Lazy Receiver Processing (LRP): A Network Subsystem
Architecture for Server Systems*

Peter Druschel and Gaurav Banga

Department of Computer Science
Rice University
Houston, TX 77005

Abstract

The explosive growth of the Internet, the widespread use
of WWW-related applications, and theincreased reliance
on client-server architectures places interesting new de-
mands on network servers. In particular, the operating
system running on such systems needs to manage the ma-
chine's resources in a manner that maximizes and main-
tains throughput under conditions of high load. We pro-
pose and eva uate a new network subsystem architecture
that provides improved fairness, stability, and increased
throughput under high network load. The architecture
is hardware independent and does not degrade network
latency or bandwidth under normal load conditions.

1 Introduction

Most work on operating system support for high-speed
networks to date has focused on improving message la
tency and on delivering the network’s full bandwidth to
application programs [1, 5, 7, 21]. More recently, re-
searchers have started to look at resource management
issues in network servers such as LAN servers, firewdl
gateways, and WWW servers [16, 17]. This paper pro-
poses a new network subsystem architecture based on
lazy receiver processing (LRP), which provides stable
overload behavior, fair resource all ocation, and increased
throughput under heavy load from the network.

*This paper originally appeared in the Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and Implemen-
tation (ODSl), Seattle, WA, Oct 1996.

t Thiswork supportedin part by National Science Foundation Grant
CCR-9503098

State of the art operating systems use sophisticated
means of controlling the resources consumed by appli-
cation processes. Policiesfor dynamic scheduling, main
memory allocation and swapping are designed to ensure
graceful behavior of a timeshared system under various
load conditions. Resources consumed during the process-
ing of network traffic, onthe other hand, are generally not
controlled and accounted for in the same manner. This
poses a problem for network servers that face a large
volume of network traffic, and potentially spend consid-
erable amounts of resources on processing that traffic.

In particular, UNIX based operating systems and many
non-UNIX operating systems use an interrupt-driven net-
work subsystem architecture that gives strictly highest
priority to the processing of incoming network packets.
This leads to scheduling anomalies, decreased through-
put, and potentia resource starvation of applications.
Furthermore, the system becomes unstable in the face
of overload from the network. This problem is serious
even withthereatively dow current network technology
and will grow worse as networks increase in speed.

We propose a network subsystem architecture that in-
tegrates network processing into the system’s global re-
source management. Under this system, resources spent
in processing network traffic are associated with and
charged to the application process that causes the traf-
fic. Incoming network traffic is scheduled at the priority
of the process that receives the traffic, and excess traffic
is discarded early. This allows the system to maintain
fair allocation of resources while handling high volumes
of network traffic, and achieves system stability under
overload.

Experiments show that a prototype system based on
LRP maintains its throughput and remains responsive
even when faced with excessive network traffic on a 155
Mbit/s ATM network. In comparison, a conventiona
UNIX system collapses under network traffic conditions
that can easily arise on a 10 Mbit/s Ethernet. Further
results show increased fairness in resource allocation,
traffic separation, and increased throughput under high

Application
Processes

Sockets

V
ﬁ\ ﬁ Datagram Stream ﬁé
Chwe | [] o

=
[\ H Interface queue

IP queue

vl
Network Interface

Figure 1: BSD Architecture

load.

Therest of thispaper isorganized asfollows. Section 2
givesabrief overview of the network subsystem foundin
BSD UNIX-derived systems[13] and identifiesproblems
that arise when a system of thistypeisused as a network
server. The design of the LRP network architecture is
presented in Section 3. Section 4 gives a quantitative
performance eval uation of our prototypeimplementation.
Finally, Section 5 covers related work and and Section 6
offers some conclusions.

2 UNIX Network Processing

This section starts with a brief overview of network pro-
cessing in UNIX operating systems. It then points out
problemsthat arise when asystem of thistypefaceslarge
volumes of network traffic. Finally, we argue that these
problems are important by discussing common sources
of high network traffic.

To simplify the discussion, we focus on the
TCP/UDP/IP protocol suite, and on BSD-derived UNIX
systems[13]. Similar problemsarise with other protocol
suites, in System V-derived UNIX systems, and in many
commercial hon-UNIX operating systems. Figure 1 il-
lustrates the BSD networking architecture.

2.1 Overview

On the receiving side, the arrival of a network packet is
signaled by an interrupt. The interrupt handler, which is
part of the network interface device driver, encapsul ates
the packet in an mbuf, queues the packet in the IP queue,

and posts a software interrupt. In the context of this
software interrupt, the packet is processed by IP. After
potential reassembly of multiple P fragments, UDP's or
TCP'sinput functionis called, as appropriate. Finally—
gtill inthe context of the softwareinterrupt—thepacket is
gueued on the socket queue of the socket that isbound to
the packet’s destination port. The software interrupt has
higher priority than any user process; therefore, when-
ever a user process isinterrupted by a packet arrival, the
protocol processing for that packet occurs before control
returns to the user process. On the other hand, software
interrupts have lower priority than hardware interrupts,
thus, the reception of subsequent packets can interrupt
the protocol processing of earlier packets.

When an application processperformsareceive system
call* on the socket, the packet’s data is copied from the
mbufs into the application’s address space. The mbufs
are then dequeued and deall ocated. Thisfinal processing
step occurs in the context of the user process performing
asystem call.

On the sending side, data written to a socket by an
application is copied into newly alocated mbufs. For
datagram sockets (UDP), the mbufs are then handed to
UDPand IP for transmission. After potential fragmenta-
tion, the resulting | P packets are then transmitted, or—if
the interfaceis currently busy—placed inthe driver’sin-
terface queue. All of these actions are executed in the
context of the user process that performed the send sys-
tem call on the socket. Packets queued in the interface
gueue are removed and transmitted in the context of the
network interface’ sinterrupt handler.

For stream sockets (TCP), the mbufs are queued inthe
socket’s outgoing socket queue, and TCP's output func-
tion is called. Depending on the state of the TCP con-
nection and the arguments to the send call, TCP makes a
logical copy of al, some, or none of the queued mbufs,
processes them for transmission, and cals IP's output
function. The resulting IP packets are then transmitted
or queued on the interface queue. Again, thisprocessing
occursin the context of the application process perform-
ing a system call. Asfor UDP packets, data is removed
from the interface queue and transmitted in the context
of the network interface’ sinterrupt handler.

