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Abstract

This paper evaluatestechniques for improving the pea-
formanceof threearchtecturlly differert webseners. We
study strategies for effectively acceging incoming comec-
tions underconditionsof high load. Our expelimertal eval-
udion shows that the mettod usedto accet new comec-
tion requests cansigrificantly impact server performanc.
By modifying ead sener saceptstratgy, weimprovethe
performanceof the kerrel-mode TUX server, the multi-
threaded Knot sener ard the event-driven psener. Un-
der two different workloads, we improve the throughput
of thesesenersby asmuch as19% — 36% for TUX, 0%
— 32% for Knot, and3%%6 — 71% for the usener. Interest-
ingly, the peformarceimprovementsrealizedby the user-
mode psener allow it to obtain peformancetha rivals an
unmodified TUX server.

1 Introduction

Interret-based applications have expeiiencel incredble
growth in recert yeas ard all indicatiors arethat sich ap
plicationswill continueto grow in numberandimportanc.
Operatirg system sugport for swch apgications is the sub
ject of much actiity in the researb community, whereit
is conmanly believed that existing implemertatiors ard
interfacesare ill -suitedto network-certric applications[4]
[29] [22].

In mary systems, once client denmand exceed the
sener’'s capacity the throughput of the sener degrades
shaply, andmay even approachzera This is reflectedin
long (andunpredictale) client wait times,or evena com
plete lack of respmsefor someclients. Ironically, it is pre-
ciselyduring theseperiods of high demandthat quality of
senice mattes most. Breakirg news, chargesin the stodk
maket, andeventhe Christmasshgping seaon cangen
erae flashcrowds or even prolonged periods of overlload
Unfortunately, over-provisioning of sener cagacity is nei-

*Some of the reseach for this pape was conduded while this author
was employedby Hewlett Packard Labs.

ther costeffective nor practicalsince peals denandcanbe
severalhundredtimeshigherthanthe average [1] [28].

Becawse modern Interret senersmultiplex among large
numbersof simultaneows comedions, much reseach has
investigatedmadifying operating systemmecharisms and
interfacesto efficiently obtain and processnetwork 1/O
everts [3] [4] [21] [22] [7]. Otherreseach [19], hasan
alyzed the strenghs and wealnessesof different server
ardhitectues. Theseinclude multi-threaced (MT), muiti-
process (MP), single proces evert-driven (SPED)and even
a hybrid design called asymmetric multi-processeven-
driven (AMPED) architectue. More recent work [30]
[9] [27] [26] hasre-ignited the delate regardng whether
to multiplex comections usirg threadsor everts in high-
peaformancelintemetsewers. In addtion, aninterestingle-
bae has emeged corcerring therelative merits of kerrel-
mode versus usermode sewrers, with sane research [14]
indicating tha kerrel-mode seners erjoy significart per-
formanceadwartagesover their usermode counterparts.

In this paper we examire differentstraegiesfor accep-
ing new comedions under high load conditions. We con
siderthreearditectually differentwebseners: the kerrel-
mode TUX server [23] [15], the event-driven, usermode
psener [6] [10], ard the multi-threaded, usekrmode Knot
sener[27] [26].

We examire the connection-accepting stretegy usedby
eachsener, and propose modifications that pemit us to
tune eachsener’s strategy. We implemert our modifi ca-
tions and evaluate them experimentally using workloads
tha gereratetrue overload corditions. Our experiments
demonstratethat accep strategies cansignificartly impact
sener throughput, and must be consideed whencompa-
ing differentserver architedures.

Ou expaimerts shaw that:

e Underhighloadsasener must ersurethatit is ableto
accet new connectiors at a sufficiently high rate.

e In addtion to ensuing that nevw connectians canbe
accetedat as high arateaspossible, it is equally im-
portart to ensue thatthe sener spends time sewicing



existing connectiors. Thatis a balancemustbe main
tained betweenacceting new connectiors and work-
ing on existing connections.

e The different servers that we examire can sigrifi-
cartly improve their throughput by finding this bal-
arce.

e Cortrary to previous findings, we areableto denon-
stratethat a userlevel sener is ableto serve anin-
memoly static SPECV¢09like workload at a rate
tha conpares very favourably with the kemel-node
TUX server.

2 Background and Related Work

Currentapproacesto implemerting high-performarceIn-
terret seners require special tecmiquesfor dealing with
high levels of concureng. This paint is illu stratedby first
consideing thelogicd steps takenby awebsewerto han
dleasingde client request,asshown in Figure 1.

. Wait for ard acceptan inconing nework connection
. Readtheincoming request from the network.
. Parsetherequest.
. For staticrequestscheck the cacte and posshbly open
ard readthefile.
5. For dynamicrequests compue the restit.
6. Sendthe refy to the requeding client.
7. Closethenetwork connection.
Figure 1: Logical stepsrequired to process a client request.
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Note thatalmostall Intemet servers andsenicesfollow
similar steps. For simdicity, the exanple in Figure 1 does
nat hardle persisten or pipelinedcomectians(althaugh all
senersusedin our expeiimerts hande pesigernt comec-
tions).

Several of these steps can block becaise of network or
disk I/O, or because the web server must interactwith an
other process Conseqently, a high performane sewver
must be able to corcurrertly processpartially conpleted
connectiors by quickly identifying those connections that
areread to be sewiced(i.e., those for which the applica-
tion would not have to block). This meansthe sever must
beale to efficiently mulitiplex several thousandsimultare-
ous connectiors [4] andto dispatchnetwork 1/0 everts at
high rates.

Resarchinto improving web server performarce ternds
to focus on improving opemting system support for web
seners, or on improving the sever’s architectue and de-
sign We now briefly descrite relatedwork in theseareas.

2.1 Operating System Improvemerts

Significantreseach [3] [2] [4] [18] [2]] [22] [7] hasbeen
conductedinto improving web sewer performarce by im-

proving both operatirg system medarisms andinterfaces
for obtaining information abaut the state of sacket andfile
descriptors. Thesestudieshave beenmativatedby the over-
headincuredby sel ect , pol | , andsimilar systemcalls
under high loads. As aresult,muc reseach hasfocused
ondeveloping improvenentstosel ect , pol | ardsi g-
wai t i nf o by reducing theanmount of datathatneedto be
copiedbetweeruserspae and kemel spaceor by redicing
the amaunt of work that must be dore in the kerrel (e.g,
by only delivering onesignal pe desciptor in the caseof
si gwai ti nf o).

Othe work [20] hasfocusedon reducing datacopying
costs by providing a unified buffering ard cachirg system

In contrastto previous reseach on improving the ope-
ating system, this paper presentsstratagies for acepting
new connectiors which improve sever performane under
existing operating systemsandwhich are relevart to bath
usermode and kemel-mode severs.

