
accept()ableStrategiesfor Improving Web Server Performance

Tim Brecht
�

University of Waterloo
brecht@cs.uwaterloo.ca

David Pariag
University of Waterloo

db2pariag@cs.uwaterloo.ca

Louay Gammo
University of Waterloo

lgammo@cs.uwaterloo.ca

Abstract

This paper evaluatestechniques for improving the per-
formanceof threearchitecturally different webservers. We
study strategies for effectively accepting incoming connec-
tionsunderconditionsof high load.Ourexperimental eval-
uation shows that the method usedto accept new connec-
tion requests cansignificantly impact server performance.
By modifying each server’sacceptstrategy, weimprovethe
performanceof the kernel-mode TUX server, the multi-
threaded Knot server and the event-driven � server. Un-
der two different workloads, we improve the throughput
of theseserversby asmuch as19% – 36% for TUX, 0%
– 32% for Knot, and39% – 71% for the � server. Interest-
ingly, theperformanceimprovementsrealizedby the user-
mode � server allow it to obtain performancethat rivalsan
unmodifiedTUX server.

1 In tr oduction

Internet-based applications have experienced incredible
growth in recent years and all indications arethat such ap-
plicationswill continueto grow in numberandimportance.
Operating systemsupport for such applications is thesub-
ject of much activity in the research community, whereit
is commonly believed that existing implementations and
interfacesare ill -suitedto network-centric applications [4]
[29] [22].

In many systems, once client demand exceeds the
server’s capacity the throughput of the server degrades
sharply, andmayeven approachzero. This is reflectedin
long (andunpredictable) client wait times,or evena com-
plete lack of responsefor someclients. Ironically, it is pre-
ciselyduring theseperiodsof high demandthat quality of
service matters most. Breaking news,changesin thestock
market, andeventheChristmasshopping season cangen-
erate flashcrowds or even prolonged periods of overload.
Unfortunately, over-provisioning of server capacity is nei-

�
Some of the research for this paper was conducted while this author

wasemployedby Hewlett Packard Labs.

ther costeffective nor practicalsince peaks demandcanbe
severalhundredtimeshigherthanthe average [1] [28].

Because modernInternet serversmultiplex among large
numbersof simultaneous connections, much research has
investigatedmodifying operating systemmechanisms and
interfacesto efficiently obtain and processnetwork I/O
events [3] [4] [21] [22] [7]. Otherresearch [19], hasan-
alyzed the strengths and weaknessesof different server
architectures. Theseinclude multi-threaded (MT), multi-
process(MP), singleprocessevent-driven (SPED)andeven
a hybrid design called asymmetric multi -processevent-
driven (AMPED) architecture. More recent work [30]
[9] [27] [26] has re-ignited the debate regarding whether
to multiplex connectionsusing threadsor events in high-
performanceInternetservers. In addition,aninterestingde-
bate has emergedconcerning therelative meritsof kernel-
mode versus user-mode servers, with some research [14]
indicating that kernel-mode serversenjoy significant per-
formanceadvantagesover their user-mode counterparts.

In this paper, we examine differentstrategiesfor accept-
ing new connectionsunder high loadconditions. We con-
siderthreearchitecturally differentwebservers: thekernel-
mode TUX server [23] [15], the event-driven, user-mode

� server [6] [10], and the multi-threaded, user-mode Knot
server [27] [26].

We examine the connection-accepting strategy usedby
eachserver, and proposemodifications that permit us to
tune eachserver’s strategy. We implement our modifica-
tions and evaluate them experimentally using workloads
that generatetrue overload conditions. Our experiments
demonstratethat accept strategiescansignificantly impact
server throughput, and must be considered whencompar-
ing differentserver architectures.

Our experiments show that:

� Underhighloadsaservermust ensurethatit is ableto
accept new connections at asufficiently high rate.

� In addition to ensuring that new connections canbe
acceptedat as high a rateaspossible, it is equally im-
portant to ensure thattheserverspends timeservicing

1



existing connections. Thatis a balancemustbe main-
tained betweenaccepting new connections and work-
ing on existingconnections.

� The different servers that we examine can signifi-
cantly improve their throughput by finding this bal-
ance.

� Contrary to previous findings,we areableto demon-
stratethat a user-level server is able to serve an in-
memory static SPECWeb99-like workload at a rate
that comparesvery favourably with the kernel-mode
TUX server.

2 Background and RelatedWork

Currentapproachesto implementing high-performanceIn-
ternet servers require special techniquesfor dealingwith
high levelsof concurrency. This point is illustratedby first
considering thelogical steps takenby a webserver to han-
dlea single client request,asshown in Figure 1.

1. Wait for and acceptan incoming network connection.
2. Readtheincoming request from the network.
3. Parse therequest.
4. For staticrequests,check thecacheand possibly open

and readthefile.
5. For dynamicrequests, compute the result.
6. Sendthe reply to the requesting client.
7. Closethenetwork connection.

Figure1: Logical steps required to process a client request.

Note thatalmostall Internetservers andservicesfollow
similar steps. For simplicity, the example in Figure 1 does
not handlepersistent or pipelinedconnections(although all
serversused in our experiments handle persistent connec-
tions).

Several of these steps can block becauseof network or
disk I/O, or because the web server must interactwith an-
other process. Consequently, a high performance server
must be able to concurrently processpartially completed
connections by quickly identifying thoseconnections that
areready to beserviced(i.e., those for which theapplica-
tion would not have to block). This meansthe server must
beable to efficiently multiplex several thousandsimultane-
ous connections [4] andto dispatchnetwork I/O events at
high rates.

Researchinto improving webserver performance tends
to focus on improving operating system support for web
servers,or on improving the server’s architecture and de-
sign. Wenow briefly describe relatedwork in theseareas.

2.1 Operating System Improvements

Significant research [3] [2] [4] [18] [21] [22] [7] hasbeen
conductedinto improving webserver performanceby im-

proving both operating systemmechanisms andinterfaces
for obtaininginformation about thestate of socket andfile
descriptors. Thesestudieshavebeenmotivatedby theover-
headincurredby select, poll, andsimilar systemcalls
under high loads. As a result,much research hasfocused
ondeveloping improvementstoselect, poll andsig-
waitinfo by reducing theamountof datathatneedstobe
copiedbetweenuserspaceand kernelspaceor by reducing
the amount of work that must be done in the kernel (e.g.,
by only delivering onesignal per descriptor in thecaseof
sigwaitinfo).

Other work [20] hasfocusedon reducing datacopying
costs by providing a unifiedbuffering and caching system.

In contrastto previous research on improving theoper-
ating system, this paper presentsstrategies for accepting
new connections which improve server performance under
existing operatingsystems,andwhich are relevant to both
user-modeandkernel-mode servers.

2.2 Server Application Ar chitecture

One approach to multiplexing a large number of connec-
tions is to use a SPEDarchitecture, which usesa single
process in conjunction with non-blocking socket I/O and
an event notification mechanism such asselect to de-
liver high throughput, especially on in-memory workloads
[19]. The event notification mechanism is usedto deter-
minewhenanetwork-relatedsystemcall canbemadewith-
out blocking. This allows theserver to focuson thosecon-
nections that can be serviced without blocking its single
process.