Processing of any remaining data in the socket queue
typicaly occursin the context of a software interrupt. If
TCP receives an acknowledgment, more data from the
socket queue may be sent in the context of the software
interrupt that was posted to process the incoming ac-
knowledgment. Or, data may be sent in the context of a
softwareinterrupt that was scheduled by TCPtoindicatea
timeout. Datais not removed from the socket queue until

1We usethetermreceive systemcall to refer to any of thefive system
callsavailable to read datafrom a socket. The term send systemcall is
used analogously to refer to system calls that write data to a socket.

its reception was acknowledged by the remote receiver.
CPU time consumed during the processing of network
I/O is accounted for as follows. Any processing that
occursin the context of a user process performing a sys-
tem call is charged to that process as system time. CPU
time spent in software or hardware interrupt handlers is
charged to the user process that was interrupted. Note
that in generd, the interrupted process may be unrelated
to the network communication that caused the interrupt.

2.2 Problems

We now turn to describe several problems that can arise
when a system with conventional network architecture
faces high volumes of network traffic. Problems arise
because of four aspects of the network subsystem:

Eager receiver processing
Processing of received packets is strictly interrupt-
driven, with highest priority given to the capture and
storage of packetsin main memory; second highest
priority is given to the protocol processing of pack-
ets, and, lowest priority is given to the applications
that consume the messages.

Lack of effectiveload shedding Packet dropping as a
means to resolve receiver overload occurs only after
significant host CPU resources have already been
invested in the dropped packet.

Lack of traffic separation Incomingtraffic destined for
one application (socket) can lead to delay and loss
of packets destined for another application (socket).

I nappropriate resource accounting CPU time spent in
interrupt context during the reception of packetsis
charged to the application that happens to execute
when a packet arrives. Since CPU usage, as main-
tained by the system, influences a process's future
scheduling priority, thisisunfair.

Eager receiver processing has significant disadvan-
tages when used in a network server. It gives highest
priority to the processing of incoming network packets,
regardless of the state or the scheduling priority of there-
celving application. A packet arrival will alwaysinterrupt
a presently executing application, even if any of the fol-
lowing conditions hold true: (1) the currently executing
application is not the receiver of the packet; (2) the re-
ceiving application is not blocked waiting on the packet;
or, (3) the receiving application has lower or equa pri-
ority than the currently executing process. As a result,
overheads associated with dispatching and handling of
interrupts and increased context switching can limit the
throughput of a server under load.

Under high load from the network, the system can en-
ter a state known as receiver livelock [20]. Inthis state,
the system spends all of its resources processing incom-
ing network packets, only to discard them later because
no CPU time is left to service the receiving application
programs. For instance, consider the behavior of the sys-
tem under increasing load from incoming UDP packets
2. Since hardware interface interrupt and software inter-
rupts have higher priority than user processes, the socket
gueues will eventualy fill because the receiving appli-
cation no longer gets enough CPU time to consume the
packets. At that point, packets are discarded when they
reach the socket queue. Astheload increases further, the
softwareinterruptswill eventually nolonger keep up with
the protocol processing, causing the IP queuetofill. The
problem is that early stages of receiver processing have
strictly higher priority than later stages. Under overload,
this causes packets to be dropped only after resources
have been invested in them. As aresult, the throughput
of the system drops as the offered | oad increases until the
system finally spendsdll itstime processing packets only
to discard them.

Bursts of packets arriving from the network can cause
scheduling anomalies. In particular, the delivery of an
incoming message to the receiving application can be de-
layed by a burst of subsequently arriving packets. This
is because the network processing of the entire burst of
packets must complete beforeany applicationprocesscan
regain control of the CPU. Also, since dl incoming IP
traffic is placed in the shared IP queue, aggregate traffic
bursts can exceed the IP queue limit and/or exhaust the
mbuf pool. Thus, traffic bursts destined for one server
process can lead to the delay and/or loss of packets des-
tined for other sockets. This type of traffic interference
isgenerally unfair and undesirable.

2.3 Sourcesof High Network L oad

Network protocols and distributed application programs
use flow control mechanisms to prevent a sender process
from generating moretraffic than thereceiver process can
handle. Unfortunately, flow control does not necessarily
prevent overload of network server machines. Some rea-
sonsfor thisare:

o simultaneousrequestsfromalarge number of clients
o mishehaved distributed applications

o incorrect client protocol implementations

¢ malicious denial-of-service attacks

e broadcast and multicast traffic

2Similar problems can arise under load from TCP connection estab-
lishment request packets.

TCP connection establishment requests (TCP SYN
packets) from alarge number of clientscan flood aWWW
server. Thisistruedespite TCP sflow control mechanism
(which regulates traffic on established connections) and
TCP sexponential backoff strategy for connection estab-
lishment requests (which can only limit the rate of re-
tries). Themaximal rate of SY N packetsisonly bounded
by the capacity of the network. Similar arguments ap-
ply for any server that serves avirtually unlimited client
community such as the Internet.

Distributed applications built on top of asimple data-
gram service such as UDP must implement their own
flow and congestion control mechanisms. When these
mechanisms are deficient, excessive network traffic can
result. Incorrect implementationsof flow-controlled pro-
tocols such as TCP—not uncommon in the PC market—
can have the same effect. The vulnerability of network
servers to network traffic overload can be and has been
exploited for security attacks®. Thus, current network
servers have a protection and security problem, since un-
trusted application programs running on clients can cause
thefailure of the shared server.

There are many examples of real-world systems that
are prone to the problems discussed above. A packet
filtering application-level gateway, such as a firewall,
establishes a new TCP connection for every flow that
passes through it. An excessive flow establishment rate
can overwhelm the gateway. Moreover, a misbehaving
flow can get an unfair share of the gateway’s resources
and interfere with other flows that pass throughit. Simi-
lar problems can occur in systems that run several server
processes, such asWeb serversthat use aprocess per con-
nection; or, single process servers that use akernel thread
per connection. Scheduling anomalies, such as thosere-
lated to bursty data, can be ill-afforded by systems that
run multimedia applications. Apart from the above ex-
amples, any system that uses eager network processing
can be livelocked by an excess of network traffic—this
need not always be part of adenial of service attack, and
can simply be because of aprogram error.

These problems make it imperative that a network
server be able to control its resources in a manner that
ensures efficiency and stability under conditions of high
network load. The conventional, interrupt-driven net-
work subsystem architecture does not satisfy this crite-
rion.

3 Design of the LRP Architecture

In this section, we present the design of our network
subsystem architecture based on lazy receiver processing

30ften, adenial-of-serviceattack is used aspart of amore elaborate
security attack.