2.2 Server Application Architecture

Onre appoachto multiplexing a large number of comec-
tions is to use a SPED architectue, which usesa sinde
process in corjunction with non-blocking sacket I/O ard
an event notification medarism such assel ect to de-
liver high throughput, especially on in-menory workloads
[19]. The event notification mectarism is usedto deter-
minewhenanetwork-relatedsystencdl canbe madewith-
out blocking. This allows the sewer to focuson thasecon
nections that can be sewiced without blocking its singe
process.

Of caurse,a singe processcamat leverage the process-
ing power of multiple proces®rs. However, in multipro-
cessorenvironmerts multiple copiesof a SPED sener can
beusedto oltain excellert performance[31].

The multi-process(MP) and muiti-threade (MT) mod-
els [19 offer an alterrative approach to multiplexing si-
multaneous comectias by utilizing a thread(or process)
pe TCP connection In this appoach, connectins are
multiplexed by context-switchirg from a threadthat can
no longer process its comectian becawe it will block,
to arothe threal that can processits connection without
blocking. Unfortunately threads and processescan con
surre large amounts of resources and archtects of eaty
systemdfound it necessity to restrictthe number of exe-
cuting threads[12] [4].

The Flash sever implements a hybrid of the SPED
ard MP modds calledAMPED (asymmetric multi-process
evert-driven) architectue [19]. This architectue builds on
the SPEDmodel by usingseverd hdper processeso pea-
form disk accessesn behdf of the mainevent-drivenpro-
cess. This appoachwasfound to peiform very well on a
variety of workloadsand in patticular it outperformed the
MP ard MT mocdels.

More recentwork hasrevivedthedebateon evert-driven
versusmulti-threaced architectues. Sane papes [30] [9]



[31] concludethateventdrivenarchitectuesafford higher-
performance. Others[26] [27] argue that highly efficient
implemertatiors of threadng libraries allow high peffor-
mancewhile providing a simgder programming model.

Ou work in this paperusesseversthatareimplementad
using bath evert-driven and multi-threadel arditectues.
We denonstrate that improved accep stratgies can in-
crease throughput in either type of sener.

2.3 Kernel-mode Savers

In light of the corsiderable demars placedon the ope-
ating system by web servers, some pemle [23] [11] have
argued that the web server shauld be implenentedin the
kemel as an operatirg systemservie. Recen work [14]
has found that there is a significart gapin performanc be-
tweenkerrel-mode and usermode sewvers. Our findings
in this pager challerge theseresudts. In fad on a static,
memoty-based SPECVeéR9like workload our usewer
performanceis comparesvery favouraldy with the kerrel-
mode TUX sewer.

2.4 Accept Strategies

In eaty web server implementatias, the strateyy for ac-
cefing new connections was to acept one connection
eachtime the sener ohtainednatifi cation that there were
pending conrections available. Recet work by Chandra
ard Mosbeger [7] discoreredthat a simple maodification
to a sel ect -basedwebserver (with a stock operatirg
system)outperformed operating systenmmodificationsthey
ard other resarcters[21] had performed in order to im-
prove event dispatchscdability. They referedto this sever
asamulti-accept senerbecaseuponleaming of aperding
connection thesewner attempsto accepasmany incoming
connectiors aspossble by repeatedlycallingaccept un
til the call fails (and the er r no is set to EWOUL DBL OCK)
orthelimit onthe maximumnumberof open connectimsis
reached This multi-accep behaviour mears thatthesewer
periodically attemptsto drainthe entirraccepquete. Their
expeliments demmestratethat this aggessve stratgy to-
wards accefiing new comections improved evert dispatd
scalallity for workloadsthatrequeg a single one byte file
orasingle 6 KB file.

In this paperwe explore more represetative workloads
ard demanstratethat their multi-accep approach canactu
ally leadto poor pefformarcebe@useof animbalarcethat
is createdby an overemphasis on accefing new comec-
tions attheexperseof processingexisting comedions. We
devise a simple mechatsm to permit us to implementand
tune a variety of accep stratgies, and to expelimertally
evaluatethe impact of differentacceptstratgieson three
sener architectues. We demastrde that a carefuly tuned
accet policy cansigrifi cantlyimprove performarceacross
all threeof thesesener arditectues.

More reentwork [26] [27] hasalsonatedtha the strat-
egy usedto accep new connectians can significartly im-
pact performarce. Our work specifically examires differ-
ernt stratgies usedunder a variety of senersin order to
understandhow to choaose a good acceptstraegy.

3 Improving Accept Strategies

In order for a client to send a requestto the sener it must
first eseblish a TCP comedion to thesener. Thisis done
by using the TCP three-way hardshale [25]. Once the
three-way hardshake succedsthe kernd adds a socletto
theaccept queue (sonetimesreferedto asthelistenquewe)
[5]. Eadh time the senerinvokestheaccept systemcall
asoclet is removedfromthe front of theaccep queue,and
anas®ciatedfile descriptor is returredto the sener.

We have configured our Linux kemel with
SYN_COOKIES erabded. A sewer that uses SYN
cookies doesn't have to drop connectiors whenits SYN
quele fills up. Therfore, we focus our desciption on
how the apgication setsthe size of the accep queue,what
happenswhentheaccep quele beconesfull, and whatthe
sener candoto attemp to keepit from becaming full.

In Linux the length of the acceptqueueis theoretically
determired by the apgication when it specifies a value
for the backl og paameerto thel i st en system call.
In pradice however, the Linux kemel silently limits the
backl og pamameder to a maximum of 128 connectims.
This behaviour has been verified by examining several
Linux kerrel versiors (including 2.4.20-8 ard 2.6.0-test7)
In our work, we have intentianally left this behaviour un-
changed becauseof the large number of installations that
currertly operatewith this limit. We felt that it wasproba-
bly bestto first try to undeistand how to bestoperatewithin
thislimit.

If the server aceptsnew connectiors more slowly than
they areariiving the acceptqueuewill evertually becone
full. When the accept quete is full, all new connectionre-
questsare droppedbecausehereis no more roomfor them
to be quewed. Such queuedrops are problemaic for bath
theclient andsener. The cliert is unalle to sendrequeds
to the sener, and is forcedto re-atempt the connection
Mearwhile, the sener-side kemel hasinvestedesaircesto
complete the TCP threeway handshake, only to discover
that the connection must be dropped. For thesereasas,
quele drops should be avoidedwhenever possble.