Of course,a single processcannot leverage theprocess-
ing power of multiple processors. However, in multipro-
cessorenvironments multiple copiesof a SPED server can
beusedto obtain excellent performance[31].

The multi-process(MP) and multi-threaded (MT) mod-
els [19] offer an alternative approach to multiplexing si-
multaneousconnections by utilizing a thread(or process)
per TCP connection. In this approach, connections are
multiplexed by context-switching from a threadthat can
no longer process its connection because it will block,
to another thread that canprocessits connection without
blocking. Unfortunately threads and processescan con-
sume large amounts of resourcesand architects of early
systemsfound it necessary to restrict the number of exe-
cuting threads[12] [4].

The Flash server implements a hybrid of the SPED
and MP modelscalledAMPED (asymmetricmulti-process
event-driven) architecture [19]. This architecture builds on
theSPEDmodel by usingseveral helper processesto per-
form disk accesseson behalf of the mainevent-drivenpro-
cess.This approachwasfound to perform very well on a
varietyof workloadsand in particular it outperformed the
MP and MT models.

Morerecentwork hasrevivedthedebateon event-driven
versusmulti-threadedarchitectures. Somepapers [30] [9]

2



[31] concludethatevent-drivenarchitecturesafford higher-
pe� rformance. Others [26] [27] argue that highly efficient
implementations of threading libraries allow high perfor-
mancewhile providing a simpler programming model.

Our work in this paperusesserversthatareimplemented
using both event-driven and multi-threaded architectures.
We demonstrate that improved accept strategies can in-
crease throughput in either typeof server.

2.3 Kernel-modeServers

In light of the considerable demands placedon the oper-
ating system by web servers, some people [23] [11] have
argued that the web server should be implementedin the
kernel asan operating systemservice. Recent work [14]
has found that there is a significant gapin performance be-
tweenkernel-mode anduser-mode servers. Our findings
in this paper challenge theseresults. In fact on a static,
memory-based, SPECWeb99-like workload our � server
performanceis comparesvery favourably with the kernel-
modeTUX server.

2.4 Accept Strategies

In early web server implementations, the strategy for ac-
cepting new connections was to accept one connection
eachtime the server obtainednotification that therewere
pending connections available. Recent work by Chandra
and Mosberger [7] discoveredthat a simplemodification
to a select-basedweb-server (with a stock operating
system)outperformedoperatingsystemmodificationsthey
and other researchers [21] had performed in order to im-
proveeventdispatchscalability. They referredto thisserver
asamulti-accept serverbecauseuponlearning of apending
connection, theserver attemptstoaccept asmany incoming
connections aspossible by repeatedlycallingaccept un-
til thecall fails (and theerrno is set to EWOULDBLOCK)
or thelimit onthemaximumnumberof open connectionsis
reached. This multi-accept behaviour means that theserver
periodically attemptstodraintheentireaccept queue. Their
experiments demonstratethat this aggressive strategy to-
wards accepting new connections improvedevent dispatch
scalability for workloadsthatrequest a single onebyte file
or a single 6 KB file.

In this paperwe explore more representative workloads
and demonstratethat theirmulti-accept approach canactu-
ally leadto poor performancebecauseof animbalancethat
is createdby an over-emphasis on accepting new connec-
tionsat theexpenseof processingexisting connections.We
devisea simple mechanism to permit us to implementand
tune a variety of accept strategies, and to experimentally
evaluatethe impact of different acceptstrategieson three
serverarchitectures.We demonstrate that acarefully tuned
accept policy cansignificantlyimproveperformanceacross
all threeof theseserverarchitectures.

More recentwork [26] [27] hasalsonotedthat the strat-
egy usedto accept new connections can significantly im-
pact performance. Our work specifically examinesdiffer-
ent strategies usedunder a variety of servers in order to
understandhow to choosea good acceptstrategy.

3 Improving Accept Strategies

In order for a client to send a requestto the server it must
first establish a TCPconnection to theserver. This is done
by using the TCP three-way handshake [25]. Once the
three-way handshake succeedsthekernel adds a socket to
theaccept queue (sometimesreferredtoasthelistenqueue)
[5]. Each time the server invokestheaccept systemcall
asocket is removedfromthefront of theaccept queue,and
anassociatedfile descriptor is returnedto the server.

We have configured our Linux kernel with
SYN COOKIES enabled. A server that uses SYN
cookies doesn’t have to drop connections when its SYN
queue fills up. Therefore, we focus our description on
how theapplication setsthesize of the accept queue,what
happenswhentheaccept queuebecomesfull, and whatthe
servercando to attempt to keepit frombecoming full.

In Linux the length of the acceptqueueis theoretically
determined by the application when it specifies a value
for the backlog parameter to the listen system call.
In practice however, the Linux kernel silently limits the
backlog parameter to a maximum of 128 connections.
This behaviour has been verified by examining several
Linux kernel versions (including 2.4.20-8 and 2.6.0-test7).
In our work, we have intentionally left this behaviour un-
changed becauseof the large number of installations that
currently operatewith this limit. We felt that it wasproba-
bly bestto first try to understand how to bestoperatewithin
this limit.

If theserver acceptsnew connections more slowly than
they arearriving the acceptqueuewill eventually become
full. When the accept queue is full, all new connectionre-
questsaredroppedbecausethere is nomoreroomfor them
to be queued. Such queuedrops areproblematic for both
theclient andserver. The client is unable to sendrequests
to the server, and is forced to re-attempt the connection.
Meanwhile, theserver-sidekernelhasinvestedresourcesto
complete the TCP three-way handshake, only to discover
that the connectionmust be dropped. For thesereasons,
queue drops should beavoidedwheneverpossible.

Our work in this paper concentrateson improving ac-
cept strategiesto enable servers to accept andprocessmore
connections. Note that this is quite different from simply
reducing the number of queuedrops (i.e., failed connec-
tions) because queue drops could be minimized by only
ever accepting connections and never actually processing
any requests. Naturally this alone would not leadto good
performance. Insteadour strategies focus on enabling us
to find a balance between accepting new connections and

3



processingexistingconnections.

4 TheWebServers

This section providesbackground information on eachof
the servers investigated. We describe the architecture of
eachserver, aswell asits procedure for accepting new con-
nections. Lastly, we describe any modifications we have
madeto thebaseserver behaviour.

4.1 The � server

The micro-server ( � server) [6] [10] is a single process
event-driven web server. Its behaviour can be carefully
controlled through the useof more than fifty command-
line parameters, which allow us to investigate the effects
of several different server configurations using a single
web-server. The � server useseither theselect, poll,
or epoll systemcall (chosen through commandline op-
tions) in concert with non-blocking socket I/O to process
multiple connectionsconcurrently.

