1 1
Route Selection (non-optimal paths) - - 2c2(log n) - c2(log n) c2(log n)

Natural support for no no yes no no Default routing: no
sequential neighbors? Fallback routing: yes

Table 1: The neighbor and route selection flexibility at any node in various routing geometries. c1 and c2 are
small constants.

bit. Thus, multiple paths exist between a source and desti-
nation, but these paths are not of equal lengths. This stems
from the fact that the distance of a node’s neighbors with
respect to the node have little bearing on their distance to
the destination. Intuitively, even though Kademlia offers the
flexibility of fixing lower order bits before higher ones, the
lower order fixed bit need not be preserved by later routing
hops that fix higher order bits.

2.3.6 Hybrid
So far we have only presented pure geometric interpre-

tations. However, some routing algorithms employ dual
modes, where each mode inspires a different geometric inter-
pretation; we call these hybrid geometries. We use Pastry
as our canonical example of a hybrid geometry because it
combines the use of a tree geometry with that of a ring ge-
ometry. Node identifiers are regarded as both the leaves of
a binary tree and as points on a one-dimensional circle. In
Pastry, the “distance” between a given pair of nodes is thus
computed in two different ways – the first is the tree distance
between them, the second is the cyclic numeric distance be-
tween them. By default, Pastry uses the tree distance as its
metric for routing and only falls back to using the ring ge-
ometry when the tree-based routing fails. Thus, its freedom
of neighbor selection is the same as Tree geometries. The
route selection flexibility is more subtle. The hybrid geome-
try allows one to take hops that do not make progress on the
tree but do make progress on the ring; these paths however
do not necessarily retain the log n bound on the number of
hops.6

While we use Pastry as our canonical example, we point
out that other DHTs can, and do, make use of a similar
hybrid geometry, which we now discuss.

As mentioned earlier, sequential neighbors are those that
make progress towards all destination identifiers. This re-
quires a single global ordering on the distances between
nodes, and thus the ring is the only geometry that natu-
rally supports sequential neighbors. However, several of the
designs can be augmented to include sequential neighbors,
especially for recovery, essentially by defining a separate or-
dering (aside from the ordering used for normal routing). In
particular, Viceroy and CAN (see [18]) have incorporated
sequential neighbors. They are examples, like Pastry, of
hybrid geometries. Our evaluation in this paper will ex-
plore the extent to which sequential neighbors, both nat-

6One might argue that even on the tree, similar multiple
paths exist if we were to allow “sideways” hops that main-
tain, but do not increase, the length of the longest prefix
matched. However this would require some rule to prevent
looping which would require an ordering of nodes that share
the same prefix. This is precisely what Pastry achieves in
defining a second distance metric.

urally supported and artificially added, improve proximity
and resilience.

Table 1 summarizes our discussion on the different routing
geometries and their flexibility. Note that we enter slightly
different constants for the flexibility in route selection for
the different geometries. Specifically, we claim that the Ring
and Hypercube have twice the flexibility in route selection
compared to the Hybrid and XOR geometries.7 Our simu-
lation results in later sections validate this difference.

3. STATIC RESILIENCE
One of the reasons DHTs are seen as an excellent platform

for large scale distributed systems is that they are resilient
in the presence of node failures. This resilience has three
different aspects, only one of which we explore here:

Data replication: When nodes fail, the data (or pointers)
they are holding go with them. Measures must be
taken so that this doesn’t result in the loss of data from
the system as a whole. Several (complementary) ap-
proaches have been proposed, most notably data repli-
cation [3, 4]. In our discussion, we assume that the
degree of replication is adequate to prevent data loss,
so the remaining question is whether one can route in
the presence of failures.

Routing recovery: When failures occur, they deplete the
routing tables in the remaining nodes. Recovery algo-
rithms are used to repopulate the routing tables with
live nodes, so that routing can continue unabated.

Static resilience: However, the recovery algorithms take
some time to restore the routing tables, so one should
still ask how well DHTs can route before routing state
is restored. We call this static resilience because we
keep the routing table static, except for deleting failed
nodes, and ask how well routing performs. Hence,
static resilience measures the extent to which DHTs
can route around trouble even without the aid of re-
covery mechanisms that fix trouble. Thus, static re-
silience gives a measure of how quickly the recovery
algorithm has to work; DHTs with low static resilience
require much faster recovery algorithms to be similarly
robust.