Ou work in this pgoer corcertrateson improving ac-
cef strat@jiesto enalbe seversto accep andprocessmore
connectiors. Note that this is quite differert from simgy
redudng the number of queuedrops (i.e., failed comec-
tions) becawse queue drops could be minimized by only
ever accgting connections and never actually processing
ary requests. Naturally this alore would not leadto good
peaformance. Insteadour strategies focus on enalling us
to find a balarce betwe@ acceping new comections ard



processing existing comedions.

4 TheWebSeavers

This sedion provides baclground information on eachof
the serversinvestigated We descrile the archtecture of
eachsener, aswell asits procedire for acceping new con
nections. Ladly, we descrile ary modifications we have
madeto thebasesever behaviour.

4.1 The usewer

The micro-sener (usener) [6] [10] is a single process
evernt-driven web sewver.  Its behaviour can be carefuly
contrdled through the use of more than fifty command
line pammetes, which allow us to invedigate the effects
of several different sener corfiguratiors using a sinde
websener. The userver useseither thesel ect, pol |,
orepol | systemcdl (chosen through commandline op-
tions) in corcett with norn-blocking sodket 1/0 to process
multiple connectiansconcurently.

The server operatesby tracking the state of ead active
conrection(stategoughly correspadto thestepsin Figure
1). It repededly loops over three phases. The first phase
(which we call the getevents-phase) deternines which of
the conrectiors have accrued events of interest.In our ex-
perimerts this is done using sel ect . The secom phase
(cdled theaccept-phase) is erteredif sel ect repatsthat
connectiors are perding on the listering sacket. The third
phase(calledthework-phase) iteratesover eachof the non-
listening comedions that have eventsof interestthat can
be processedvithout blocking. Basedon the stateof the
connectionthe sener callsthe appropriate function to per-
form thework. A key point is that for the usener options
usedin our experimerts the work-phasedoesnot consider
ary of the new connectiors accunulatedin theimmediaely
preceethg accep-phase.That is, it only works oncomec-
tions whensel ect informsit that work canproceedon
tha comedion without blocking.

The psener is based on the multi-accep sener writ-
ten by Chanda and Mosbeger [7]. That sener imple-
ments an accep pdicy thatdrans its accep queuewhen
it is natified of a pendng connectia request. In cortrast,
the puserver usesa pammeer that pemits usto accep up
to a pre-defined number of the currently pendng comec-
tions. This definesan upper limit on the number of con
nections acceptedconsecutvely. For easeof referernce, we
call this parameer the aacceptdi mit paraneter and refer to
it throughout the restof this paper (the samenameis also
usedin refering to madifications we make to the other
senerswe examire). Parametervaluesrange from one to
infinity (Inf). A valueof one forcesthe senerto accep a
singe comection, while Inf causeghe serverto accep all
currertly perding connectians.

Ou eaty invedigations[6] revealedthattheaccep-limit
paametercould sigrificantly impactthe usewer's peffor-
mance. This motivatedus to explore the passbility of im-
proving the pefformarce of other severs, aswell asquan
tifying the peformance gains under more representatie
workloads. As aresult,we have implemerted accep-limit
mechansmsin two otherwell-known webservers.We now
describe theseseners andmechansms.

4.2 Knot

Knot [26] is a multi-threadedweb sener which makesuse
of the Capiccio [27] threadirng package. Knot is a sim-
ple web server. It derivesmary berefits from the Capic-
cio threaling package, which provides lightweigh, co-
operdively schedded, userlevel threads. Capiccio fea-
turesa number of different threadschedilers, including a
resairce-avare schedulerwhich adaps its scheluling pdli-
cies accomding to the apgication's resource usage. Knot
operaesin oneof two modes[26] which are referredto as
Knot-C ard Knot-A.

Knot-C usesa threadper-connection model, in which
the number of threadsis fixed at runtime (via a command
line parameer). Threadsare pre-forked during initializa-
tion. Therafte, eat threadexecutesa loop in which it
accetsasinge connection andprocesgsit to completion.
Knot-A credes a single acceptor thread which loops at-
temging to accep new connectins. For eachconnection
tha is accepted a new worker threadis creded to com
pletely processthat connection

Knot-C is mean to favour the processingof existing
connectiors over the acceping of new comections, while
Knot-A is desighedto favour the acceping of new comec-
tion. By having a fixed number of threads,ard usingone
thread pe connection Knot-C cortains a built-in mech
anism for limiting the number of concurert comectins
in the sewver. In cortrast, Knot-A allows increasedcon
currercy by placing no limit on the number of concurent
threads or comectims.

Ou preliminary experimentsrevealedthat Knot-C pea-
forms sigrificantly beter than Knot-A, especially under
overload where the number of thread (and opencomec-
tions) in Knot-A becones very large. Owr comparisa
ageeswith findings by the auhors of Knot [26], and as
aresultwe focusour tuning effortson Knat-C.

We modified Knot-C to allow each of its thread to ac-
cep multiple connectionsbefore procesing ary of thenew
connectiors. This wasdone by implementing a new func-
tion that is a madified version of the accept call in the
Capiccio library. This call loops to acceptup to accep-
limit new comections provided that they canbe acceptel
without blocking. If the call to accep would block ard
at leastone comedion has beenacceped the call retuins
ard the processng of theseaaceptedconnectiors proceels.
Othewise the threadis put to sleep urtil a new comec-
tion request arrives. After acceping new comedions,eadh



threadfully processeshe accgtedcomedions befare ad
mitting ary new comectians. Therebre, in our modified
versionof Knot eachthreadoscillatesbetween anaccep-
phaseandawork-phase.As in the usener, the accep-limit
paameterrargesfrom 1 to infinity. The restof this paper
usesthe accep-limit paraneterto explore the performarce
of our madified versionof Knot-C. Note tha the default
Knot behaviour is whenthe aceptiimit is set to 1.

4.3 TUX

TUX [23] [15] (which is alsoreferred to asthe Red Hat
Content Acceleaton is an evert-driven kernd-mode web
sener for Linux developedby RedHat. It is compiled as
a kerrel-loadade module (similar to mary Linux device
drivers), which canbe loaded ard unloaded on dermand
TUX’s kemel-moce statusaffords it many /O adwartages
including true zem-copy disk reads,zero-copy network
writes,and zero copy requestparsing In addition, TUX ac-
cessegemeldatastructures (e.g, thelistening soclet’s ac-
cep queue)directly, which allows it to obtain everts of in-
terest with relatively low ovetheadcompaedto userlevel
mecharisms like sel ect . Lastly, TUX avoids the over-
head of kemel crossngsthatuser-mode seners mustincur
when making systemcalls. This is importantin light of
thelargenumberof systemcalls neeedto proces asinde
HTTP request.