The server operatesby tracking the stateof each active
connection(statesroughly correspondto thestepsin Figure
1). It repeatedly loops over threephases.The first phase
(which we call the getevents-phase) determineswhich of
theconnections have accruedeventsof interest.In our ex-
periments this is done using select. The second phase
(called theaccept-phase) is enteredif select reports that
connections are pending on the listening socket. The third
phase(calledthework-phase) iteratesovereachof thenon-
listening connections that have eventsof interest that can
be processedwithout blocking. Basedon the stateof the
connectionthe server callstheappropriatefunction to per-
form thework. A key point is that for the � server options
usedin our experiments thework-phasedoesnot consider
any of thenew connectionsaccumulatedin theimmediately
preceeding accept-phase.That is, it only worksonconnec-
tions whenselect informs it that work canproceedon
that connection without blocking.

The � server is based on the multi -accept server writ-
ten by Chandra and Mosberger [7]. That server imple-
ments an accept policy that drains its accept queuewhen
it is notified of a pending connection request. In contrast,
the � server usesa parameter that permits us to accept up
to a pre-defined number of the currently pending connec-
tions. This definesan upper limit on the number of con-
nections acceptedconsecutively. For easeof reference,we
call this parameter the accept-limit parameter, and refer to
it throughout the restof this paper (the samenameis also
usedin referring to modifications we make to the other
serverswe examine). Parametervaluesrange from one to
infinity (Inf ). A valueof one forcestheserver to accept a
single connection, while Inf causestheserver to accept all
currently pending connections.

Our early investigations[6] revealedthattheaccept-limit
parametercould significantly impact the � server’s perfor-
mance. This motivatedus to explore thepossibilit y of im-
proving theperformanceof other servers, aswell asquan-
tify ing the performance gains under more representative
workloads.As a result,we have implementedaccept-limit
mechanismsin two otherwell-known webservers.Wenow
describe theseservers andmechanisms.

4.2 Knot

Knot [26] is a multi-threadedwebserver which makesuse
of the Capriccio [27] threading package. Knot is a sim-
ple web server. It derivesmany benefits from the Capric-
cio threading package, which provides lightweight, co-
operatively scheduled, user-level threads. Capriccio fea-
turesa number of different threadschedulers, including a
resource-awareschedulerwhich adapts its scheduling poli-
cies according to the application’s resource usage. Knot
operatesin oneof two modes[26] which are referredto as
Knot-C and Knot-A.

Knot-C usesa thread-per-connection model, in which
thenumber of threadsis fixedat runtime (via a command-
line parameter). Threadsarepre-forked during initializa-
tion. Thereafter, each threadexecutesa loop in which it
acceptsasingle connection andprocesses it to completion.
Knot-A creates a single acceptor thread which loops at-
tempting to accept new connections. For eachconnection
that is accepted, a new worker threadis created to com-
pletely processthat connection.

Knot-C is meant to favour the processingof existing
connections over theaccepting of new connections, while
Knot-A is designedto favour theaccepting of new connec-
tion. By having a fixednumberof threads,and usingone
threadper connection, Knot-C contains a built-in mech-
anism for limiting the number of concurrent connections
in the server. In contrast, Knot-A allows increasedcon-
currency by placing no limit on the numberof concurrent
threads or connections.

Our preliminary experimentsrevealedthat Knot-C per-
forms significantly better than Knot-A, especially under
overload wherethe number of threads (and openconnec-
tions) in Knot-A becomes very large. Our comparison
agreeswith findings by the authors of Knot [26], andas
a resultwe focusour tuning effortson Knot-C.

We modified Knot-C to allow each of its threads to ac-
cept multiple connectionsbeforeprocessing any of thenew
connections. This wasdoneby implementing a new func-
tion that is a modified version of the accept call in the
Capriccio library. This call loops to acceptup to accept-
limit new connections provided that they canbe accepted
without blocking. If the call to accept would block and
at leastone connection hasbeenaccepted the call returns
and theprocessing of theseacceptedconnectionsproceeds.
Otherwise the threadis put to sleep until a new connec-
tion request arrives.After accepting new connections,each

4



threadfully processesthe acceptedconnectionsbefore ad-
mittin� g any new connections. Therefore, in our modified
versionof Knot eachthreadoscillatesbetween anaccept-
phaseandawork-phase.As in the � server, theaccept-limit
parameterrangesfrom 1 to infinity. The restof this paper
usestheaccept-limit parameterto explore theperformance
of our modified versionof Knot-C. Note that the default
Knot behaviour is whenthe accept-limit is set to 1.

4.3 TUX

TUX [23] [15] (which is also referred to as the Red Hat
Content Accelerator) is an event-driven kernel-mode web
server for Linux developedby RedHat. It is compiled as
a kernel-loadable module (similar to many Linux device
drivers), which can be loaded and unloaded on demand.
TUX’s kernel-mode statusaffords it many I/O advantages
including true zero-copy disk reads,zero-copy network
writes,andzero copy requestparsing. In addition, TUX ac-
cesseskerneldatastructures (e.g., thelistening socket’sac-
cept queue)directly, whichallows it to obtain events of in-
terest with relatively low overheadcomparedto user-level
mechanisms li ke select. Lastly, TUX avoids the over-
headof kernel crossingsthatuser-modeservers mustincur
when making systemcalls. This is important in light of
thelargenumberof systemcallsneededto processasingle
HTTP request.

A look at theTUX sourcecodeprovidesdetailed insight
into TUX’s structure. TUX’s processing revolvesaround
two queues. The first queueis the li stening socket’s ac-
cept queue. The second is the work pending queue
which containsitems of work (e.g. readsandwrites) that
are ready to be processedwithout blocking. TUX oscil-
latesbetweenan accept-phaseanda work-phase. It does
not require a getevents-phase becauseit hasaccess to the
kernel data structures where event information is avail-
able. In the accept-phase,TUX entersa loop in which it
accepts all pending connections (thus draining its accept
queue). In the work-phase, TUX processes all items in
thework pending queuebeforestartingthenext accept-
phase. Note that new events canbe addedto eachqueue
while TUX removesandprocessesthem.

We modified TUX to include an accept-limit parame-
ter, which governs the number of connections that TUX
will accept consecutively. SinceTUX is a kernel-loadable
module, it does not accept traditional command line pa-
rameters. Instead, the new parameter was added to the
Linux /proc filesystem, in the /proc/sys/net/tux
subdirectory. The/proc mechanismis convenient in that
it allows the new parameter to be readand written with-
out restarting TUX. It givesus a measure of control over
TUX’s acceptpoli cy, andallows us to comparedifferent
accept-limit valueswith the default policy of accepting all
pending connections.

Note that thereis an importantdifference betweenhow
the � server and TUX operate. In the � server the work-

phaseprocessesafixednumberof connections(determined
by select).In contrastTUX’s work pending queuecan
grow during processing, which prolongs its work phase.
As a result we find thatthe accept-limit parameterimpacts
these two servers in dramatically different ways.This will
beseenanddiscussedin more detail in Section6.

It is also important to understand that the accept-limit
parameterdoes not control the acceptrateit merely influ-
encesit. Theaccept rateis determinedby acombinationof
thefrequency with which theserverenterstheaccept-phase
and the number connections acceptedwhile in thatphase.
The amount of time spent in thework andgetevent-phases
determines the frequency with which the accept-phase is
entered.