Application
Processes

Sockets
Datagram Stream
e | [rer
oS

g Interface queue

—~—aX -

Network Interface

Figure 2: LRP Architecture

(LRP). We start with an overview, and then focus on
details of protocol processing for UDP and TCP.

The proposed architecture overcomes the problems
discussed in the previous section through a combination
of techniques: (1) The IP queue is replaced with a per-
socket queue that is shared with the network interface
(NI). (2) The network interface demultiplexes incoming
packets according to their destination socket, and places
the packet directly on the appropriate receive queue®.
Packets destined for a socket with a full receiver queue
aresilently discarded (early packet discard). (3) Receiver
protocol processing is performed at the priority of there-
ceiving process®. (4) Whenever the protocol semantics
allow it, protocol processing is performed lazily, in the
context of the user process performing a receive system
cal. Figure 2 illustratesthe L RP architecture.

There are severa thingsto note about the behavior of
thisarchitecture. First, protocol processing for apacketin
many cases does not occur until the application requests
the packet in areceive system call. Packet processing no
longer interrupts the running process at the time of the
packet’s arrival, unless the receiver has higher schedul-
ing priority than the currently executing process. This
avoids inappropriate context switches and can increase
performance.

Second, the network interface separates (demulti-
plexes) incoming traffic by destination socket and places

4The present discussion assumes that the network interface has an
embedded CPU that can be programmed to perform this task. Sec-
tion 3.2 discusseshow L RP can be implemented with an uncooperative
NI.

5For a shared or multicast socket, this is the highest of the partici-
pating processes’ priorities.

packets directly into per-socket receive queues. Com-
bined with thereceiver protocol processing at application
priority, this provides feedback to the network interface
about application processes’ ability to keep up with the
traffic arriving at a socket. This feedback is used as fol-
lows: Once a socket’sreceive queuefills, the NI discards
further packets destined for the socket until applications
have consumed some of the queued packets. Thus, the
NI can effectively shed load without consuming signif-
icant host resources. As a result, the system has stable
overload behavior and increased throughput under high
load.

Third, the network interface’s separation of received
traffic, combined with the receiver processing at applica-
tion priority, eliminates interference among packets des-
tined for separate sockets. Moreover, thedelivery latency
of apacket cannot be influenced by a subsequently arriv-
ing packet of equal or lower priority. And, theelimination
of the shared | P queue greatly reduces the likelihood that
a packet is delayed or dropped because traffic destined
for adifferent socket has exhausted shared resources.

Finally, CPU time spent in receiver protocol processing
is charged to the application process that receives the
traffic. This is important since the recent CPU usage
of a process influences the priority that the scheduler
assigns aprocess. In particular, it ensures fairnessin the
case where application processes receive high volumes
of network traffic.

Early demultiplexing—a key component of LRP's
design—has been used in many systems to support
application-specific network protocols[11, 23], to avoid
data copying [6, 21], and to preserve network quality-
of-service guarantees for real-time communication [10].
Demultiplexing in the network adaptor and multiple NI
channel s have been used to implement |ow-latency, high-
bandwidth, user-level communication [1, 5]. Protocol
processing by user-level threads at application priority
has been used in user-level network subsystem imple-
mentations [10, 11, 23]. What is new in LRP's design
is (1) the lazy, delayed processing of incoming network
packets, and (2) the combination and application of the
above techniques to provide stability, fairness, and in-
creased throughput under high load. A full discussion of
related work is given in Section 5.

It isimportant to note that the two key techniques used
in LRP—Ilazy protocol processing at the priority of the
receiver, and early demultiplexing—are both necessary
to achieve stability and fairness under overload. Lazy
protocol processing trivialy depends on early demulti-
plexing. To see this, observe that the receiver process of
an incoming packet must be known to determinethetime
and priority at which the packet should be processed.

Conversdly, early demultiplexing by itself is not suf-
ficient to provide stability and fairness under overload.

Consider a system that combines the traditional eager
protocol processing with early demultiplexing. Packets
aredropped immediately in casetheir destination socket’s
receive queue is full. One would expect this system to
remain stable under overload, since traffic arriving at an
overloaded endpoint is discarded early. Unfortunately,
the system is till defenseless against overload from in-
coming packets that do not contain valid user data. For
example, a flood of control messages or corrupted data
packets can till cause livelock. Thisis because process-
ing of these packets does not result in the placement of
datainthe socket queue, thusdefeating theonly feedback
mechanism that can effect early packet discard.

In addition, early demultiplexing by itself lacksLRP's
benefits of reduced context switching and fair resource
allocation, sinceit shares BSD’sresource accounting and
eager processing model. A quantitative comparison of
both approaches is given in Section 4. We proceed with
adetailed description of LRP' sdesign.

3.1 Socketsand NI Channds

A network interface (NI) channel is a data structure that
is shared between the network interface and the OS ker-
nel. It contains areceiver queue, afree buffer queue, and
associated state variables. The NI determines the desti-
nation socket of any received packets and queues them
on the receive queue of the channel associated with that
socket. Thus, the network interface effectively demulti-
plexes incoming traffic to their destination sockets.
When asocket isboundto alocal port (either implicitly
or explicitly by means of a bind() system call), an NI
channel iscreated. Also, when aconnected stream socket
is created, it is alocated its own NI channel. Multiple
sockets bound to the same UDP multicast group share a
single NI channel. All traffic destined for or originating
from a socket passes through that socket’s NI channel.

3.2 Packet Demultiplexing

LRPrequiresthat the network interfacebe ableto identify
the destination socket of an incoming network packet, so
that the packet can be placed on the correct NI channel.
Ideally, this function should be performed by the NI it-
salf. Incidentally, many commercial high-speed network
adaptors contain an embedded CPU, and the necessary
demultiplexing function can be performed by this CPU.
We cdll this approach LRP with NI demux. In the case
of network adaptorsthat lack the necessary support (e.g.,
inexpensive Fast Ethernet adaptors), the demultiplexing
function can be performed in the network driver'sinter-
rupt handler. We cdl this approach soft demux. Here,
some amount of host interrupt processing is necessary to
demultiplex incoming packets. Fortunately, with current

technol ogy, this overhead appears to be small enough to
gtill maintain good stability under overload. The advan-
tage of this approach is that it will work with any net-
work adaptor, i.e, it is hardware independent. We will
guantitatively evaluate both demultiplexing approaches
in Section 4.