A look atthe TUX source code providesdetailed insight
into TUX's structue. TUX’s processing revolves araund
two queles The first queueis the listering sacket's ac-
cef quee. The secad is the wor k _pendi ng quewe
which corntainsitems of work (e.g readsandwrites) that
areread/ to be processedwithout blocking. TUX oscil-
latesbetweenan accep-phaseanda work-phase. It does
nat requre a getevents-phase becausdt hasacces to the
kemel data structures where evert information is avail-
able. In the accep-phase, TUX entersa loop in which it
accets adl pendng comectims (thus draining its accet
quewe). In the work-phase, TUX processs all itemsin
thewor k_pendi ng quele before startingthe next accep-
phase. Note that new everts canbe addedto eachquele
while TUX remaresandprocesgsthem.

We modfied TUX to include an acceptlimit parame-
ter, which govems the number of connectians that TUX
will accept consectively. SinceTUX is a kerrel-loadate
module, it does nat accept traditioral command line pa-
rameters. Insteal, the new paamder was added to the
Linux / pr oc filesystemin the/ proc/ sys/ net/t ux
suldirectory. The/ pr oc mechaismis conveniert in that
it allows the new paraneterto be readard written with-
out restating TUX. It givesus a measure of control over
TUX’s acceptpdicy, andallows us to compare different
accet-limit valueswith the defadt policy of acceping all
pending comedions.

Note thatthereis an important differerce betweenhow
the usener ard TUX operate. In the usewer the work-

phaseprocesseafixednumberof connectiors (detemined
by select).In contrastTUX s wor k _pendi ng queuecan
grow during processing which prolongs its work phase.
As aresut we find thatthe accep-limit parameterimpacts
these two seners in dramatically differert ways. This will
beseeranddiscussedin more detailin Section6.

It is also importart to understard that the accep-limit
paameterdoes nat control the aacceptrateit merely influ-
ercesit. The accefi rateis determnedby acombinationof
thefrequency with which the senerentersthe accep-phase
ard the number connections aceptedwhile in that phase.
The amount of time spentin thework andgetevent-phases
determires the frequercy with which the acept-phase is
ernered

5 Experimental Methodology

In our graphs, ead daapant is the result of atwo minute
expetimert. Trial and error reveded that two minutespro-
videdsufficient time for eachsenerto aclieve steadystate.
Longer duratiors did not alter the measured results, ard
only sewedto prolong expetimertal runs. A two minute
dday was introduced betweenconsective experiments.
This alowedall TCPsacketsto clearthe TIME _WAIT state
before commercing the next expeimert. Prior to running
expetimerts, all nonresential Linux setvices(e.g send
mail, dhcpd, cron etc.) are shutdown. This eliminatedin-
terferercefrom deemansand periodic processs (eg. cron
jobs) which might confound results.

Prior to determiring which accep-limit valuesto include
in eachgraphanumbe of altemativeswere runandexam
ined. The final valuespresentedin eachgraph werechasen
in order to highlight theinteresting aaceptpolicies.

The following sectiors describeour experimentd ervi-
ronmentandthe parametes usedto corfigure ead sener.

5.1 Environmernt

Our experimental environment is madeup of two sepaate
client-sener clusters. The first cluster (Cluster 1) con
tains a sinde sener ard eight clients. The server con
tainsdual Xeon processas running at 2.4 GHz, 1 GB of
RAM, ahigh-speed(10,000 RPM) SCSIldisk, andtwo In-
tel 1000 Gbps Ethenetcards. The clients are identicalto
theserver with the exception of ther diskswhich are EIDE.
The sener andclients arecomeded with a 24-port Ghps
switch. Since the sever hastwo cards, we avoid network
battlenecks by patitioning the clients into different sub
nes. In paticular, the first four clientscommunicatewith
thesener’sfirst etherretcard, while the remaining four use
adifferen IP addresslinkedto the seamndetherret cad.
Ead client runs Red Hat 9.0 which uses the 2.4.20-8
Linux kerrel. The sener also usesthe 2.4.20-8 kerrel, but
nat the binary that is distributedby RedHat. Instead the
RedHat sourceswere re-canpiled after we incorporated



our chargesto TUX. The reallting kerrel wasusedfor all
expelimerts on this madine The aforemetioned kerrel
is a uni-proces®r kemel that doesnat provide SMP sup
port. Thereasosforthisaretwofold. Firstly, theCapricdo
threadng packagedoes not currently include SMP suppott.
Secmdy, wefind it instructive to study the simpler sinde-
processa problem beforeconsideing complex SMPinter-
actions.

The secand machne cluster (Cluster 2) aso consids
of a single sener ard eight clients. The sener cortains
dual Xeon processars ruming at 2.4 GHz, 4 GB of RAM,
high-speedSCSldrivesand two Intel 1000 Gbps Etherret
cads. Theclientsaredual-processa Pertium |l machnes
running at550 MHz. Each clienthas256 MB of RAM, an
EIDE disk, ard ore Intel e1000 Gbps Etherret cad. The
senerrunsa Linux 2.4.19 uni-processa kerrel, while the
clients usethe2.4.7-10 kerrel tha ships with Redhat7.1.

This clusterof machinesis neworked using a sepaate
24-port Gbps switch. Like thefirst cluster, the clients are
divided into two groups of four with each group commu-
nicating with a different sewer NIC. In adlition to the
Ghpsnetwork, all machnesareconnectvia a sepaate 100
Megabit network which is usedfor expeimenrtal control
(startirg and stopping web seners, ard copying expeli-
mental results). Ead clusteris completely isolatedfrom
other network traffic.

Clusterlis usedtorunall usewver andTUX experiments
while Cluster2 is used to run all Knot experiments. Be-
cawse our clusters areslightly differert, we do nat directly
compareresultstakenfromdifferentclustes. Insteadead
graphpresents datagatheredfrom a singe cluster Ideally,
we would use one clusterfor all our experimerts, but the
number of experimentsrequred necesiatedthe useof two
clusters.

5.2 Web Server Configuration

In theinteresiof making fair and scientificcomparisors, we
caefuly corfigured TUX andthe userver to use the same
resaircelimits. TUX wascorfiguredto useasinde kerrel
thread This enalbes comparisors with the single process
psener, andwasalso recanmendedin the TUX user man
ud [23]. The TUX accep queuebacklog was setto 128
(viathe/ pr oc/ sys/ net / t ux/ max backl og param
ete)) which matchesthe value imposedon the usermode
seners. By defadt, TUX bypasseshe kerrel-imposed
limit onthe lengh of the accep quete, in favour of amuch
larger backlog (2,048 pending comectias). This adust-
ment alsoeasesomparisionand uncerstaruling of accep-
limit-I nf stratejies.