7To see why this is true, consider a node on the ring routing
to a destination at a distance between [2i, 2i+1] from itself;
for this node all of its first i neighbors make progress to
the destination. Likewise, on the Hypercube, if a node dif-
fers from the destination on k bits then its k corresponding
neighbors all make progress. In the Hybrid and XOR how-
ever, given a destination at a distance of between [2i, 2i+1],
a node’s ith neighbor will only make progress if its ith bit
differs from the destination’s which is only true half the time.



While several papers consider resilience in the presence
of active recovery algorithms, only a few examine static re-
silience. References [18, 22] address this issue in the contexts
of CAN and Pastry respectively, while some recent work in
reference [13] examines how certain graph theoretic proper-
ties of a overlay structure affect its static resilience.

Routing Average Median 90 Percentile
Geometry Hopcount Hopcount Hopcount

XOR 7.7 8 10
Ring 7.4 7 10
Tree 7.7 8 10

Butterfly 21.4 21 28
Hypercube 7.7 8 10

Hybrid 7.7 8 10

Table 2: Comparing the hopcounts for different
DHTs over a 65,536 node network with no failures.

To test for static resilience, we use a 65,536 node network.
We allow different DHTs to populate their routing tables,
ensuring that all the geometries (with the exception of the
Butterfly8) store the same amount of state (number of the
routing table entries) at any node. As shown in Table 2, the
performance of the geometries (with the exception of the
Butterfly) are very similar when there are no node failures.
We now let some fixed fraction of uniformly chosen nodes
fail and remove the entries corresponding to the failed nodes
from the routing tables. We then try to route from each live
node to every other live node and ask how often the routing
can succeed. In particular, we look at two metrics:

• % paths failed: this describes how often routing was
not able to connect two live nodes.

• % increase in path length: this describes the in-
crease in path length, compared to the path length
when there are no failed nodes.

In what follows, we consider the algorithms based on the
following routing geometries: XOR, Ring, Tree, Butterfly,
Hypercube, and Hybrid.

3.1 Performance Results
In this section, we discuss three questions:
Question #1: How does the static resilience of various

geometries compare? The left graph in Figure 1 shows the
results for % of failed paths as the % of failed nodes is var-
ied. The results are very consistent with the degree of route
selection flexibility in each geometry (see Table 1). The
Tree and Butterfly have no route selection flexibility, and
their resilience is quite poor; when 30% of the nodes have
failed, almost 90% of their paths have failed. To the other
extreme, the Ring and Hypercube geometries have the most
flexibility in route selection, and their resilience is signifi-
cantly better; when the same 30% of nodes are failed, under
7% of the routes have failed.9 Intermediate between these
two cases are the Hybrid and XOR geometries, which have

8Unlike other DHTs, the amount of state stored by a But-
terfly node is always a constant and cannot be controlled.
9Ring performs better than Hypercube as even though they
have the same number of log n length paths, Ring has many
alternate paths that are longer than log n, while Hypercube
has none.

about half the number of alternate paths (and hence, half
the routing flexibility) that the Ring and Hypercube have.
Their resilience is correspondingly inferior to the Ring and
Hypercube, but far superior to the Tree and Butterfly; when
the same 30% of nodes are failed, about 20% of routes have
failed.

The right graph in Figure 1 shows the results for % in-
crease in the average path lengths (or path stretch) as the
% of failed nodes is varied. The path stretch of the Hyper-
cube is minimal, consistent with our observation that all its
alternative paths are of equal length. Ring suffers interme-
diate path stretch as some of its alternate paths are longer
than the rest. All the other geometries incur significant path
stretch because they have only longer alternate paths. The
path stretch decreases as a large fraction of the nodes fail
because very few routes succeed at high node failure rates,
and those that succeed are very short.

Question #2: How does the addition of sequential neigh-
bors affect the static resilience of various geometries? The
previous results did not include sequential neighbors. In
Figure 2, we consider what happens when we add 16 sequen-
tial neighbors to the various algorithms. We eliminate the
XOR geometry because it doesn’t support sequential neigh-
bors, and the Tree is not included because it is represented
by Hybrid. The most obvious result here is that sequen-
tial neighbors greatly increase resilience to path failures; no
path failures are seen in any geometry even when 30% of
the nodes have been failed. This suggests that DHTs, when
equipped with sequential neighbors, can route successfully
even under high node failure rates. The Ring performs sig-
nificantly better than the Hypercube and others whose se-
quential neighbors are artificially grafted on. However, the
increase in resilience to path failures comes at the cost of
path stretch. All the algorithms suffer significantly greater
path stretch (now that the Hypercube has sequential neigh-
bors, not all paths are of equal lengths).