Our demultiplexing functionis self-contained, and has
minimal requirementsonits execution environment (non-
blocking, no dynamic memory allocation, no timers). As
such, it can be readily integrated in a network interface's
firmware, or thedevice shost interrupt handler. Thefunc-
tion can efficiently demultiplex all packetsinthe TCP/IP
protocol family, including I P fragments. In rare cases, an
IP fragment does not contain enough information to a-
low demultiplexingto the correct endpoint. Thishappens
when the fragment containing the transport header of a
fragmented 1P packet does not arrive first. In this case,
the offending packet is placed on a specia NI channel
reserved for this purpose. The IP reassembly function
checks this channel queue when it misses fragments dur-
ing reassembly.

Throughout this paper, whenever reference is made to
actionsperformed by the network interface, we mean that
the action is performed either by the NI processor (in the
case of NI demux), or the host interrupt handler (in the
case of soft demux).

3.3 UDP protocol processing

For unreliable, datagram-oriented protocols like UDP,
network processing proceeds as follows: The transmit
side processing remains largely unchanged. Packets are
processed by UDP and IP code in the context of the
user process performing the send system call. Then, the
resulting I P packet(s) are placed on the interface queue.

Onthereceiving side, thenetwork interface determines
the destination socket of incoming packets and places
them onthe corresponding channel queue. If that queueis
full, the packet is discarded. If the queue was previously
empty, and a state flag indicates that interrupts are re-
quested for thissocket, the NI generates a host interrupt®.
When auser process calls areceive system call onaUDP
socket, the system checks the associated channel’s re-
ceive queue. If the queue is non-empty, the first packet
is removed; else, the process is blocked waiting for an
interrupt from the NI. After removing a packet from the
receive queue, IP sinput functioniscaled, which will in
turn call UDP'sinput function. Eventually the processed
packet is copied into the application’s buffer. All these
steps are performed in the context of the user process
performing the system call.

There are several thingsto note about the receiver pro-
cessing. First, protocol processing for a packet does not

6with soft demux, ahost interrupt alwaysoccursupon packet arrival.

occur until the application is waiting for the packet, the
packet hasarrived, and theapplicationisscheduledtorun.
Asaresult, one might expect reduced context switching
and increased memory access locality. Second, when the
rate of incoming packets exceeds therate at which there-
ceiving application can consume the packets, the channel
receive queuefills, causing the network interfaceto drop
packets. This dropping occurs before significant host re-
sources have been invested in the packet. As a result,
the system has good overload behavior: As the offered
rate of incoming traffic approaches the capacity of the
server, the throughput reaches its maximum and stays at
its maximum even if the offered rate increases further’.

It is important to redlize that LRP does not increase
the latency of UDP packets. The only condition under
which the delivery delay of a UDP packet could increase
under LRP is when a host CPU isidle between the time
of arrival of the packet and the invocation of the receive
system call that will deliver the packet to the application.
This case can occur on multiprocessor machines, and on
auni processor when the only runnabl e application blocks
onanl/O operation (e.g., disk) beforeinvoking thereceive
system call. To eliminate this possibility, an otherwise
idle CPU should always perform protocol processing for
any received packets. This is easily accomplished by
meansof akernel thread with minimal priority that checks
NI channels and performs protocol processing for any
gueued UDP packets.

34 TCP protocol processing

Protocol processing is dightly more complex for a re-
liable, flow-controlled protocol such as TCP. Asin the
origina architecture, data written by an application is
gueued in the socket queue. Some data may be trans-
mitted immediately in the context of the user process
performing the send system cal. The remaining data
istransmitted in response to arriving acknowledgments,
and possibly in response to timeouts.

The main difference between UDP and TCP process-
ing in the LRP architecture is that receiver processing
cannot be performed only in the context of areceive sys-
tem call, due to the semantics of TCP. Because TCP is
flow controlled, transmission of data is paced by the re-
ceiver via acknowledgments. Achieving high network
utilization and throughput requires timely processing of
incoming acknowledgments. If recelver processing were
performed only in the context of receive system calls,
then at most one TCP congestion window of data could
be transmitted between successive receive system cals,
resulting in poor performance for many applications.

7With soft demux, the throughput diminishes slightly as the offered
load increases, due to the demultiplexing overhead.

The solutionisto perform receiver processing for TCP
sockets asynchronously when required. Packets arriving
on TCP connections can thus be processed even when
the application process is not blocked on a receive sys-
tem call. Unlikein conventional architectures, thisasyn-
chronous protocol processing does not take strict prior-
ity over application processing. Instead, the process-
ing is scheduled at the priority of the application pro-
cess that uses the associated socket, and CPU usage is
charged back to that application®. Under normal condi-
tions, the application has a sufficiently high priority to
ensure timely processing of TCP traffic. If an excessive
amount of traffic arrives at the socket, the application’s
priority will decay as a result of the high CPU usage.
Eventually, the protocol processing can no longer keep
up with the offered load, causing the channdl receiver
gueuetofill and packetsto be dropped by theNI. In addi-
tion, protocol processing isdisabled for listening sockets
that have exceeded their listen backlog limit, thus caus-
ing the discard of further SYN packets at the NI channel
gueue. Asshown in Section 4, TCP socketsenjoy similar
overload behavior and traffic separation as UDP sockets
under LRP.

There are several ways of implementing asynchronous
protocol processing (APP). In systems that support (ker-
nel) threads(i.e., virtually all modern operating systems),
an extra thread can be associated with application pro-
cesses that use stream (TCP) sockets. This thread is
scheduled at its process's priority and its CPU usage is
charged to its process. Since protocol processing always
runs to completion, no state needs to be retained be-
tween activations. Therefore, it isnot necessary to assign
a private runtime stack to the APP thread; a single per
CPU stack can be used instead. The resulting per-process
space overhead of APPis onethread control block. This
overhead can be further reduced through the use of con-
tinuations[3]. The exact choice of amechanism for APP
greatly depends on the facilities available in a particular
UNIX kerndl. In our current prototype implementation,
akerne processis dedicated to TCP processing.

3.5 Other protocol processing

Processing for certain network packets cannot be directly
attributed to any application process. Inthe TCP/IP suite,
this includes processing of some ARP, RARP, ICMP
packets, and | P packet forwarding. In LRP, thisprocess-
ing ischarged to daemon processes that act as proxiesfor
aparticular protocol. These daemons have an associated
NI channel, and packets for such protocols are demul-
tiplexed directly onto the corresponding channdl. For

8In UNIX, more than one process can wait to read from a socket.
In this case, the process with the highest priority performsthe protocol
processing.

example, an IP forwarding daemon is charged for CPU
time spent on forwarding | P packets, and its priority con-
trols resources spent on IP forwarding®. The IP daemon
competes with other processes for CPU time.