5 Experimental Methodology

In our graphs,each datapoint is the result of a two minute
experiment. Trial and error revealed that two minutespro-
videdsufficient timefor eachserverto achievesteadystate.
Longer durations did not alter the measured results, and
only served to prolong experimental runs. A two minute
delay was introduced betweenconsecutive experiments.
This allowedall TCPsocketstocleartheTIME WAIT state
before commencing thenext experiment. Prior to running
experiments, all non-essential Linux services (e.g. send-
mail, dhcpd, cron etc.) are shutdown. This eliminatedin-
terferencefrom daemonsand periodic processes (e.g. cron
jobs) which might confound results.

Prior todeterminingwhichaccept-limit valuesto include
in eachgraphanumber of alternativeswere runandexam-
ined. Thefinal valuespresentedin eachgraph werechosen
in order to highlight theinteresting acceptpolicies.

The following sections describeour experimental envi-
ronmentandtheparameters usedto configure each server.

5.1 Envir onment

Our experimental environment is madeup of two separate
client-server clusters. The first cluster (Cluster 1) con-
tains a single server and eight clients. The server con-
tainsdual Xeon processors running at 2.4 GHz, 1 GB of
RAM, a high-speed(10,000 RPM) SCSIdisk, andtwo In-
tel e1000 Gbps Ethernetcards. The clients are identicalto
theserver with theexception of their diskswhich areEIDE.
The server andclients areconnected with a 24-port Gbps
switch. Since the server hastwo cards,we avoid network
bottlenecks by partitioning the clients into different sub-
nets. In particular, the first four clientscommunicatewith
theserver’sfirst ethernetcard,while theremaining four use
a different IP addresslinkedto thesecondethernet card.

Each client runs Red Hat 9.0 which uses the 2.4.20-8
Linux kernel. Theserver also usesthe2.4.20-8 kernel, but
not the binary that is distributedby RedHat. Instead, the
Red Hat sourceswere re-compiled after we incorporated

5



our changesto TUX. The resulting kernel wasusedfor all
ex� periments on this machine. The aforementioned kernel
is a uni-processor kernel that doesnot provide SMP sup-
port. Thereasonsfor thisaretwofold. Firstly, theCapriccio
threading packagedoesnot currently includeSMPsupport.
Secondly, wefind it instructive to study thesimplersingle-
processor problem, beforeconsidering complex SMPinter-
actions.

The second machine cluster (Cluster 2) also consists
of a single server and eight clients. The server contains
dual Xeon processors running at 2.4 GHz, 4 GB of RAM,
high-speedSCSIdrivesandtwo Intel e1000 GbpsEthernet
cards.Theclientsaredual-processor Pentium III machines
running at 550 MHz. Each client has256 MB of RAM, an
EIDE disk, and one Intel e1000 Gbps Ethernet card. The
server runsa Linux 2.4.19 uni-processor kernel, while the
clients usethe2.4.7-10 kernel that ships with Redhat 7.1.

This clusterof machines is networked using a separate
24-port Gbps switch. Like the first cluster, the clients are
divided into two groups of four with each group commu-
nicating with a different server NIC. In addition to the
Gbpsnetwork, all machinesareconnectvia a separate100
Megabit network which is usedfor experimental control
(starting and stopping web servers, and copying experi-
mental results). Each clusteris completely isolatedfrom
othernetwork traffic.

Cluster1 is used to run all � server andTUX experiments
while Cluster2 is used to run all Knot experiments. Be-
cause our clusters areslightly different, we do not directly
compareresultstakenfromdifferentclusters. Instead, each
graphpresentsdatagatheredfrom a single cluster. Ideally,
we would use one cluster for all our experiments, but the
numberof experimentsrequirednecessitatedtheuseof two
clusters.

5.2 Web Server Configuration

In theinterestof making fair andscientificcomparisons,we
carefull y configuredTUX andthe � server to use the same
resourcelimits. TUX wasconfiguredto useasingle kernel
thread. This enables comparisons with the single process

� server, andwasalso recommendedin theTUX user man-
ual [23]. The TUX accept queuebacklog was set to 128
(via the/proc/sys/net/tux/max backlog param-
eter) which matches the value imposedon the user-mode
servers. By default, TUX bypassesthe kernel-imposed
limit onthe length of theaccept queue,in favour of amuch
larger backlog (2,048 pending connections). This adjust-
ment alsoeasescomparisionand understanding of accept-
limit-I nf strategies.

Additionally, both TUX and the � server use lim-
its of 15,000 simultaneous connections. In the

� server case this is done by using an appropri-
ately large FD SETSIZE. For TUX this was done
through /proc/sys/net/tux/max connections.

All � server and TUX experiments wereconductedusing
thesamekernel.

The multi-threaded Knot server was configured to use
theKnot-C behaviour. That is it pre-forks and uses a pre-
specifiednumber of threads. In our casewe used1,000
threads. Although we have not extensively tunedKnot we
did have noticedthat aslong asthenumber of threads was
not excessively small or largethat there werenot large dif-
ferences in performance basedon the number of threads
usedwith Knot-C.Notethat in this architecturethenumber
of threads used also limits themaximum number of simul-
taneous connections. When the accept-limit modification
is addedto Knot it permits several connections per thread
to beopen,thus increasing this limit.

Finally, logging is disabledon all serversand we ensure
that all serverscancache the entirefile set. This ensures
that differencesin serverpeformancearenot duetocaching
strategies.

6 Workloadsand Experimental Results

In thissectionwedescribethetwodifferent workloadsused
in our experiments and discuss the results obtained using
them in combinationwith the threedifferent servers. Our
results show that the accept strategy significantly impacts
serverperformance.

6.1 SPECWeb99-likeWorkload

The SPECWeb99 benchmarking suite [24] is a widely ac-
cepted tool for evaluating webserver performance. How-
ever, the suite is not without its flaws. The SPECWeb99
load generatorsareunableto generateloadsthatexceedthe
capacityof theserver. Theproblemis thattheSPECWeb99
load generator will only sendanew request oncetheserver
has replied to its previous request. Banga et al. [5] show
that this naiveloadgenerationschemelimits theclient’s re-
questrateto beat mostequal to the server’s reply rate.As
such, the client is unableto overloadthe server.

We address this problem by using httperf, an http load
generator that is capable of generating overload [16].
httperf avoids the naive loadgenerationschemeby imple-
menting connectiontimeouts. Every time a connection to
the server is initiated, a timer is started. If the connec-
tion timer expiresbeforethe connectionis established and
theHTTP transaction completes,theconnectionis aborted
and retried. This strategy ensures that the server is sent
a continuous streamof requests that is independent of the
server’s reply rate. We use httperf in conjunction with a
SPECWeb99 file set and a session log file that we have
constructedto mimic theSPECWeb99workload. Although
our tracesare synthetic, they arecarefully generatedto ac-
curately recreatethe file classes,access patterns, and the
numberof requests issuedper persistentHTTP1.1connec-
tion usedin thestaticportion of SPECWeb99 [24].

6



In all experiments, the SPECWeb99 file setandserver
cach� esaresizedsothattheentire file setfits in main mem-
ory. This is doneto eliminatesdifferencesbetweenservers
due to differencesin caching implementations. While an
in-memory workload is not entirely representative, it does
permit us to draw comparisons with the results obtained
by Joubert et al. [14] when analyzing the performanceof
kernel-modeanduser-mode servers.