Additionally, bath TUX and the usener use lim-
its of 15,000 simultarecus comedions. In the
psener case this is done by using an appropri-
ately large FD_SETSIZE. For TUX this was done
through / proc/ sys/ net/t ux/ max_connecti ons.

All psener and TUX expeimerts were conducted usirg
thesamekerrel.

The multi-threaded Knot server was configured to use
the Knot-C belaviour. Thatis it pre-forks and uses a pre-
specifiednumkber of threads. In our casewe used1,000
threads. Although we have naot extersively tunedKnot we
did have naticedthat aslong asthe number of threads was
nat excess$vely small or large that thete werenot large dif-
ferenesin performarce basedon the number of threads
usedwith Knot-C. Note thatin this architectue the number
of threads used also limits the maximum number of simu-
tareows comections. When the accep-limit modification
is addedto Knot it pemits several connections per thread
to beopen,thus increasng this limit.

Finally, logging is disabledon all senersard we ensue
tha all serverscancacthe the entirefile set. This ersures
tha differencesin senerpeformarnceare nat dueto cading
stratajies.

6 Workloadsand Experimental Results

In this section we describe thetwo differert workloads used
in our experimernts ard discussthe reallts obtained using
them in combination with the three differert servers. Our
resuts shaw that the accep stratgy sigrificantly impacts
sener pefformarce.

6.1 SPECWeh99-like Workload

The SPECV¢b® berchmarking suite [24] is a widely ac-
cepedtool for evaluatirg web server performance How-
ever, the suiteis nat without its flaws. The SPECWeb99
load generatois are unableto gererae | oads thatexceedthe
capacity of theserver. The problemis thatthe SPECWeb99
load gereragor will only sendanew requed oncethe server
has refied to its previous request. Bargaetal. [5] shav
that this naive loadgeneationschemelimitstheclient’sre-
questrateto be at mostequd to the server'srefy rate. As
such the client is unableto overloadthe sewer.

We address this problem by using httperf, an http load
genemator that is capalle of gereratirg overload [16].
httperf avoids the naive load gengation schemeby imple-
menting connectiontimeauts. Every time a comection to
the sener is initiated a timer is started If the comec-
tion timer expires before the conrectionis establishd ard
the HTTP transactio conpletes the connectionis aborted
ard retried. This strategy ensuies that the sener is sent
a cortinuous streamof requeds that is indeperdert of the
sener’s redy rate. We use httperf in conjunction with a
SPECVeb® file setand a sessdn log file that we have
constrictedto mimic the SPECVe9workload Although
our tracesare synthetic, they arecarefully genaatedto ac-
curately recreatethe file clas®s, acces patterrs, and the
number of requestsissuedoer persistenHTTP 1.1 comec-
tion usedin thestatic portion of SPECVe09 [24].



In all experimernts, the SPECWeb® file setand server
caclesare sizedsothattheertire file setfits in man mem
ory. Thisis doneto eiminatesdifferencesbetwesnseners
due to differercesin caching implementations. While an
in-menory workloadis nat ertirely represertative, it does
permit us to draw conpaitisons with the results obtained
by Jowet etal. [14] when aralyzing the peformance of
kemel-mode and usermoce sewrers.

Figure 2 examnesthe pefformarce of the userver asthe
accet-limit paraneteris varied. Recalltha the accep-
limit pammetercontrols the number of comectims that
areacceped consectively. This graph shavs thata larger
accet-limit can sigrificantly improve performarce in the
psener, eecially under overload In fact, at the extreme
target loadof 30,000 requests/sc, the aaceptdi mit-Inf pd-
icy outpeforms the acceptlimit-1 pdicy by 3%%.
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Figure 2. puserver performance under SPECWeb99-like
workload
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Figure 3: pserver queue drops/sec under SPECWeb99-like
workload
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Statigics collected by the usewer provide insight that
confirms the benefits of the high accep-limit value. At
a tamget load of 30,000 requestsgsec, the accet-limit-Inf
sener accets an average of 1,571 new connectiors per
secoml In comparison the accet-limit-1 server averages
only 1127 new connections per secand (3% fewer). This
differenceis espeially significart when we consider that
eachSPECV¢9 connectian is usedto serd anaverageof
7.2 requests. Figure 3 shaws that in all casesthe higher
accet-rateresultsin alower queue drop rate (QDrops/9.

Thelower dropratemearthatlesstimeis wastedn thepro-
cessingf padketsthatwill be discarded,and moretimecan
be devotedto processingclientrequests As seenin Figure
2, this trarslatesinto a healtty improvementin throughpuit.

The quele drop rates areobtaired by running netstat on
thesenerbeforeand after eachexpelimert. The numberof
failedTCPconnectionattempsis recadedbeforeandatfter
the expeliment. Subtractingthesevalues and dividing by
the experiment’s duraion providesarate,which we repat
in our quele drop graphs.

We experimented with a varety of different accept
strat@jiesin the Knot sener. The reallts are sumnarized
in Figures4 ard 5. Figure 4 illustratesthe throughput ob-
tainad usingdifferent accep policies. The accep-limit-1
pdicy carespndsto the default Knot betaviour. Higher
accet-limits (10, 50 and 100) refresem our attemptsto in-
creae Knot's throughput by increasng its acceptrate. Our
sener-side measurenerts corfirm that we areableincrease
Knot's accep rate. For exanmple, Knot’s output shavs that
at aload of 20,000 reqLess/sec the aceptdimit-100 pad-
icy acceps new comedions 240% faster(on average)than
theaccet-limit-1 (defaut) sener. Further eviderceis pro-
videdin Figure 5 which shavs thattheaaceptli mit-50 and
accet-limit-100 servers erjoy sigrificantly lower quele
drop rates thantheirlessaggessve cowunterpats.
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Figure 4: Knot performance under SPECWeh99-like work-
load

25000 30000

2500 T — T T T T
accept-limit-100 —e—
accept-limit-50 —&——
2000 | accept-limit-10 & B
accept-limit-1 - ¢~ -
4 1500} T
I3 -
o o
[a) -
o 1000 s e
L 22 e
500 o -
& e
0 T . .
0 5000 10000 15000 20000 25000 30000