4 Performance

Inthissection, we present experiments designed to eval u-
atetheeffectiveness of the L RP network subsystem archi-
tecture. We start with a description of the experimental
setup and the prototype implementation, and proceed to
present the results of various experiments.

4.1 Experimental Setup

All experiments were performed on Sun Microsystems
SPARCgtation 20 model 61 workstations (60MHz Su-
perSPARC+, 36KB L1, IMB L2, SPECint92 98.2). The
workstationsare equipped with 32MB of memory and run
Sun0S4.1.3_UL. A 155 Mbit/sATM loca area network
connects the workstations, using FORE Systems SBA-
200 network adaptors. These network adaptors include
an Intel 1960 processor that performs cell fragmentation
and reassembly of protocol data units (PDUs). Note that
LRP does not depend on a specific network adaptor or
ATM networks. SOFT-LRP can be used with any net-
work and NI.

The LRParchitecturewasimplemented asfollows. We
modified the TCP/UDP/I P network subsystem that comes
withthe 4.4 BSD-Litedistribution[24] to optionally im-
plement LRP. The resulting code was then downloaded
into the SunOS kernel as a loadable kernel module and
attached to the socket layer as a new protocol family
(PF_LRP). A custom device driver was devel oped for the
FORE network adaptor. The 4.4 BSD-L ite networking
subsystem was used because of itsperformance and avail -
ability in sourceform. (Wedid not have access to SunOS
sourcecode.) The4.4 BSD networking code was dlightly
modified to work with SunOS mbufs. At the time of
thiswriting, the prototype implementation uses a kernel
processto perform asynchronous protocol processing for
TCP.

Since we were unable to obtain source code for the
SBA-200 firmware, we could not integrate our own de-
multiplexing function in this network adaptor. However,
we know enough about the interface's architecture to be
confident that the function could be easily integrated,
given the source code. To evaluate packet demultiplex-
ing in the network adaptor (NI demux), we used instead
the SBA-200firmware developed by Cornell University’s

9QoS attributes or IPv6 flows could be used in an LRP based |P
gateway to provide more fine-grained resource control.

U-Net project [1]. This firmware performs demultiplex-
ing based on the ATM virtual circuit identifier (VCI). A
signaling scheme was used that ensures that a separate
ATM VCI is assigned for traffic terminating or origi-
nating at each socket. The resulting implementation of
NI-LRPisfully functional.

4.2 Experimental Results

All experiments were performed on a private ATM net-
work between the SPARCstations. The machines were
running in multiuser mode, but were not shared by other
users.

The first experiment is a simple test to measure UDP
latency and throughput, and TCPthroughput. Its purpose
is to demonstrate that the LRP architecture is competi-
tive with traditiona network subsystem implementations
in term of these basic performance criteria. Moreover,
we include the results for an unmodified SunOS kernel
with the Fore ATM device driver for comparison. La
tency was measured by ping-ponging a 1-byte message
between two workstations 10,000 times, measuring the
elapsed time and dividing to obtain round-trip latency.
UDP throughput was measured using a ssimple diding-
window protocol (UDP checksumming was disabled.)
TCPthroughput was measured by transferring 24 Mbytes
of data, with the socket send and receive buffers set to 32
KByte. Table 1 shows the results.

The numbersclearly demonstratethat L RP sbasic per-
formance is comparable with the unmodified BSD sys-
tem from which it was derived. That is, LRP'simproved
overload behavior does not come at the cost of low-load
performance. Furthermore, both BSD and LRP with our
device driver perform significantly better than SunOS
with the Fore ATM driver in terms of latency and UDP
bandwidth. This is due to performance problems with
the Fore driver, asdiscussed in detail in[1].

SunOS exhibits a performance anomaly that causes
its base round-trip latency—as measured on otherwise
idle machines—to drop by almost 300 psecs, when a
compute-bound background process is running on both
the client and the server machine. We have observed this
effect in many different tests with SunOS 4.1.3_.U1 on
the SPARCstation 20. The results appear to be con-
sistent with our theory that the cost of dispatching a
hardware/software interrupt and/or the receiver process
in SUnOS depends on whether the machine is executing
the idle loop or a user process at the time a message ar-
rives from the network. Without access to source code,
we were unable to pinpoint the source of thisanomaly.

Since our modified systems (4.4BSD, NI-LRP, SOFT-
LRP) are al based on SunOS, they were equally affected
by thisanomaly. Apart from affecting thebase round-trip
latency, the anomaly can perturb the results of tests with

varying rates and concurrency of network traffic, since
these factors influence the likelihood that an incoming
packet interrupts a user process. To eiminate this vari-
able, some of the experiments described below were run
with low-priority, compute-bound processes running in
the background, to ensure that incoming packets never
interrupt the idle loop.

The next experiment was designed to test the behavior
of the LRP architecture under overload. In thistest, a
client process sends short (14 byte) UDP packets to a
server process on another machine at a fixed rate. The
server process receives the packets and discards them
immediately. Figure 3 plots the rate a which packets
are received and consumed by the server process as a
function of therate at which the client transmits packets.

Withtheconventional 4.4 BSD network subsystem, the
throughput increases with the offered load up to a max-
imum of 7400 pkts/sec. As the offered load increases
further, the throughput of the system decreases, until
the system approaches livelock at approximately 20,000
pkts/sec. With NI-LRP, on the other hand, throughput
increases up to the maximum of 11,000 pkts/sec and re-
mains at that rate as the offered load increases further.
This confirms the effectiveness of NI-LRP's |oad shed-
ding in the network interface, before any host resources
have been invested in handling excess traffic. Instrumen-
tation showsthat thedlight dropin NI-LRP sdelivery rate
beyond 19,000 pkts/sec is actualy due to areduction in
the delivery rate of our ATM network, most likely caused
by congestion-related phenomenain either the switch or
the network interfaces.

SOFT-LRP refers to the case where demultiplexing
is performed in the host’s interrupt handler (soft de-
mux). The throughput peaks at 9760 pkts/sec, but di-
minishes dightly with increasing rate due to the over-
head of demultiplexing packets in the host’s interrupt
handler. This confirms that, while NI-LRP eiminates
the possibility of livelock, SOFT-LRP merely postpones
itsarrival. However, on our experimental ATM network
hardware/software platform, we have been unableto gen-
erate high enough packet rates to cause livelock in the
SOFT-LRP kerndl, even when using an in-kernel packet
source on the sender.