Question #3: Are sequential neighbors better than regu-
lar neighbors for ensuring static resilience? While the previ-
ous results were specific to sequential neighbors, one could
conjecture that increased resiliency could equally well be
achieved just by increasing the total number of neighbors
without insisting that they be sequential. Thus, we now ask
whether sequential neighbors are especially useful in increas-
ing resilience. We do this by considering the Ring geome-
try and compare cases where the total number of sequential
and regular neighbors are the same, but the number of se-
quential neighbors are different. The results are shown in
Figure 3. The left graph in the figure indicates that at high
node failure rates, sequential neighbors are better than reg-
ular neighbors at increasing resilience to path failures but,
the right graph indicates that they can lead to significantly
longer paths (note that the Y-axis of the right graph shows
path hop-counts and not path stretch). Hence, the use of se-
quential neighbors might be the preferred option if one were
only concerned with routing success and not other metrics
such as the total path latency.

To summarize, our results confirm that the static resilience
of a geometry is largely determined by the amount of routing
flexibility it offers. Thus, the Ring which has the greatest
routing flexibility has the highest resilience, while Tree and
Butterfly which have the least flexibility in routing have the
least resilience. Further, the addition of sequential neighbors
can make DHTs significantly more resistant to path fail-



0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

F
ai

le
d 

pa
th

s 
(%

)

Failed nodes (%)

XOR
Ring
Tree

Butterfly
Hypercube

Hybrid 0

20

40

60

80

0 10 20 30 40 50 60 70 80 90

In
cr

ea
se

 in
 A

vg
. p

at
h 

ho
p-

co
un

ts
 (

%
)

Failed nodes (%)

XOR
Ring
Tree

Hypercube
Hybrid

Figure 1: Left: Percentage of failed paths for varying percentages of node failures across different routing
geometries. Right: Percent increase in average path hop-counts of successful paths for varying percentages of
node failures across different routing geometries. The Butterfly is left off of this graph because so few routes
are usable, and those that are sometimes take shorter paths than the original ones, resulting in a negative
path stretch.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

F
ai

le
d 

pa
th

s 
(%

)

Failed nodes (%)

Ring
Hypercube

Butterfly
Hybrid

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90

In
cr

ea
se

 in
 A

vg
 p

at
h 

ho
p 

co
un

ts
 (

%
)

Failed nodes (%)

Ring
Hybrid

Hypercube

Figure 2: Left: Percentage of failed paths for varying percentages of node failures across different routing
geometries. Right: Percent increase in average path hop-counts of successful paths for varying percentages of
node failures across different routing geometries. Butterfly is left off of this graph because its path increase
is so much higher than the others, reaching 700%, that it would distort the y-axis. All algorithms use 16
sequential neighbors.

ures, though path stretch can get much worse. Finally, for
the Ring topologies, replacing additional sequential neigh-
bors with regular neighbors yields a similar, but smaller, in-
creased resistance to path failures but a much smaller path
latency.

4. PATH LATENCY
DHTs are designed to provide efficient routing as mea-

sured in terms of hopcount (the number of overlay hops be-
tween the source node and the destination node). While
hopcount is an important metric for measuring the pro-
cessing and bandwidth requirements at the peers, it does
not adequately address the issue of end-to-end latency be-
cause each overlay hop could potentially involve significant
delays (intercontinental links, satellite links, etc.). As a re-
sult, there has been much recent effort to reduce end-to-end
latencies in DHT routing algorithms by considering the rela-
tive proximity of overlay nodes (i.e., the IP latency between
them) [2, 8, 9, 10, 16, 21, 27]. The proposed methods fall
into three broad categories, two of which we consider here.

Proximity Neighbor Selection (PNS): The neighbors in
the routing table are chosen based on their proximity.

Proximity Route Selection (PRS): Once the routing ta-
ble is chosen, the choice of next-hop when routing to
a particular destination depends on the proximity of
the neighbors.

Proximity identifier Selection (PIS): As explored in [21],
one can pick the node identifiers based on their ge-
ographic location. Since this makes load balancing
hard, and increases the likelihood of correlated fail-
ures, we don’t discuss this method here.