Figure2 examinestheperformanceof the � serverasthe
accept-limit parameter is varied. Recall that the accept-
limit parametercontrols the number of connections that
areacceptedconsecutively. This graph shows thata larger
accept-limit can significantly improve performance in the
� server, especially under overload. In fact, at the extreme
target loadof 30,000 requests/sec, the accept-limit-Inf pol-
icy outperforms the accept-limit-1 policy by 39%.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure 2: � server performance under SPECWeb99-like
workload

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure 3: � server queue drops/sec under SPECWeb99-like
workload

Statistics collectedby the � server provide insight that
confirms the benefits of the high accept-limit value. At
a target load of 30,000 requests/sec, the accept-limit-Inf
server accepts an average of 1,571 new connections per
second In comparison, the accept-limit-1 server averages
only 1127 new connections per second (39% fewer). This
differenceis especially significant when we consider that
eachSPECWeb99connection is usedto send anaverageof
7.2 requests. Figure 3 shows that in all casesthe higher
accept-rateresultsin a lower queue drop rate(QDrops/s).

Thelower dropratemeanthatlesstimeiswastedin thepro-
cessingof packetsthatwill bediscarded,andmoretimecan
bedevotedto processingclient requests. As seenin Figure
2, this translatesinto ahealthy improvementin throughput.

The queue drop rates areobtainedby running netstat on
theserverbeforeand after eachexperiment. Thenumberof
failedTCPconnectionattemptsis recordedbeforeandafter
the experiment. Subtractingthesevalues and dividing by
theexperiment’s duration providesa rate,which we report
in our queue drop graphs.

We experimented with a variety of different accept
strategies in the Knot server. The results are summarized
in Figures4 and 5. Figure 4 illustratesthe throughput ob-
tained usingdifferent accept policies. The accept-limit-1
policy corresponds to the default Knot behaviour. Higher
accept-limits (10, 50 and 100) represent our attempts to in-
creaseKnot’s throughput by increasing its acceptrate.Our
server-sidemeasurementsconfirm that weareableincrease
Knot’s accept rate.For example,Knot’s output shows that
at a loadof 20,000 requests/sec,the accept-limit-100 pol-
icy acceptsnew connections240% faster(onaverage)than
theaccept-limit-1 (default) server. Furtherevidenceis pro-
videdin Figure5 which shows that theaccept-limit-50 and
accept-limit-100 servers enjoy significantly lower queue
droprates thantheir lessaggressivecounterparts.

 0

 2000

 4000

 6000

 8000

 10000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-10
accept-limit-1

Figure4: Knot performance under SPECWeb99-like work-
load

 0

 500

 1000

 1500

 2000

 2500

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-10
accept-limit-1

Figure 5: Knot queue drops/sec under SPECWeb99-like
workload

Unfortunately, thehigheraccept rate(and loweredqueue
drop rate)do not improve performance. On the contrary,

7



performancesuffers. Knot’s statistics show that with an
acce� pt-limit of 50 or higher, thenumberof concurrent con-
nections in theserver grows quite sharply. We believe that
performancedegradesbecausewith a largenumberof con-
nectionstheCapriccio threadinglibraryis forcedto spenda
largeamount of timeexecuting thepoll systemcall in or-
der to determine which threadcanbe scheduled next with-
out blocking. As a result, we find thatunder this workload
more aggressive accepting doesnot improve Knot’s per-
formance. These findings agreewith previously published
results [26] in which overly aggressive accepting also hurt
Knot’s performance.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure 6: TUX performance under SPECWeb99-like work-
load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure 7: TUX queue drops/sec under SPECWeb99-like
workload

Figure 6 shows that theaccept-limit parameter canalso
beusedto improve TUX’s performance.Theaccept-limit-
Inf policy corresponds to TUX’s default accept behaviour
(draining the accept queue). The accept-limit-50 policy al-
lows TUX to consecutively acceptup to 50 connections,
while the accept-limit-1 policy limits TUX to accepting a
single connection in eachaccept-phase. Figure 6 shows
that the accept-limit-1 policy results in a 12% increase
in peak throughput, anda 19% increase in throughput at
14,500 reqs/sec. Surprisingly, our server-side instrumen-
tation shows that an accept-limit-1 policy causes TUX to
accept connections fasterthanthe higher accept-limit val-
ues. While this behaviour may seem unintuitive, it is im-
portant to rememberthat TUX’s accept rate is not directly

governedby theaccept-limit parameter. Rather, theaccept-
limit controls themaximum numberof connectionsthatare
acceptedconsecutively. The server’s accept rate is deter-
minedby the numberof consecutive accepts aswell asthe
number of times that TUX enters its accept-phase. This
wasconfirmed by carefully instrumenting andexperiment-
ing with a separateversion of TUX. We found that for
low accept-limits,TUX acceptedfewer connectionsin each
accept-phase,but that it entered its accept-phasemore fre-
quently (becausethe low accept-limit shortened its work-
phase). In this case,lower accept-limits lead to a higher
accept rate. In the � server, loweringits accept-limit short-
ens eachaccept-phase.However, unlike TUX, the � server
doesnot enter the accept-phase more frequently. As a re-
sult, its accept-ratefalls whentheaccept-limit is lowered.

Furtherevidenceof thehigheraccept rate is seenin Fig-
ure 7, which shows lower queue drop ratesasthe accept-
limit parameterincreasesfrom 1 to Inf. As in the � server
case,the lower drop ratesreduce the amount of time de-
voted to handling discarded packets, and results in im-
provedperformance.

6.2 One-packet Workload

In the aftermath of the September 11th 2001 terrorist at-
tacks, many online news services were flooded with re-
quests. Many serviceswererenderedunavailable, and even
large portals were unable to deal with the deluge for sev-
eral hours. The staff at CNN.com resorted to replacing
their mainpagewith asmall,text-only pagecontaining the
latestheadlines [8]. In fact, CNN sizedthe replacement
pageso that it fit entirely in a single TCP/IPpacket. This
cleverstrategy wasoneof themany measuresemployedby
CNN.com to deal with record-breaking levels of traffic.

Theseevents reinforce the needfor web servers to ef-
ficiently handle requestsfor small files, especially under
extremeloads.With this in mind,wehavedesignedastatic
workload that tests a web server’s ability to handle a bar-
rage of short-lived connections. The workload is simple;
all requests are for thesamefile, issuing one HTTP 1.1re-
questperconnection. The file is carefully sizedsothat the
HTTPheadersandthefile contentsfill asinglepacket. This
resemblesthe type of requeststhat would have beenseen
by CNN.com on September11.

Obviously, this workload differs from the SPECWeb99-
like workload in several key respects. For instance,it
placesmuch less emphasison network I/O. Also, because
a small file is being requested with eachnew connection
it stressesa server’s abil ity to handle much higher demand
for new connectionrequests.We believe thatwhenstudy-
ing serversunder high loadsthatthis is now aninteresting
workload in its own right. We alsobelieve that it can pro-
vide valuable insights that may not be possible using the
SPECWeb99-like workload. For more discussion related
to theworkloads usedin this paperseeSection7.