For comparison, we have also measured the over-
load behavior of akernel with early demultiplexing only
(Early-Demux). The system performs demultiplexingin
the interrupt handler (as in SOFT-LRP), drops packets
whose destination socket’s receiver queue is full, and
otherwise schedules a software interrupt to process the
packet. Due to the early demultiplexing, UDP's PCB
lookup was bypassed, as in the LRP kernels. The sys-
tem displaysimproved stability under overload compared
withBSD, aresult of early packet discard. Therate of de-
clineunder overload is comparable to that of SOFT-LRP,

System round-trip latency | UDP throughput | TCP throughput

(psecs) (Mbps) (Mbps)
SunOsS, Fore driver 1006 64 63
4.4BSD 855 82 69
LRP (NI Demux) 840 92 67
LRP (Soft Demux) 864 86 66

Table 1: Throughput and Latency

Rate Delivered to Application (pkts/sec)

12000 T T T

10000 - NI-LRP <— -
SOFT-LRP —+—

8000 4.4 BSD & _

Early-Demux -x- - 4

6000
4000

2000

Offered

10000

15000 20000

Rate (pkts/sec)

Figure 3: Throughput versus offered load

which is consistent with their use of the same demul-
tiplexing mechanism. However, the throughput of the
Early-Demux kernd is only between 40-65% of SOFT-
LRP sthroughput across the overload region.

Both variants of LRP display significantly better
throughput than both the conventiona 4.4 BSD system,
and the Early-Demux kernel. Themaximal delivered rate
of NI-LRPis51% and that of SOFT-LRP is 32% higher
than BSD’s maximal rate (11163 vs. 9760 vs. 7380
pkts/sec). Note that the throughput with SOFT-LRP at
themaximal offered rateiswithin12% of BSD’smaximal
throughput.

In order to understand the reasons for LRP's through-
put gains, we instrumented the kernels to capture addi-
tional information. It was determined that the Maximum
Loss Free Recelve Rate (MLFRR) of SOFT-LRP ex-
ceeded that of 4.4BSD by 44% (9210 vs. 6380 pkts/sec).
4.4BSD and LRP drop packets at the socket queue or NI
channel queue, respectively, at offered rates beyond their
MLFRR. 4.4BSD additionally starts to drop packets at
the IP queue at offered ratesin excess of 15,000 pkts/sec.
No packets were dropped due to lack of mbufs.

Obvioudly, early packet discard does not play a role

in any performance differences at the MLFRR. With the
exception of demultiplexing code (early demux in LRP
versus PCB lookupin BSD) and differencesin the device
driver code, dl four kernels execute the same 4.4BSD
networking code. Moreover, the device driver and de-
multiplexing code used in Early-Demux and SOFT-LRP
are identical, eliminating these factors as potential con-
tributors to LRP's throughput gains. This suggests that
the performance gains in LRP must be due in large part
to factors such as reduced context switching, software
interrupt dispatch, and improved memory access locality.

Our next experiment measures the latency that aclient
experiences when contacting a server process on a ma-
chinewith high network load. The client, running on ma-
chine A, ping-pongs a short UDP message with a server
process (ping-pong server) running on machine B. At the
same time, machine C transmits UDP packets at a fixed
rateto aseparate server process (blast server) on machine
B, which discardsthepacketsupon arrival. Figure4 plots
theround-triplatency experienced by the client asafunc-
tion of the rate at which packets are transmitted from ma-
chine C to the blast server (background load). To avoid
the abovementioned performance anomaly in SunOS, the

Round-trip Latency (microseconds)

2500
2000 - 4.4 BSD ©—
SOFT-LRP —+—
NI-LRP &—

1500

1000

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Background Traffic Rate (pkts/sec)

Figure 4: Latency with concurrent load

machines involved in the ping-pong exchange were each
running a low-priority (nice +20) background process
executing an infinite loop.

In dl three systems, the measured latency varies with
thebackground trafficrate. Thisvariationiscaused by the
arrival of background traffic packets during the software
processing of aping-pong packet onthereceiver. Arrivals
of background traffic delay the processing of the request
and/or the transmission of the response message, thus
causing an increase in the round-trip delay. The mag-
nitude of this delay is determined by two factors: The
rate of arrivals, and the length of theinterruptions caused
by each arrival. This length of interruptions consists of
thefixed interrupt processing time (hardware interruptin
LRP, hardware plus software interrupt in BSD), plus the
optional time for scheduling of the blast server, and de-
livery of the message. Thislast component only occurs
when the blast server’s priority exceeds that of the ping-
pong server, i.e, it is afunction of SunOS's scheduling
policy.

Instrumentation and modeling confirmed that the two
main factors shaping the graphs are (1) the length of
the fixed interrupt processing and (2) the scheduling-
dependent overhead of delivering messages to the blast
receiver. Thefixed interrupt overhead causes anon-linear
increaseinthelatency asthebackgroundtrafficrises. Due
to the large overhead (hardware plus software interrupt,
including protocol processing, approximately 60usecs),
the effect is most pronounced in 4.4BSD. SOFT-LRP's
reduced interrupt overhead (hardware interrupt, includ-
ing demux, approx. 25usecs), resultsin only a gradua
increase. With NI-LRP (hardwareinterrupt with minimal

processing), thiseffect is barely noticeable.

The second factor leads to an additional increase in
latency at background traffic rates up to 7000 pkts/sec.
The UNIX scheduler assigns priorities based on a pro-
cess's recent CPU usage. As a result, it tends to favor
a process that had been waiting for the arrival of a net-
work packet, over the process that was interrupted by the
packet’sarrival. At low rates, the blast receiver isaways
blocked when a blast packet arrives. If the arrival in-
terrupts the ping-pong server, the scheduler will almost
always give the CPU to the blast receiver, causing a sub-
stantial delay of the ping-pong message. At rates around
6000 pkts/sec, the blast receiver is nearing saturation,
thus turning compute-bound. Asaresult, its priority de-
creases, and the scheduler now preferentially returns the
CPU to the interrupted ping-pong server immediately,
eliminating this effect at high rates.