We thus consider the two proximity methods PNS and
PRS. The section begins with a short description of these
methods, and the rest of the section is devoted to their anal-
ysis. While our evaluation is based on recursive (as opposed
to iterative [3]) routing, we believe that our key conclusions
regarding the relative performance of PNS and PRS hold
true for iterative routing too. Confirming this belief is the
subject of future work.

Evaluating proximity methods requires the topology of
an underlying network along with its link latencies. Testing
proximity methods on only one or two topologies doesn’t en-
sure that the results will generalize. So, after defining PNS
and PRS, we discuss whether we can more generally under-
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stand the role of topology and link latencies in proximity
methods.

After these preliminaries, we finally address the question
of how geometry affects path latency in DHT routing algo-
rithms. Our analysis style here is different from that of the
previous section on static resilience; there, we were compar-
ing the detailed differences in geometries. Here, we will find
that the geometries themselves make less difference than
whether or not they can support PNS and/or PRS. Thus,
this section is really a comparison of those two proximity
methods. As discussed in Section 2, some geometries are
capable of PNS, some of PRS, and others of both. In this
section, we wish to evaluate the relative performance of PNS
and PRS to see whether restrictions on adopting them is a
significant hindrance.

4.1 PNS and PRS
In DHT algorithms that have flexibility in choosing neigh-

bors, typically these neighbors have to be chosen from some
subset of the identifier space. The ideal PNS algorithm
would be to select the closest neighbors (as measured by
latency) in these subsets. For example, the subset for the
ith neighbor of a node a in a Tree geometry is the identifier
space of the sub-tree at depth i containing the node, while in
a Ring geometry it is the identifier space [(a+2i), (a+2i+1)].
However, identifying the closest nodes is hard in practice,
as the sizes of the subsets grow exponentially with i. So,
various heuristics have been proposed in [2, 8] to approx-
imate the performance of ideal PNS. Here, we define one
such heuristic, dubbed PNS(K) that uses random sampling.
PNS(K) samples K consecutive nodes starting from the first
element in the relevant subset and picks the closest one. We
don’t dwell here on how one should pick K, but in general a
node can make a reasonable choice of K after inspecting its
latency distribution (see below). From now on, we use the
term PNS to refer to ideal PNS.

The PRS algorithms have to deal with a more complicated
tradeoff between the number of hops and the latency. Any
neighbor closer to the destination in the identifier space is
a valid next hop, and without proximity, the next hop is
chosen in a greedy fashion to decrease the number of hops.
While there are a number of heuristics that trade hops for
latency, we focus on three heuristics that we found effective
for each of the Ring, XOR and Hypercube geometries.

The heuristic for Ring takes advantage of the multiple

paths with equal number of hops to a destination (see Ta-
ble 1) and chooses the next hop from a subset of neighbors,
called the candidate set, which do not (usually) increase the
routing path hops. To select the candidate set, the distance
to the destination is expressed in binary notation, and neigh-
bor i is chosen to the set if there is a 1 in the ith position.
The closest member of the candidate set is picked as the next
hop. When coupled with PNS(K), the algorithm disallows
the closest log k neighbors from the candidate set (unless,
of course, the destination lies within the closest log k neigh-
bors).10 However, this heuristic cannot be applied to XOR
as its geometry does not have the luxury of multiple paths
with the same number of hops to the destination. Our PRS
heuristic for XOR takes a non-greedy next hop only when
its latency is smaller than the latency of the greedy next
hop choice by more than the average latency in the network.
This primarily helps to avoid very long hops. In Hypercube,
all the alternate paths have the same number of hops, so our
PRS heuristic is very simple. From the valid next hops, we
pick the one with smallest latency.

We now investigate the role of topology in determining
the effectiveness of these proximity methods.

4.2 Role of Topology and Latency
One of the aspects that makes it hard to understand prox-

imity methods is that their performance depends so criti-
cally on the underlying topology and its latency character-
istics. While there is a large literature describing possible
approaches to topology modeling – starting with the ini-
tial random graphs of Waxman, to the structural generators
in GT-ITM (transit-stub and tiers), to the more recent set
of power-law degree-based generators – there is little known
about how to assign latencies in such a topology. While pre-
vious studies [2, 8, 9, 21] evaluate proximity methods using
one or more of these topology generators along with some
rather ad hoc choice of latency assignments, they don’t an-
alyze how their choice of latencies affects the performance
of the proximity methods. Thus, research into proximity
methods is now in a position where we neither know how to
describe the real-world latencies nor understand their effect
on our proposed algorithms.

10Thus, this version of PRS adds nothing when combined
with the ideal PNS algorithm, which effectively has infinite
K.