8



Figure 8 shows thereply rateobservedby theclientsas
the� load(targetrequestspersecond)ontheserver increases.
All data shown in this graph is generatedusing different
options for the � server.

The lines in this graph show that the accept-limit-Inf
and accept-limit-10 options significantly increasethrough-
put when comparedwith thenaive accept-limit-1 strategy.
This is because these servers are significantly more ag-
gressive about accepting new connections thanthe accept-
limit-1 approach. Interestingly, the accept-limit-10 stat-
egy achievesa slightly higher peak than the accept-limit-
Inf strategy, although it experiences larger decreases in
throughput thanaccept-limit-Inf asthe load increasespast
saturation. This indicates that the accept strategy used
should dynamically adjustwith theworkload(this is some-
thing we plan to investigatein future research).

The differences in performance betweenthe accept-
limit-10 and accept-limit-Inf policies can be seenby ex-
amining their ability to acceptnew connections. Figure 9
shows the queue drop ratesfor the different accept strate-
gies. Hereweseethatthe � server operatingwith anaccept-
limit of 10 is better able to acceptnew connections. In fact
it is able avoid significant numbers of queue drops until
23,000 requestspersecond. On the other hand the accept-
limit-I nf option experiences significant numbersof queue
drops at 21,500 requestsper second. Both of these points
correspond to their respective peakrates.

 0

 5000

 10000

 15000

 20000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure8: � server performance under one-packet workload

Figure 9 alsoshows that the accept-limit-1 option does
a good job of accepting new connections until a target re-
quest rateof 20,000 requests per second. At that point it
is unableto keepupwith thedemandfor new connections.
Theresult is that thequeuedroprateis 11,914connections
per second, and the reply rate is 14,058 replies per sec-
ond. Significant expenseis incurredin handling failedcon-
nection requests and if the server caninsteadaccept those
connectionit can improveperformanceprovidedtheserver
doesnot take anextreme approachto trying to acceptnew
connections (to thedetrement of making progresson exist-
ing connections).

Interestingly, the total of these two rates (11,914 +
14,058 = 25,972) exceeds the target requestrateof 20,000
requests per second. This is becausewhen a client is at-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure9: � server queue drops/sec under one-packet work-
load

tempting to establish a TCP connection using the three-
way handshake, if theclient does not receive a SYN-ACK
packet in responseto theSYN packet it sendsto theserver,
it will eventually time-out andretry, which leads to several
queue drops perconnection.

Using this one packet workload we see that we are
able to increasethe � server’speakthroughput from19,500
replies persecond usingthe naive acceptstrategy (accept-
limit-1) to 22,000 repliespersecond usingtheaccept-limit-
10 strategy. This is animprovement of 13%. More impor-
tantly, the accept-limit-Inf stategy improves performance
versusthe naive strategy by asmuch as65% at 21,000 re-
questspersecond and71% at 30,000 requestspersecond.

Figure 10 shows the reply rateversusthe target request
rate for the TUX server. As with the SPECWeb99-like
workload, limiting the number of consecutive acceptsin-
creases TUX’s acceptrate.This can beseenby comparing
thequeuedroprates(QDrops/sec)in Figure 11 for the dif-
ferentTUX configurationsexamined. In TUX theaccept-
limit-1 option doesthe best job of accepting new connec-
tions resulting in the lowestqueue drop ratesof theconfig-
urations examined. In this case,this translates directly into
thehighestthroughput.

 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure10: TUX performance under one-packet workload

Recall that the accept-limit-I nf strategy corresponds to
theoriginal TUX acceptstrategy. In thiscasetheimproved
accept-limit-1 strategy results in apeakreplyrateof 22,998
replies persecond comparedwith the original, whosepeak

9



 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure 11: TUX queue drops/sec under one-packet work-
load

is at 20,194 replies per second. This is an improvement
of 14%. Additionally there is an improvement of 36% at
23,000requests per second.

Webelievefurtherimprovementsarepossible. However,
thesimplemethod weusedto modify TUX doesnot permit
us to accept fewer than one connectionper accept phase.
Ultimately we believe that the bestway to control the ac-
cept strategy used in TUX, and to control the scheduling
of work in general, is to track the number of entries con-
tained in the accept queueand in the number of entries in
work pending queue.With this information, a more in-
formed decision can be made about whether to enteran
accept-phaseor a work-phase. We alsobelieve that lim-
its should be placedon the amount of time spent in each
phase,possiblyby limiting thenumberof eventsprocessed
from eachqueue. We believe that this approachmight be
usedto further increasetherateatwhich theserveraccepts
new connections. Thedifficulty of coursewould be in en-
suring that the server strikesa balance betweenaccepting
new connections andprocessingexistingconnections.

For this one packet workload, Knot alsobenefits from
tuning its accept policy. Figure 12 shows an interesting
spectrum of acceptpolicies. With the accept-limit param-
eterset to 1, our modified versionof Knot behavesidenti-
cally to anunmodified copy of Knot. As a sanity checkwe
confirmedthat theoriginal version and the modifiedserver
using anaccept-limit of 1 produceresultsthatare indistin-
guishable. To reduceclutter, weomit results for theoriginal
versionof Knot.

We observe that the accept-limit-50 strategy noticeably
improvesthroughput whencomparedwith theoriginal ac-
cept strategy. Firstly, peakthroughput is increasedby 17%
from 12,000 to 14,000 repliesper second. Secondly, the
throughput is increasedby 32%at14,000 requestspersec-
ond and24% at 30,000 requestspersecond.

Interestingly, increasing the accept-limit value too much
(for example to 100) can result in poor performance. In
comparingtheaccept-limit-100 strategyaccept-limit-1 (de-
fault) strategy, weobservethattheformer obtainsaslightly
higher peak. However, throughput degradessignificantly
oncethesaturationpoint is exceeded. Figure13 showshow

the connection failure rates are impacted by the changes
in the acceptstrategy. Herewe see that the accept-limit-
100 versionis ableto tolerateslightly higher loads thanthe
original before suffering from significant connection fail-
ures. The accept-limit-50 version is slightly better, andin
both casespeak throughput improves. At request ratesof
15,000and highertheaccept-limit-50 andaccept-limit-100
strategiesdoaslightly betterjob of preventing queuedrops
than the server using an accept-limit of 1. Interestingly,
queuedrop ratesfor theaccept-limit 50 and100optionsare
quite comparable over this range, yet, thereis a large dif-
ference in performance. The statisticsprintedby the Knot
server show thatat 15,000 requests/secthe accept-limit-50
policy operateswith approximately 25,000active connec-
tions, while the accept-limit-100 policy is operating with
between44,000 to 48,000 active connections. One pos-
sible explanation for the difference in performanceis that
theoverhead incurredby poll becomesprohibitive asthe
number of active connections climbs. Theseexperiments
also highlight that a balanced accept policy provides the
best performance.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-1

Figure 12: Knot performance under one-packet workload

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0  5000  10000  15000  20000  25000  30000

Q
D

ro
ps

/s




Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-1

Figure 13: Knot queue drops/sec under one-packet work-
load

6.3 Comparing the � server and TUX

Figures 14 and 15 compare the performance of the
TUX server with the performance of the � server on
the SPECWeb99 and one packet workloads, respectively.