The additiona delay caused by context switchesto the
blast server is much stronger in BSD as in the two LRP
systems (1020 vs. 750usecs pesk). Thisis a caused by
the mis-accounting of network processingin BSD. In that
system, protocol processing of blast messages that arrive
during the processing of a ping-pong message is charged
to the ping-pong server process. This depletes the prior-
ity of the ping-pong server, and increases the likelihood
that the scheduler decides to assign the CPU to the blast
server upon arrival of amessage. Note that in a system
that supportsfixed-priority scheduling (e.g., Solaris), the
influence of scheduling could be eliminated by assign-
ing the ping-pong server statically highest priority. The
result isneverthelessinteresting in that it displaysthe ef-
fect of CPU mis-accounting on latency in a system with

RPC System | Worker elapsed Server
time (secs) | (RPCs/sec)

Fast 4.4BSD 49.7 3120
SO-LRP 38.7 3133

NI-LRP 34.6 3410

Medium | 4.4BSD 47.1 2712
SO-LRP 379 2759

NI-LRP 34.1 2783

Slow 4.4BSD 439 2045
SO-LRP 385 2134

NI-LRP 35.7 2208

Table 2: Synthetic RPC Server Workload

a dynamic scheduling policy.

With BSD, packet dropping a the IP queue makes
latency measurements impossible at rates beyond 15,000
pkts/sec. IntheLRP systems, no dropped latency packets
were observed, which is dueto LRP straffic separation.

Our next experiment attemptsto more closely model a
mix of workloadstypical for network servers. Three pro-
cesses run on a server machine. The first server process,
caled the worker, performs a memory-bound computa-
tioninresponsetoan RPC call fromaclient. Thiscompu-
tation requires approximately 11.5 seconds of CPU time
and has a memory working set that covers a significant
fraction (35%) of the second level cache. The remaining
two server processes perform short computationsin re-
sponse to RPC requests. A client on the other machine
sends an RPC request to the worker process. While the
worker RPC isoutstanding, theclient sends RPC requests
to the remaining server processes in such away that (1)
each server has a number of outstanding RPC requests
at al times, and (2) the requests are distributed near uni-
formly intime. (1) ensuresthat the RPC server processes
never block on receiving from the network'®. The pur-
pose of (2) isto make sure thereisno correl ation between
the scheduling of the server processes, and the times at
which requests are issued by the client. Note that in this
test, theclients generate requests at the maximal through-
put rate of the server. That is, the server is not operating
under conditions of overload. The RPC facility we used
isbased on UDP datagrams.

Table 2 showstheresults of thistest. Thetotal elapsed
time for completion of the RPC to the worker process
is shown in the third column. The rightmost column
shows the rate at which the servers process RPCs, con-
currently with each other and theworker process. “Fast”,
“Medium” and “Slow” correspond to tests with differ-
ent amounts of per-request computations performed in

OThisis to ensure that the UNIX scheduler does not consider these
server processes 1/0-bound, which would tend to give them higher
scheduling priority.

the two RPC server processes. In each of the tests, the
server’sthroughput (considering rate of RPCs completed
and worker compl etion time) islowest with BSD, higher
with SOFT-LRP (SO-LRP), and highest with NI-LRP. In
the“Medium” case, where the RPC rates are within 3%
for each of the systems, the worker compl etion timewith
SOFT-LRP is 20% lower, and with NI-LRP 28% |ower
than with BSD. In the “Fast” case, NI-LRP achieves an
almost 10% higher RPC rate and a 30% lower worker
completiontimethan BSD. Thisconfirmsthat L RP-based
servers have increased throughput under high load. Note
that packet discard is not a factor in this test, since the
system is not operating under overload. Therefore, re-
duced context switching and improved locality must be
responsiblefor the higher throughput with LRP.

Furthermore, the LRP systems maintain a fair alloca
tion of CPU resources under high load. With SOFT-LRP
and NI-LRP, the worker process's CPU share (CPU time
/ elapsed completion time) ranges from 29% to 33%,
whichisvery closeto theidea 1/3 of the available CPU,
compared to 23%—26% with BSD. This demonstratesthe
effect of mis-accounting in BSD, which tends to favor
processes that perform intensive network communica
tion over those that do not. Observe that this effect is
digtinct from, and independent of, the UNIX scheduler’s
tendency to favor 1/O-bound processes.

Finally, we conducted a set of experiments with area
server application. We configured a machine running a
SOFT-LRP kerndl as a WWW server, using the NCSA
httpd server software, revision 1.5.1. A set of informal
experiments show that the server is dramatically more
stable than a BSD based server under overload. To test
this, Mosaic clients were contacting the server, while a
test program running on a third machine was sending
packets to a separate port on the server machine at a
high rate (10,000 packets/sec). An HTTP server based
on 4.4 BSD freezes completely under these conditions,
i.e, it no longer respondsto any HTTP requests, and the
server console appears dead. With LRP and soft demux,
the server responds to HT TP requests and the console is
responsive, although some increase in response time is
noticesble.

The results of a quantitative experiment are shown in
Figure 5. In this test, eight HTTP clients on a single
machine continually request HTTP transfers from the
server. The requested document is approximately 1300
byteslong. The eight clients saturate the HTTP server.
A second client machine sends fake TCP connection es-
tablishment requests (SYN packets) to a dummy server
running on the server machine that aso runs the HTTP
server. No connections are ever established as a result
of these reguests, TCP on the server side discards most
of them once the dummy server’s listen backlog is ex-
ceeded. To avoid known performance problems with

HTTP transfers per second

180

160 -
140
120
100
80
60
40
20
0 !

4.4 BSD ©— n
SOFT-LRP —+—

0 5000

10000 15000 20000

SYN packet rate (pkts/sec)

Figure5: HTTP Server Throughput

BSD’s PCB lookup function in HTTP servers [16], the
TCPTIME_WAIT period was set to 500ms, instead of the
default 30 seconds. The test were run for long periods
of timeto ensure steady-state behavior. Furthermore, the
LRP system performed aredundant PCB lookupto elim-
inate any bias due to the greater efficiency of the early
demultiplexing in LRP. Note that the results of this test
were not affected by the TCP bug described in RFC 1948.

The graphs show the number of HTTP transfers com-
pleted by al clients, asafunction of therate of SY N pack-
etstothedummy server, for 4.4 BSD and SOFT-LRP. The
throughput of the 4.4 BSD-based HTTP server sharply
drops as the rate of background requests increases, en-
tering livelock at close to 10,000 SYN pkts/sec. The
reason isthat BSD’s processing of SYN packets in soft-
ware interrupt context starves the httpd server processes
for CPU resources. Additionally, at rates above 6400
SYN pkts/sec, packets are dropped at BSD’s shared 1P
gueue. This leads to the loss of both TCP connection
requests fromreal HTTP client and traffic on established
TCP connections. Lost TCP connection requests cause
TCP on the client side to back off exponentialy. Lost
traffic on established connections cause TCP to closeits
congestion window. However, the dominant factor in
BSD’s throughput decline appears to be the starvation of
SErver processes.