(a) (b)
Figure 4: The CDF of latency distributions for (a) the Internet as seen from different geographic locations
and (b) a 16,384 node GT-Itm topology as seen from a typical node.

We propose one possible way out of this bind. We con-
jecture that the effect of topology and latencies, for a large
class of networks including the current Internet graph, can
be reasonably well approximated by looking only at the la-
tency distribution as seen from a “typical” node. That is,
we conjecture that when choosing neighbors or next-hops,
it is a reasonable approximation to consider the set of pos-
sibilities as coming from an independent drawing from the
given latency distribution.11

If this conjecture holds, then there are two immediate ben-
efits. First, one can empirically measure the latency distri-
bution of the Internet from various suitably located hosts, so
that one need not guess at latency assignments in an Internet
topology model. Second, given this measured distribution
one can compute (not merely simulate) an approximation to
the expected performance of a proximity method. To evalu-
ate our conjecture, we simulate the performance of the var-
ious proximity methods over a latency annotated network
topology and compare them with their performance com-
puted using only the latency distribution seen by a random
node in the topology. In doing so, we make a further ap-
proximation that the latency distribution is uniform across
all nodes. As we will see below, the results from this very
simple and rough approximation agree rather well with our
simulation results (see Figure 5).

To illustrate the real-world latencies, we used data from
the Skitter project [17] and a P2P measurement project [23]
to plot the latencies to a large number of end hosts spread
across the Internet as seen from various geographical loca-
tions in Figure 4(a) (similar measurements can be seen in
[26] and elsewhere). The end hosts measured in the Skitter
project cover a large fraction of routable IP prefixes, while
those measured in the P2P project are Gnutella hosts. A
striking feature common to all these latency graphs is that
the curves rise sharply in a certain latency range, indicating
a heavy concentration of nodes within the latency range. We
note that these latency graphs differ significantly from the
assumptions required in [10, 16] to prove their bounds. In
Figure 4(b), we show the latency distribution from a typical
node in our 16,384 node GT-ITM topology that we used for
our simulation results presented later. An important differ-
ence between the observed and GT-ITM latencies is that a

11We acknowledge that this approximation suffers if the
latency distribution varies substantially and qualitatively
from point-to-point. However, the approximation need only
be good enough to capture the relative merits of different
approaches, and is not intended to provide quantitatively
accurate descriptions of a method’s performance.

non-negligible fraction of the observed real-world latencies
are very large. For the GT-ITM case, there are no paths
that are more than double the median latency, whereas in
all the observed distributions atleast 10% of the paths have
latencies double that of their median.
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Figure 5: The CDF of path latency distributions
for PNS Tree and PRS Ring derived in two ways:
simulated using a GT-ITM topology and computed

only using its latency distribution.

Figure 5 compares the computed and simulated results
for two algorithms, PRS Ring and PNS Tree, on our GT-
ITM topology with 16,384 nodes. Links between two transit
nodes are assigned a latency of 100, while those between a
transit node and a stub node are assigned 20. The latencies
of links between two stub nodes are set to 5. Note that the
computations agree well with the simulations confirming our
conjecture earlier that computations over the latency distri-
bution seen by a typical node provides a reasonable approx-
imation to the actual simulations. The results for PRS are
not as close as those of PNS, and this is likely due to the fact
that PRS algorithms typically lead to variations in the hop
count. However, the differences between simulated and com-
puted results are far less than the differences between the
GT-ITM and observed latency distributions. Thus, what-
ever precision we have lost by using computations rather
than simulations are more than made up for by the increase
in accuracy in modeling reality.

In what follows, we will consider only XOR, Ring, Hyper-
cube, and Tree. The Hybrid algorithm and the Tree algo-
rithm are essentially identical when there are no node fail-
ures.12 The Butterfly does not admit either PNS or PRS.

12One minor point: while the Tree does not admit PRS, the
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Geometry No Proximity PNS PRS

XOR 9 9 11
Ring 9 9 9
Tree 10 10 N/A

Hypercube 9 N/A 9

Table 3: These 90th percentile hopcounts for the dif-
ferent DHTs show that the hopcounts do not change
significantly when using various proximity methods.
The network used had 16384 nodes.

Our results below are obtained over a 16,384 node network.
The 90th percentile hopcounts for the different geometries
when using various proximity methods are summarized in
Table 3 to confirm that the gains in path latency reported
below do not come at a significant cost for the path hop-
counts.