Target Requests/s

Figure 5: Knot queue drops/sec under SPECWeb99-like
workload

Unfortunately, the higheracceprate(ard loweredquete
drop rate)do nat improve performarce. On the contrary,



peformancesufiers. Knot's statigics shav that with an
accet-limit of 50 or higher, thenumber of concurent con
nections in the sener grows quite shardy. We believe that
pearformancedegradesbecauseavith alargenumber of con
nectionsthe Capiccio threadinglibraryis forcedto spenda
largeamaurt of time executing the pol | systemcdl in or-
der to deternine which threadcanbe scledded next with-
out blocking. As aresut, we find thatunder this workload
more aggessve acceting doesnat improve Knot's pea-
formance The< findings agreewith previously published
resuts [26] in which overly aggressive acceping also hurt
Knot's pefformance.
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Figure 6: TUX performance under SPECWeb99-like work-
load
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Figure 6 shows that the acceptlimit pamameder canalso
be usedto improve TUX’s paformance. The acceptiimit-
Inf policy corespads to TUX's defaut accep behaviour
(draining the accep quete). The accep-limit- 50 policy al-
lows TUX to conseautively acceptup to 50 connectians,
while the accep-limit-1 pdicy limits TUX to acceping a
singe connectionin eachaccet-phase. Figure 6 shows
tha the accepp-limit-1 policy reallts in a 12% increase
in peakthroughput, anda 19% increase in throughput at
14,500 rege/sec. Sumprisingly, our sener-side instrumen
tation shows that an aceptdimit-1 palicy cawses TUX to
accet comectims fasterthanthe higher accet-limit val-
ues. While this behasiour may seem unintuitive, it is im-
portart to remenberthat TUX's accep rate is not directly

goverredby the accep-limit pamameter Rather, the accep-
limit controls themaximum numberof connectiorsthatare
acceted consectively. The sener's accep rate is deter-
mined by the numberof conseautive acceps aswell asthe
number of times that TUX entes its accet-phase. This
wascorfirmed by carfully instrumerting andexpeimen-
ing with a semrateversion of TUX. We found that for
low accept-limits, TUX accepedfewer comnectionsin eah
accet-phase but thatit enteral its accep-phasemore fre-
quently (becausethe low aacceptdimit shortered its work-
phase). In this case,lower acceptlimits leadto a higher
accet rate. In the usener, loweringits accet-limit short-
ers eachacceptphase.However, unike TUX, the userver
doesnot enter the acept-phase more frequertly. As are-
sult,its acceptratefalls whentheaccep-limit is lowered

Furthereviderceof thehigheraccep rate is seenin Fig-
ure 7, which shavs lower quete drop ratesasthe accep-
limit paraneterincreasesfrom 1 to Inf. As in the userver
case,the lower drop ratesreduce the amaunt of time de-
voted to hardling discaded padets, and resultsin im-
proved performance.

6.2 One-packet Workload

In the aftermath of the Septenber 11th 2001 terraist at-
tacks, mary online news services were flooded with re-
quests Mary serviceswerererderedunavailabe, and even
large portals were unalle to deal with the deluge for ser-
erd hours. The staff at CNN.com resortel to repacing
thdr mainpagewith a small,text-only pagecontairing the
latestheadines [8]. In fact, CNN sizedthe redacemat
page sothatit fit ertirely in a single TCP/IP paclet. This
clever strategy was oneof themary measuresenployedby
CNN.can to deal with recad-breakirg levels of traffic.

Theseeverts reinforce the needfor web senersto ef-
ficiently hardle requestsfor smallfiles, espeially under
extreme loads.With this in mind, we have dedgneda static
workload thattests a web sener’s ability to hardle a ba-
rage of short-lived connectiors. The workload is simple;
all requess are for the samefile, issuig one HTTP 1.1re-
questpercomedion. Thefile is caretlilly sizedsotha the
HTTP heades andthefile cortentsfill asingle paclet. This
resenblesthe type of reqeststhat woud have beenseen
by CNN.can on Septerber1l

Obviously, this workload differs from the SPECVe9-
like workload in several key respects. For instance,it
placesmuch less emphasison netwak 1/0O. Also, be@use
a smadl file is being requested with each new connection
it stresesa sener’s ahility to hande much higher dermrard
for new connectionrequests.We believe that when study-
ing senersunder high loadsthatthis is now aninterestimgy
workloadin its own right. We adsobelieve thatit can pro-
vide valuable insights that may not be possble usingthe
SPECVe¢b®-like workload For more discussbn related
to theworkloads usedin this paper seeSection?.



Figure 8 shawvs therefdy rate obsened by theclientsas

theload(tamgetrequestgpersecomnl) onthesewer increases.

All data shown in this graph is gereratedusing different
options for the usener.

The lines in this graph shav that the accet-limit-Inf
ard acept-limit-10 options significartly increasethrough-
put when compaedwith the naive accep-limit- 1 stratayy.
This is becawse these seners are signficantly more ag
gressve about acceping new connectiors thanthe accep-
limit-1 approach Interdingly, the acceptiimit-10 stat-
egy achievesa slightly higher peak than the acceptiimit-
Inf strategy, althaugh it expeliences larger decreaes in
throughput than accet-limit-Inf asthe loadincreasepast
satuation This indicatesthat the acept stratgyy used
shauld dynarically adustwith the workload(this is sone-
thing we plan to investigatein future reseach).

The differences in peformance betweenthe accep-
limit-10 and accet-limit-Inf policies canbe seenby ex-
amining their ability to acceptnew comedions. Figure 9
shaws the quewe drop ratesfor the differert accep strate-
gies. Here we seethatthe usever operatingwith anaccep-
limit of 10 is better ade to aaceptnew connectiors. In fact
it is ade avoid significart numbers of quete drops until
23,000 requestspersecord. On the other hand the accep-
limit-1 nf option expeliences significart numbersof quele
drops at 21,500 requestsper secoml. Both of these paints
correspnd to thear respective peakrates.
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Figure 8: userver performance under one-packet workload

Figure 9 alsoshaws thatthe accep-limit-1 option does
a good job of acceting new connectiors until a tamgetre-
questrate of 20,000 requests per secoml. At that paint it
is unableto keepup with the demandfor new connectimns.
Therestt is tha the quele drop rateis 11,914 comectians
pe secand, ard the refy rateis 14,058 redies per sec-
ond. Significart expenseis incurredin hardling failedcon
nection requests and if the sener caninsteadaccet those
connectionit can improve pefformarceprovidedthe server
doesnat take anextreme approachto trying to acceptnew
connectiors (to thederement of making progresson exist-
ing connectiors).

Interestindy, the total of thesetwo rates (11,914 +
14,058 = 25,972) exceed the target requestrateof 20,000
requests per secand. This is becase when a cliert is at-
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temging to estadish a TCP conrection using the three-
way hardshale, if the client does not receive a SYN-ACK
packetin respmseto the SYN packetit serdsto thesener,
it will eventwally time-out andretry, which leads to several
quele drops perconnection

Using this one packet workload we see tha we are
able to increasehe pserver's peakthroughput from 19,500
redies per secmd usingthe nave acceptstratgy (accep-
limit-1) to 22,000 redies per second usingthe acceptiimit-
10 stratgyy. Thisis animprovement of 13%. More impor-
tartly, the acept-limit-Inf stategy improves performarce
versusthe naive stratgly by asmuch as65% at 21,000 re-
questspersecotl and71% at 30,000 requestsper secord.