10



These graphs show that the original version of TUX
(ac� cept-limit-Inf) outperforms a poorly tuned (accept-
limit-1) version of the user-mode � server by as much as
28% under the SPECWeb99-like workload and 84% un-
der theone-packet workload(both at 30,000 requests/sec).
However, the performance gap is greatly reduced by ad-
justingthe � server’s acceptpolicy. As a result we are able
to obtain performancethat comparesquite favourablywith
theperformanceof theunmodified TUX server under both
workloads.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

TUX accept-limit-Inf
TUX accept-limit-1

userver accept-limit-Inf
userver accept-limit-1

Figure 14: � server versus TUX performance under
SPECWeb-like workload

 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000  25000  30000

R
ep

lie
s/

s

	

Target Requests/s

TUX accept-limit-Inf
TUX accept-limit-1

userver accept-limit-Inf
userver accept-limit-1

Figure 15: � server versus TUX performance under one-
packet workload

Recent work by Joubert et al. [14] concludes that
kernel-modeservers perform two to threetimesfasterthan
their user-modecounterparts. Their experiments on Linux
demonstratethatTUX (running ona2.4.0kernel)achieved
90% higherperformancethanthefastestuser-modeserver
(Zeus) measured on Linux. While there are undeniable
benefits to the kernel-mode architecture (integration with
the TCP/IP stack, zerocopy disk I/O, eliminating kernel
crossings,etc.), our comparison of the user-mode � server
and TUX produces considerably different findings.

Some of the gains in user-mode performance are due
to the zero-copy sendfile implementation that is now
available on Linux. In separatework we are attempting to
quantify the improvements due to zero-copy sendfile
and theuseof theLinux TCPcorkanduncorkmechanisms.
Therearealsosubstantial differencesin workloads.Specif-

ically, Joubert et al. useda HTTP 1.0 basedSPECWeb96
workload, while we usea HTTP 1.1 basedSPECWeb99
workload. Lastly, we note the useof different operating
systemversions,adifferent performancemetric, and possi-
bly different server configurations. In spite of thesediffer-
ences,our work demosntratesthata well tuneduser-mode
server canclosely rival theperformanceof a kernel-mode
serverunderrepresentativeworkloads.

7 Discussion

Accept strategies can have considerable impact on web
server performance. As a result,we believe thesestrate-
gies should beconsidered(along with otherperformance-
affecting parameters) when comparing different web
servers.

We point out that every server has an implicit accept
strategy. Perhaps without realizing it, every server makes
a decision regarding what portion of the available work
should be immediately processed. We emphasizethat we
havenot fully exploredtheparameterspaceof possible ac-
cept strategies. Instead, we have deviseda simplemethod
for demonstrating that accept strategiescanhave consider-
able impactonperformancein three very different servers.
In future,weplan to investigatetechniquesfor dynamically
obtaining a balancedacceptstrategy that will self-tunefor
differenthardware, operatingsystems,and evenserver ar-
chitectures.

7.1 Event-dri ven versus Multi-thr eaded
Servers

It is tempting to comparethegraphscontaining the � server
and Knot resultsin order to compare the performance of
the event-driven and multi -threaded(user-mode) servers.
However, sucha comparisonwould be unfair. Although
verysimilar, theenvironmentsused to run each server’sex-
periments weredifferent in important ways. Themachine
used for the � server experiments was running a Linux
2.4.20-8 kernel which containedour smallTUX modifica-
tions, while the machine usedfor Knot experiments was
running aLinux 2.4.19kernel. Weusedthe lattersystemto
implement, test,debug, andtune our Knot modifications.
Unfortunately, timedid not permitus to rerun all of our ex-
periments on thesame cluster. Additionally, we have only
recently obtained accessto the Capriccio and Knot code
and would like to gainmoreexperiencewith tuning its per-
formancebefore comparingit against other servers.1 As a
result, we refrain from directly comparing Knot’s perfor-
mancewith that of the � server.

1We would like to be able to includesuchresults the final version of
this paper.

11



7.2 Work loads

Theresultsobtained with the two workloadsstudiedin this
papershow that theaccept strategyappearsto haveabigger
impacton throughput under the onepacket workloadthan
with the SPECWeb99-like workload. Recent studies have
highlighteddeficienciesof the SPECWeb99workload.

Nahum [17] analyzes the characteristics of the
SPECWeb99 workload in comparison with data gath-
ered from severalreal-world webserver logs. His analysis
reveals many important shortcomings of the SPECWeb99
benchmark. For example, the SPECWeb99 benchmark
doesnot useconditional GET requests. With conditional
GETS, if therequested file hasnot beenmodifiedsincethe
client’s last request, theserver returns a header containing
HTTP 304 Not Modifed andzero bytesof file data.
Interestingly, such requestsaccountedfor up to 28% of all
requests in some server traces. With the transmissionof
only an HTTP header, the server response is quite small,
and easily fits in asinglepacket.

Nahum also reports significantly greater use of HTTP
1.0 (51%– 95%) thanthe30% usedby SPECWeb99. He
also reports that SPECWeb99 significantly overestimates
average transfersizes. SPECWeb99’s median transfersize
of 5,120 bytes is an order of magnitude larger than the
transfer sizescaptured in the sample log. In fact, the me-
dian transfersize in the IBM 2001 log is amere230 bytes!
The combinations of theseobservations indicatesthat the
demand for new connectionsat webserversis likely to be
muchhigherthanthedemandgeneratedby aSPECWeb99-
likeworkload.

Furtherevidencefor this conclusion is provided in very
recent work by Jamjoom et al. [13]. They report that in
an attempt to minimize user response time, many popu-
lar browsers (on Linux and Windows 2000) tend to issue
multiple requestsfor embeddedobjectsin parallel. This is
in contrast to usinga single sequential persistent connec-
tion to requestmultiple objects from thesameserver. They
report that although there were on average 21 unique em-
bedded objectsper page visited, the averagerequests per
connectionissuedby thedifferentbrowsersexaminedisbe-
tween1.2and2.7. This is considerably lower than theav-
erageof 7.2requests per connection usedby SPECWeb99.

While a SPECWeb99-like workload is still useful for
measuring web server performance, it has a number of
shortcomings andshould not be usedasthe sole measure
of serverpeformance.Ourone-packetworkloadhighlights
anumberof phenomena(small transfer sizes, asmall num-
ber of requests per connection) reported in recent litera-
ture. More importantly, asimplementedby CNN.com, this
is perhaps thebest wayto servethemost clientsundercon-
ditionsof extreme overload. For thepurposesof our study
it alsohighlightsauseful workloadthatputshigh demands
on the server to acceptnew connections.

8 Conclusions

This paper examines the importance of connection-
accepting strategies to web server performance. We de-
viseandstudy asimplemethodfor altering theacceptstrat-
egy of threearchitecturally different servers:theuser-mode
single process event-driven � server, the user-mode multi-
threadedKnot server, andthe kernel-modeTUX server.