4.3 Performance Results
For the rest of this section, we address three questions.

Hybrid geometry could be extended to accommodate PRS.
We don’t pursue that extension here.

Question #1: Which is more effective, PNS or PRS?
Both methods have been proposed in the literature, but their
effectiveness has never been compared. To hold fixed the
effect of the underlying geometry, we compare the two ap-
proaches in the two geometries that can accommodate both:
XOR and Ring. Figure 6 shows results for the Plain, PNS,
PRS, and PNS+PRS versions of the XOR and Ring algo-
rithms. In both cases, the PRS version shows a significant
improvement over the Plain version, but far more improve-
ment is realized by the PNS version. In addition, adding
PRS to PNS gives only a small improvement over the PNS
alone.

To understand why PNS is better than PRS, consider a
node in a densely packed Ring geometry trying to route to
a identifier that is at a distance between [2i, 2i+1] from it-
self. With PNS the node would deterministically pick its ith

neighbor, but that neighbor is selected from any of the 2i

nodes with identifiers between [2i, 2i+1]. In contrast, PRS
can choose from any of its first i neighbors, but each such
neighbor is deterministically chosen. Thus, PNS chooses
among 2i options while PRS choses among i options, result-
ing in improved performance for PNS.

These results reported above are for “ideal” PNS. To see
whether the results change when only sampling a small sub-



set, we compare the various design options when K = 16,
where K is the sample size. The left graph of Figure 7 shows
that the results are similar in this case, with PNS(16) per-
forming significantly better than PRS, although the perfor-
mance improvement of PNS(16)+PRS over PNS(16) alone
is somewhat more than the performance improvement of
PNS+PRS over PNS.

To see the impact of adding sequential neighbors on the
results, we compare the performance of the Plain, PNS and
PRS versions of the Ring after adding 16 sequential neigh-
bors in the right graph of Figure 7. While the improvements
are noticeable for the Plain and the PRS versions, they are
not large enough to affect the comparative results in a sig-
nificant way.

Until now our results used the latency distribution seen by
a node in Virginia, on the east coast of the USA (marked VA
in Figure 4). This distribution, while similar to those seen
from the west coast of the USA and Europe (marked CA
and NL), is considerably different from that seen from the
Japan (marked JP). To test the consistency of our results
across two very different latency distributions, we compute
the performance of the proximity methods over XOR geome-
try using the JP latency distribution and show the results in
Figure 8. Comparing this graph with the left graph of Figure
6, we notice that the relative performance of the proximity
methods are very similar, with PNS still outperforming PRS
by a wide margin, although the absolute performance differs
markedly between the two latency distributions.13
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XOR routing geometry. These algorithms used 1 se-
quential neighbor and are computed using the real-
world latency distribution marked JP in Figure 4.

To conclude, when considering path latency, it is impor-
tant that the geometry accommodate PNS; accommodating
PRS, at least for the sake of path latency, does not appear
to be important.

Question #2: Does the underlying geometry matter,
other than determining whether PNS and/or PRS can be
used? A geometry’s flexibility determines whether it can

13Though for lack of space we don’t present performance re-
sults for GT-ITM latency distributions, we note here that
the results are somewhat different than what we observed
for more realistic latency distributions. Specifically, the per-
formance gap between PRS and the Plain is much smaller
and the performance gap between PNS and PNS(16) is much
larger in the GT-ITM case than for the real-world latency
distributions. Thus, we urge caution when using GT-ITM
topologies to evaluate proximity methods.
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Routing Median VA Median JP Median
Algorithm Hopcount Latency Latency

Internet 1 102 206
XOR 7 1036 1725

PNS XOR 7 139 385
PRS XOR 8 770 1557

PNS+PRS XOR 7 136 381

Table 4: Comparing the median latency and hop-
counts of XOR based overlay paths and the under-
lying IP paths for two extremely different latency
distributions (marked VA and JP in Figure 4). The
latencies are in milliseconds.

accommodate PNS and/or PRS, but here we ask whether ge-
ometry affects path latency beyond this distinction. Figure
9 compares the performance of three pairs: PNS+PRS Ring
versus PNS+PRS XOR, PNS Ring versus PNS Tree (which
cannot implement PRS), and PRS Ring versus PRS Hyper-
cube (which cannot implement PNS). The performance of
each pair of designs is very close, suggesting that what really
matters is the ability to implement PNS and PRS, not the
other factors in geometry.