Figure 10 shaws the redy rateversusthe tamget request
rate for the TUX sener. As with the SPEGNeb®-like
workload, limiting the number of consective acceptsin-
creass TUX's aacceptrate. This can be seenby comparing
the queuedrop rates(QDrops/sec)in Figure 11 for the dif-
ferent TUX configurations examired In TUX the accep-
limit-1 option doesthe best job of acceping new comec-
tions resulting in the lowestquete drop ratesof the config-
uratiors examired. In this casethis trarslates diredly into
thehighestthroughpt.
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Figure 10: TUX performance under one-packet workload

Recallthat the accep-limit-1 nf strategy corespmds to
theoriginal TUX aceptstrategy. In this casetheimproved
accet-limit-1 strateyy reaults in apeakreply rateof 22,998
redies persecord comparedwith the original, whosepe&
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is at 20,194 refdies per secand. This is an improvement
of 14%. Additionally there is animprovement of 36% at
23,000 requests per secand.

We believe furtherimprovemerns areposdble. However,
thesimple methal we usedto modify TUX doesnat pemit
us to aacceptfewer than one connection per accepi phase.
Ultimately we believe that the bestway to control the ac-
cep stratggy usedin TUX, ard to control the scheduling
of work in gereral, is to track the number of ertries con
tainad in the accep queueard in the numker of ertriesin
wor k_pendi ng queue.With this information, a more in-
formed decision can be madce abat whetherto enteran
accet-phaseor a work-phase. We also bdieve that lim-
its shauld be placedon the anourt of time spen in eath
phase possiblyby limiting the number of eventsprocessd
from eachquetle. We believe thatthis appoachmight be
usedto furtherincrease therateat which the seneraaepts
new connectiors. The difficulty of coursewould be in en
suling that the sener strikes a balarce betweenacepting
new connectiors andprocessing existing comedions.

For this one packet workload Knot also benefits from
tuning its accep pdicy. Figure 12 shaws an interestimy
spectum of aacceptpolicies. With the accep-limit param
etersetto 1, our madified version of Knot behavesiderti-
cally to anunmodified copy of Knot. As a sarity checkwe
confirmedthat the original versian and the madified server
using anaccep-limit of 1 produceresultsthatare indistin-
guishable. To redwceclutter, we omit resuts for theoriginal
versionof Knot.

We observe that the acceptdi mit-50 stratgy naticeally
improvesthroughput whencomparedwith the original ac-
cep stratgy. Firstly, peakthroughptt is increasedby 17%
from 12,000 to 14,000 repliesper secord. Secomlly, the
throughput is increasedy 32% at 14,000 requeds per sec-
ond and24% at 30,000 reqLestspersecord.

Interestindy, increasiry the acept-limit value too much
(for examge to 100) can reault in poor performarce. In
comparingthe accet-limit-100 straegy acept-limit-1 (de-
faut) strateyy, we observe thatthe former obtainsaslightly
higher peak. However, throughput degrades significartly
oncethesatuationpoint is excealed Figure 13 shows how
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the comection failure rates are impaded by the charges
in the acceptstraegy. Here we see that the acceptiimit-

100 versionis ableto tolerateslightly higher loads thanthe
original before suffering from sigrificant comectin fail-

ures. The accep-limit-50 version is slightly better andin

bath casespeak throughput improves. At request ratesof

15,000 ard higherthe aacceptlimit-50 and accep-limit- 100

strat@iesdoaslightly betterjob of preverting queuedrops
than the server using an acept-limit of 1. Interestindy,

quele drop ratesfor the accepttimit 50 and100 optionsare
quite comparable over this rarge yet, thereis a large dif-

ferene in performance. The statisticsprinted by the Knot
sener show thatat 15,000 reqiestgsecthe aceptiimit-50
pdicy opemteswith approximatdy 25,000 adive comec-

tions, while the accep-limit-100 pdlicy is operaing with

between 44,000 to 48,000 active connectiors. One pos-
sible explarmation for the differerce in peformanceis that
theovereal incuredby pol | becamesprohibitive asthe
number of active connectiors climbs. Theseexperiments
also highlight that a balan@d acept policy provides the
best performarce.
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Figure 12: Knot performance under one-packet workload

50000
45000
40000
35000 |
30000 |
25000 |
20000 |
15000 -
10000 -

5000

0= .
0 5000

al:cept-limit'-loo—e'—
accept-limit-50 ——-&——
accept-limit-1 &

QDrops/s

Ly e L . . .
10000 15000 20000 25000 30000

Target Requests/s
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6.3 Comparing the pserver and TUX

Figures 14 and 15 compare the performarce of the
TUX sener with the peformarce of the usener on
the SPECWeh ard one packet workloads, regectively.



These graplts shav tha the original version of TUX
(acceptlimit-Inf) outperforms a poorly tuned (accep-
limit-1) version of the usermode psener by as much as
28% under the SPECV¢09-like workload ard 84% un-
der the one-paclket workload (both at 30,000 requestssec)
However, the performarce gap is greatly reduaed by ad
justingthe pserver’s acceptpolicy. As aresult we are ale
to obtan performancethat comparesquite favourably with
the performanceof theunmadified TUX sener under bath
workloads.
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SPECWeb-like workload
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Recem work by Joubert et al. [14] corcludes that
kemelmode seners perform two to threetimesfasterthan
thdr user-mode countepats. Their expaimerts on Linux
demonstratethat TUX (running ona2.4.0kemel)acheved
90% higher perfformancethanthe fagestuser-mode sever
(Zeus) measued on Linux. While ther are undeniabie
benefitsto the kemel-mode architectue (integration with
the TCPIP stack zerocopy disk I/O, eliminating kerrel
crossngs, etc.) our conpaiison of the usermode usever
ard TUX produces corsiderally differert findings.

Sorme of the gainsin usermode performarce are due
to the zero-copy sendfi | e implemenation that is now
available on Linux. In sepatatework we are attenpting to
quartify the improvemerns due to zerocopy sendfil e

ard the use of theLinux TCP cork ard uncork mechanisms.

Therearealsosulstartial differercesin workloads.Specif
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ically, Jouberteta. useda HTTP 1.0 based SPECWeb9%
workload, while we usea HTTP 1.1 basedSPECWeb99
workload. Lagly, we note the useof differert operatirg
systemversions,adifferent performane metric, ard possi-
bly differert sener configurations. In spte of thesediffer-
erces,our work demasntratesthata well tuned usermode
sener canclosely rival the peformance of a kemel-mode
senerunderrepesetative workloads.