Our experimental evaluation of different acceptstrate-
gies expose theseservers to representative workloads in-
volving highconnection-rates, andgenuineoverloadcondi-
tions. Wefind that themanner in whicheachserveraccepts
new connections cansignificantly affect its peak through-
put and overload performance. Our experiments demon-
stratewell-tuned accept policies canyield noticeable im-
provementscomparedwith the baseapproach. Under two
differentworkloads,we areable to improve throughput by
as much as 19% – 36% for TUX, 0% – 32% for Knot,
and 39% – 71% for the � server. As a result, we point out
that researchersin thefield of server performancemust be
awareof the importanceof different acceptstrategieswhen
comparingdifferenttypesof servers.

Lastly, we present a directcomparisonof theuser-mode
� server and the kernel-mode TUX server. We show that
thegapbetweenuser-modeandkernel-modearchitectures
may not beaslargeaspreviouslyreported.In particular, we
find thatunder the representativeworkloadsconsidered the
throughput of theuser-mode � server rivalsthatof TUX.

In future work we plan to examine techniquesfor mak-
ing more informed decisions about how to schedule the
work that a server performs. We believe that by making
more informationavailableto theserver wecanimplement
both betterand dynamicpolicies for deciding whether the
server should enter a phase of accepting new connections
(the accept-phase)or working on existing connections (the
work-phase). Additionally this information would permit
us to implement more controlled policies by limiting how
long both theaccept-phaseand thework-phaseshould last.

References

[1] M. Arlitt and T. Jin. Workloadcharacterization of the
1998 World Cup website. IEEE Network, 14(3):30–
37, May/June2000.

[2] G. Banga, P. Druschel, and J.C. Mogul. Resource
containers: A new facility for resource management
in server systems.In Operating Systems Design and
Implementation, pages45–58, 1999.

[3] G. Banga and J.C. Mogul. Scalable kernel perfor-
mancefor Internet servers under realistic loads. In
Proceedings of the 1998 USENIX Annual Technical
Conference, New Orleans, LA, 1998.

[4] G. Banga, J.C. Mogul, andP. Druschel. A scalable
and expli cit event delivery mechanism for UNIX. In

12



Proceedings of the 1999 USENIX Annual Technical
Conference, Monterey, CA, June1999.

[5] Gaurav Banga and PeterDruschel. Measuring the
capacity of a web server. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems (USITS), Monterey CA, December1997.

[6] T. Brecht and M. Ostrowski. Exploring the perfor-
manceof select-basedInternetservers.TechnicalRe-
port HPL-2001-314, HP Labs, November2001.

[7] A. Chandra and D. Mosberger. Scalability of Linux
event-dispatch mechanisms. In Proceedings of the
2001 USENIX Annual Technical Conference, Boston,
2001.

[8] Computer Science and Telecommunications Board.
The Internet Under Crisis Conditions: Learning from
September 11. TheNational AcademiesPress,2003.

[9] Frank Dabek, Nickolai Zeldovich, M. Frans
Kaashoek, David Mazires, and Robert Morris.
Event-driven programming for robust software. In
Proceedings of the 10th ACM SIGOPS European
Workshop, pages186–189, September2002.

[10] HP Labs. Theuserverhomepage,2003. Available at
http://hpl.hp.com/research/linux/userver.

[11] E. Hu, P. Joubert, R. King, J. LaVoie, and J. Tracey.
Adaptive fast path architecture. IBM Journal of Re-
search and Development, April 2001.

[12] J.Hu, I. Pyarali, and D. Schmidt. Measuring theim-
pactof event dispatching andconcurrency modelson
webserverperformanceoverhigh-speednetworks. In
Proceedings of the 2nd Global Internet Conference.
IEEE,November 1997.

[13] Hani Jamjoom and Kang G. Shin. Persistent drop-
ping: An efficient control of traffic aggregates. In
Proceedings of ACM SIGCOMM 2003, Karlsruhe,
Germany, August 2003.

[14] PhilippeJoubert, Robert King, Richard Neves,Mark
Russinovich, and John Tracey. High-performance
memory-basedWeb servers: Kernel and user-space
performance. In Proceedings of the USENIX 2001
Annual Technical Conference, pages175–188, 2001.

[15] C. Lever, M. Eriksen,and S. Molloy. An analysis of
the TUX webserver. Technical report, Universityof
Michigan,CITI Technical Report 00-8, Nov. 2000.

[16] D. Mosberger andT. Jin. httperf: A tool for measur-
ing web server performance. In The First Workshop
on Internet Server Performance, pages59—67, Madi-
son, WI, June 1998.

[17] Eric Nahum. Deconstructing SPECWeb99. In Pro-
ceedings of the 7th International Workshop on Web
Content Caching and Distribution, August2002.

[18] M. Ostrowski. A mechanism for scalable eventnotifi-
cation anddelivery in Linux. Master’s thesis,Depart-
ment of Computer Science, University of Waterloo,
November 2000.

[19] Vivek S.Pai, PeterDruschel, and Willy Zwaenepoel.
Flash:An efficient and portable Webserver. In Pro-
ceedings of the USENIX 1999 Annual Technical Con-
ference, Monterey, CA, June 1999.

[20] Vivek S.Pai, PeterDruschel, and Willy Zwaenepoel.
IO-Lite: a unified I/O buffering andcaching system.
ACM Transactions on Computer Systems, 18(1):37–
66, 2000.

[21] N. Provos and C. Lever. Scalable network I/O in
Linux. In Proceedings of the USENIX Annual Tech-
nical Conference, FREENIX Track, June 2000.

[22] N. Provos, C. Lever, and S. Tweedie. Analyzing the
overload behavior of a simple web server. In Pro-
ceedings of the Fourth Annual Linux Showcase and
Conference, October2000.

[23] RedHat, Inc. TUX 2.2 Reference Manual, 2002.

[24] Standard Performance Evaluation Corpora-
tion. SPECWeb99 Benchmark, 1999. http://-
www.specbench.org/osg/web99.

[25] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison
Wesley, 1994.

[26] Rob von Behren, Jeremy Condit, and Eric Brewer.
Why events are a bad idea for high-concurrency
servers. In 9th Workshop on Hot Topics in Operat-
ing Systems (HotOS IX), 2003.

[27] Rob von Behren, Jeremy Condit, Feng Zhou,
GeorgeC. Necula, and Eric Brewer. Capriccio: Scal-
able threads for internet services. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles, 2003.

[28] L.A. Wald andS. Schwarz. The1999 SouthernCal-
ifornia seismicnetwork bulletin. Seismological Re-
search Letters, 71(4), July/August 2000.

[29] M. Welsh and D. Culler. Virtualization considered
harmful: OS design directions for well-conditioned
services. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS VIII), Schloss
Elmau,Germany, May 2001.

13



[30] M. Welsh,D. Culler, and E. Brewer. SEDA: An ar-
chitecture for well-conditioned, scalableInternet ser-
vices. In Proceedings of the Eighteenth Symposium
on Operating Systems Principles, Banff, Oct.2001.

[31] Nickolai Zeldovich, Alexander Yip, Frank Dabek,
Robert T. Morris, David Mazieres, and Frans
Kaashoek. Multiprocessor support for event-driven
programs. In Proceedings of the USENIX 2003 An-
nual Technical Conference, June2003.

14