Question #3: What is the absolute performance of these
proximity methods? The results so far compare the relative
performance of proximity methods, but do not address the
question of how well they do in an absolute sense. While
this question has been addressed in papers proposing indi-
vidual proximity designs, we revisit it here because our tests
use a more realistic latency distribution and therefore may
be more indicative of real-world performance. As the abso-
lute performance depends on the exact latency distribution
used, in Table 4 we show the median latencies of the various
designs for two very different latency distributions. As can
be seen, the very best options (PNS and PNS+PRS) fare
quite well for either distribution. While plain XOR has a
ratio of roughly 10 between the latencies, PNS+PRS XOR
has a ratio less than 2. Thus, the available proximity meth-
ods can reduce the end-to-end latencies in the overlay to a
very small multiple of the underlying Internet path latencies
(which is consistent with the findings in [2, 8]).



To summarize our discussion in this section, we find that
while both neighbor selection (PNS) and route selection
(PRS) can help in finding shorter paths, PNS yields sig-
nificantly better paths than PRS. Further, the effectiveness
of these proximity methods does not depend on the choice
of the routing geometry. Thus, geometries such as Tree,
XOR and Ring that support PNS perform considerably bet-
ter than geometries such as Hypercube that support only
PRS. While XOR and Ring can accommodate both PNS
and PRS (unlike Tree), the additional benefit of supporting
PRS over PNS appears to be quite limited. However, the
ability to accommodate both may be an advantage while
using PNS(K), a limited but more practical version of PNS.

5. LOCAL CONVERGENCE
Local convergence is another issue that arises when con-

sidering the effects of the underlying network latencies. Lo-
cal convergence, first identified in [2], is the property that
two messages, sent from two nearby (in terms of latency)
nodes addressed to the same location, converge at a node
near the two sources. This property leads to low latencies
and/or bandwidth savings in several different uses of DHTs,
including the following three:

Overlay multicast: When setting up a multicast tree [1,
20, 29], one cares about both the lengths of each in-
dividual path (considered in the previous section) and
the overall efficiency of the entire multicast tree. This
latter quantity is improved if DHT routing has the lo-
cal convergence property mentioned above.

Caching: One way to speed access is to cache pointers
along the retrieval path as described in [3, 4]. If the
DHT has good local convergence, then any nearby
node requesting the same content can make use of
these cached content.

Server selection: Similar to caching above, and as explained
in [16, 28], clients can more easily find nearby servers
if pointers to them are stored along the path to the
“root.”

In this section we seek to understand the impact of ge-
ometry on local convergence. In general, local convergence
depends on the nature of the underlying topology and the
exact location of the sources and destination. To provide a
simplified and controlled experiment, we consider the case
of an isolated domain. We consider m nodes that are within
some very small latency of each other; all nodes in this iso-
lated domain are some large latency away from the other
n −m nodes. We then let each node in the isolated domain
contact the same (randomly chosen) destination outside of
the domain. The measure of local convergence is how many
exit points there are; that is, how many nodes in the domain
relay the message to an off-domain node. In the best case,
only one node sends a message off-domain; messages from
all other domain nodes converge on this point before leaving
the domain.

We test convergence on the Ring, Tree and XOR geome-
tries.14 Figures 10 and 11 plot the measured number of exit

14We expect PRS Hypercube to offer convergence similar to
that of the PRS Ring and hence do not explore the Hyper-
cube here. Similarly, we omit the Hybrid as we expect it to
offer performance similar to that of the Ring.

points for increasing domain sizes (n is held fixed while m

varies from 1 to n
2
). Our results can be organized around

three questions:
Question #1: Which is more effective, PNS or PRS?

Figure 10 shows the results for the PNS, PRS, and PNS+PRS
versions of both XOR and Ring. In both cases, PNS and
PNS+PRS provide almost optimal performance, whereas
PRS does little to limit the number of exit points (except
for very large m in the case of Ring). Thus, PNS is far
more effective than PRS. Combining PRS with PNS helps
somewhat for Ring but almost none at all for XOR. The inef-
fectiveness of PRS isn’t surprising because, at the simulated
system size of 65536, each node has 16 neighbors. Until the
domain size is a large fraction of the total population, it is
unlikely that one of these neighbors is within the domain,
and so PRS would have little effect.