7 Discussim

Acceqt strategies can have consideade impad on web
sener performarce. As a result, we bdieve thesestrae-
gies should be corsidered(along with other performance-
affecting parameters) when comparing different web
seners.

We point out that every sener has an implicit accet
stratg@y. Perhaps without realizirg it, every sewver makes
a dedsion regading what portion of the available work
shaild be immedately processed We emphasizethat we
have nat fully exploredthe pamameterspaeof possble ac-
cep stratgjies. Insteagdwe have deviseda simplemethod
for demmstratirg that accet stratgiescanhave conside-
able impacton pefformarcein three very differen sewers.
In future, we plan to investicateteciquesfor dynamiaally
ohtaining a balancedacceptstraegy that will self-tune for
differenthadware opemting systemsand even server ar-
chitectures

7.1 Event-driven Multi-thr eadad

Servers

versus

It is temging to conpare the graphscortaining the userver
ard Knot resultsin order to compae the performarce of
the eventdriven ard multi-threaded(usermode) servers.
However, sucha comparisonwould be unfair. Although
verysimilar, theenvironmerts used to run ead sener’s ex-
periments were differentin importart ways. The machire
usedfor the usener expeaimerts was running a Linux
2.4.20-8 kerrel which corntainedour small TUX modifi ca-
tions, while the machne usedfor Knot experimerts was
running aLinux 2.4.19kernd. We usedthe lattersystemo
implemen, test, dehug, andtune our Knot madifications.
Unfortunately, time did not permitus to rerun all of our ex-
pearimerts on the same cluster Additionally, we have only
recently obtained accessto the Capiccio and Knot code
ard would lik e to gain more expeliencewith tuning its per-
formancebefore comparingit aginst other sewvers.! As a
resut, we refrain from directly conpaiing Knot's peffor-
mancewith that of the userver.

1we would like to be able to include suchresuts the final version of
this pape.



7.2 Workloads

The resultsobtained with the two workloadsstudiedin this
papershow tha the accep straegy appearsto have abigger
impacton throughput under the one packet workload than
with the SPECVeO9-like workload. Recent studes have
highlighteddeficienciesof the SPECV¢R9 workload.

Nahum [17] andyzes the characteistics of the
SPECVe¢b® workload in comparison with data gath
ered from severalrealworld web senerlogs. His analysis
reveds mary important shatcomngs of the SPECWeb9
benchmak. For exanple, the SFECWeb® berchmaik
does not usecorditional GET requests. With corditional
GETS, if therequeded file hasnat beenmodified sincethe
client’s lastrequest, the sewer returns a headkr cortaining
HTTP 304 Not Modi f ed andzero bytes of file data.
Interestindy, such requestsaccaintedfor up to 28% of all
requests in sone sewer traces. With the transmissiorof
only an HTTP healer, the server reonseis quite small,
ard easily fits in asingle paclet.

Nahum also reports significartly greate use of HTTP
1.0 (51%— 95%) thanthe 30% used by SFECWeb®. He
also repats that SPECVeIR9 significartly overestimates
average transfersizes SPECV¢9s medan transfersize
of 5,120 bytesis an order of magritude larger than the
trarsfer sizescapured in the sampe log. In fact, the me-
dian trarsfer size in the IBM 2001 log is amere 230 bytes!
The combinatiors of theseobsenations indicatesthat the
demard for new connectims at web senersis likely to be
much higherthanthe demandgeneratedby a SPECVe09-
like workload

Further evidencefor this condusionis provided in very
recentwork by Janjoom et al. [13]. They repat that in
an attenpt to minimize userresponse time, mary popu-
lar browsess (on Linux and Windows 2000) terd to issue
multiple requestsfor embeddedobjectsin parallel. Thisis
in contrag to using a single seqential persigent comec-
tion to requestmultiple objeds from the sameserver. They
report thatathough there were on averag 21 unique em
bedded objectsper page visited, the averagereqess per
conrectionissuedy thedifferentbrowsers examnedisbe-
tweenl.2and2.7. Thisis considerally lower than the av-
ergeof 7.2requeds per connectian usedby SPECWeb9®.

While a SPECWeR9like workload is still usefu for
meaauring web sener peformarce, it has a number of
shatcomings andshould not be usedasthe sde measue
of sener peformarce. Our one-packet workload highlights
anumberof pheromena(small transfe sizes asmdl num-
be of requess per comectian) reported in recent litera-
ture. More importantly, asimplementedby CNN.com this
is pehaps the best way to sene the most clientsundercon
ditions of extreme overload For the purposesof our study
it alsohighlightsa useful workloadthatputshigh demarls
onthe senerto aaceptnew comectians.
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8 Conclusions

This paper examires the importance of connection
acceting strateies to web server performane. We de-
viseandstudy asimple mettodfor alteiing theaceptstrat-
egy of threearchitedurally different seners:the usermode
singe process event-driven usener, the usermode muiti-
threaced Knot server, andthe kemel-mode TUX sener.

Ou expeiimental evaluation of different acceptstrae-
gies expose thesesenersto repesetative workloads in-
volving high connectionrates, and genune overloadcondi-
tions. We find thatthe mamer in whicheachseneraaepts
new comectians cansignificantly affectits pea through-
put ard overload performance Our expelimerts denon-
stratewell-tuned accept policies canyield noticealte im-
provementsconparted with the baseapproach Under two
differentworkloads,we arealle to improve throughput by
as much as 19% — 36% for TUX, 0% — 32% for Knat,
ard 39% — 71% for the userver. As aresut, we point out
tha researchrsin thefield of sever peiformarce must be
aware of the importanceof differert acceptstratgieswhen
comparingdifferenttypesof servers.

Lastly, we presem a directcomparisonof the usermode
psener and the kemelimode TUX sewver. We show that
the gap betweenusermode andkerrel-modearchitectues
may nat be aslargeaspreviouslyreported. In paticular, we
find that under the representatie workloads corsidered the
throughput of theusermode psenerrivalsthatof TUX.

In future work we planto examire tecmiquesfor mak
ing more informed decisiors about how to schedile the
work tha a sewver pefforms. We believe that by making
more informationavailableto the sever we canimplement
bath betterand dynamic pdicies for deciding whether the
sener should erter a phase of acceping nev comectins
(the accep-phase)or working on existing connectiors (the
work-phas). Additionally this information would pemit
usto implemert more cortrolled pdicies by limiting how
long boththeaccep-phaseand the work-phaseshould last.
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