Question #2: Does this answer change when only con-
sidering PNS(K)? Figure 11, left, shows the results for the
PNS(16), PRS, PNS(16)+PRS versions of Ring. Because
the sampling is limited to 16, proximity neighbor selection
is not ideal and its effectiveness is greatly reduced. In fact,
PRS and PNS(16) are equally ineffective. The combination
of the two, PNS(16)+PRS is more effective, particularly at
moderate sized domains. When the domain size is small,
a limited amount of sampling (whether choosing neighbors
or routes) isn’t much help. The combination of the two,
PNS(16)+PRS, increases the level of sampling and so its ef-
fectiveness kicks in for lower values of m. Thus, PRS might
play an important role in local convergence if the domain
sizes of interest are small and the sampling used to imple-
ment PNS is limited.

Question #3: How does the performance of the various
geometries compare? Figure 11, right, compares the results
for PNS Tree, PNS+PRS Ring, and PNS+PRS XOR. As
can be seen, these all perform roughly the same. Thus, as
with path latency, the biggest difference between geometries
is whether or not they can accommodate PNS and/or PRS.

Our results suggest that the relevance of PRS depends on
whether or not PNS can be closely approximated (at least
more closely than PNS(16) does). If not, then implement-
ing PRS provides significant value; if so, then PRS may not
be needed as PNS by itself provides almost all the perfor-
mance of PNS+PRS. References [8, 2] propose methods for
efficiently approximating PNS, but it is not yet known how
much better they are than PNS(16) for these scenarios.

6. DISCUSSION
This paper has not introduced any new DHT algorithms,

nor has it presented any theorems. However, we hope that
it has provided some pieces of insight that will be useful
in future DHT routing designs. At a very high level, our
findings can be summarized as follows:

Component-based analysis: When comparing DHT al-
gorithms we advocate analyzing the component design
decisions separately rather than comparing DHTs as
black-boxes or turn-key systems. In particular, this re-
quires separating systems-level design decisions, which
usually are independent of the routing, from routing-
level design decisions. This is more philosophy than
science, but we think our approach, while not as ef-
fective in picking the best current design, is more con-
ducive to creating better designs in the future.
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Figure 10: The number of exit points for a system of size 65536 with varying sizes of isolated domains. The
left graph shows results for the PNS, PRS and PNS+PRS versions of XOR, while the right graph shows
results for the PNS, PRS and PNS+PRS versions of Ring.
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Figure 11: The number of exit points for a system of size 65536 with varying sizes of isolated domains. The
left graph shows results for the PNS(16), PRS and PNS(16)+PRS versions of Ring, while the right graph
shows results for the PNS Tree, PNS+PRS Ring, and PNS+PRS XOR.

Routing geometry is fundamental: The choice of a rout-
ing geometry constrains other routing design issues.
While there are a myriad of detailed routing designs
yet to be explored, the space of routing geometries is
more limited. Hence, one might reach some consensus
on the best routing geometry well before reaching any
consensus about the various design details.

Flexibility is important: The most important difference
we noticed between geometries (besides the butterfly
geometry’s ability to achieve O(log n) paths with O(1)
neighbors) is the degree of flexibility they offer. Flex-
ibility describes the amount of freedom available to
choose neighbors and next-hop paths. This freedom,
in turn, affects the performance in areas such static
resilience, path latency, and local convergence.

Ring and XOR are flexible: The Ring and XOR geome-
tries were the only ones we tested that could freely
choose both neighbors and routes, so they could imple-
ment both PNS and PRS. While PNS is significantly
more effective than PRS in dealing with proximity,
there are times, as we saw in Section 5, when PRS
is an important complement to PNS. Thus, the ability
to support both is an advantage.

Why not the Ring? The Ring geometry has unsurpassed
flexibility and, in addition, provides natural support

for sequential neighbors. It achieved the highest per-
formance in our resiliency tests, and was as good as
any other geometry in the proximity metrics of path
length and local convergence. Thus, our investigation
showed no advantage to the other geometries, and a
slight advantage to the Ring. While our initial incli-
nation was to favor more complicated geometries, the
question we end this paper with is: why not use ring
geometries?

However, we pose this as a question, not a conclusion.
There is much more to be done before any definitive judge-
ments can be drawn. Our investigation is incomplete in
many aspects. For example, our study could be extended
to a wider class of routing geometries, theoretical bounds
could be derived for many of our simulation results, and the
impact of a routing geometry (and in particular its sym-
metry or the lack thereof) on the cost of maintaining the
associated overlay structure should be studied. Thus, we
view our paper as only the first step in a more fundamental
investigation of routing algorithms.
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