With LRP, the throughput decreases relatively slowly.
At arate of 20,000 background requests per second, the
LRP server still operates at almost 50% of its maximal
throughput*. With LRP, traffic on each established TCP

LINotethat a(slow) T1link is capable of carrying almost 5000 SYN
packetsper second. Withtheemerging faster network links, routers, and

connection, HTTP connection requests, and dummy re-
guests are all demultiplexed onto separate NI channels
and do not interfere. As a result, traffic to the dummy
server does not cause thelossof HTTP traffic at all. Fur-
thermore, most dummy SY N packets are discarded early
at the NI channel queue. The predominant cause of the
declinein the SOFT-L RP based server’ sthroughputisthe
overhead of software demultiplexing.

It should be noted that, independent of the use of LRP,
an Internet server must limit the number of active con-
nectionsto maintain stability. A related issueishow well
LRP works with a large number of established connec-
tions, as has been observed on busy Internet servers[15].
SOFT-LRP uses one extrambuf compared to 4.4BSD for
each established TCP connection, so SOFT-LRP should
scale well to large numbers of active connections. NI-
LRP, on the other hand, dedicates resources on the net-
work interface for each endpoint and isnot likely to scale
to thousands of allocated NI channels. However, most
of the established connections on a busy web server are
inthe TIME_WAIT state. This can be exploited by deal-
locating an NI channel as soon as the associated TCP
connection enters the TIME_WAIT state. Any subse-
quently arriving packets on this connection are queued at
a special NI channel which is checked by TCP's slow-
timo code. Since such traffic israre, this does not affect
NI-LRP sbehavior in the normal case.

asufficiently large user community, a server could easily be subjected
to such rates.

5 Related Work

Experiences with DEC’s 1994 CadliforniaElection HTTP
server reveal many of the problemsof aconventiona net-
work subsystem architecture when used as abusy HTTP
server [15]. Mogul [16] suggests that novel OS support
may be required to satisfy the needs of busy servers.

Mogul and Ramakrishnan [17] devise and evaluate a
set of techniques for improving the overload behavior
of an interrupt-driven network architecture. These tech-
niques avoid receiver livelock by temporarily disabling
hardware interrupts and using polling under conditions
of overload. Disabling interruptslimitsthe interrupt rate
and causes early packet discard by the network interface.
Polling is used to ensure progress by fairly alocating
resources among receive and transmit processing, and
multipleinterfaces.

The overload stability of their system appears to be
comparable to that of NI-LRP, and it has an advan-
tage over SOFT-LRP in that it eliminates—rather than
postpones—livelock. On the other hand, their system
does not achieve traffic separation, and therefore drops
packets irrespective of their destination during periods
of overload. Their system does not attempt to charge
resources spent in network processing to the receiving
application, and it does not attempt to reduce context
switching by processing packets lazily. A direct quanti-
tative comparison between LRP and their system is dif-
ficult, because of differing hardware/software environ-
ments and benchmarks.

Many researchers have noted the importance of early
demultiplexing to high-performance networking. De-
multiplexing immediately at the network interface point
is necessary for maintaining network quality of service
(QoS) [22], it enables user-level implementations of net-
work subsystems [2, 7, 11, 21, 23], it facilitates copy-
avoidance by alowing smart placement of datain main
memory [1, 2, 5, 6], and it allows proper resource ac-
counting in the network subsystem [14, 19]. This paper
argues that early demultiplexing aso facilitates fairness
and stability of network subsystems under conditions of
overload. LRP uses early demultiplexing as a key com-
ponent of its architecture.

Packet filters[12, 18, 25] are mechanisms that imple-
ment early demultiplexing without sacrificing layering
and modularity in the network subsystem. In the most
recent incarnations of packet filters, dynamic code gen-
eration is used to eliminate the overhead of the earlier
interpreted versions [8].

Architecturally, the design of LRP is related to user-
level network subsystems. Unlike LRP, the main goa
of these prior worksisto achieve low communication la
tency and high bandwidth by removing protection bound-
aries from the critical send/receive path, and/or by en-

abling application-specific customization of protocol ser-
vices. To the best of our knowledge, the behavior of
user-level network subsystems under overload has not
been studied.

U-Net [1] and Application Device Channels (ADC)
[4, 5] share with NI-LRP the approach of using the
network interface to demultiplex incoming packets and
placing them on queues associated with communication
endpoints. With U-Net and ADCs, the endpoint queues
are mapped into the address space of application pro-
cesses. More conventiona user-level networking subsys-
tems[7, 11, 23] share with SOFT-LRP the early demulti-
plexing of incoming packets by the OS kernel (software).
Demultiplexed packets are then handed to the appropri-
ate application process using an upcal. In all user-level
network subsystems, protocol processing is performed
by user-level threads. Therefore, network processing re-
sources are charged to the application process and sched-
uled at application priority.

Based on the combination of early demultiplexing and
protocol processing by user-level threads, user-level net-
work subsystems can be in principle expected to display
improved overload stability. Since user-level threads are
normally prioritized to compete with other user and ker-
nel threads, protocol processing cannot starve other ap-
plicationsas in BSD. A user-level network subsystem’s
resilience to livelock depends then on the overhead of
packet demultiplexing on the host. When demultiplexing
and packet discard are performed by the NI asin [1, 5],
the system should be free of livelock. When these tasks
are performed by the OS kernel asin[7, 11, 23], therate
at which the system experiences livelock depends on the
overhead of packet demultiplexing (as in SOFT-LRP).
Since the systems described in the literature use inter-
preted packet filters for demultiplexing, the overhead is
likely to be high, and livelock protection poor. User-
level network subsystems share with LRP the improved
fairness in alocating CPU resources, because protocol
processing occurs in the context of the receiver process.

User-level network subsystems alow applications to
use application-specific protocols on top of the raw net-
work interface. The performance (i.e, latency, through-
put) of such protocols under overload depends strongly
ontheir implementation’sprocessing model. LRP' stech-
nigque of delaying packet processing until the application
requests the associated data can be applied to such proto-
cols. The following discussion is restricted to user-level
implementations of TCP/IP.

The user-level implementations of TCP/IP described
in the literature share with the original BSD architecture
the eager processing model. That is, a dedicated user
thread (which plays the role of the BSD software inter-
rupt) is scheduled as soon as a packet arrives, regardless
of whether or not the applicationiswaiting for the packet.

Asin BSD, this eager processing can lead to additional
context switching, when compared to LRP.

The single shared | P queue in BSD isreplaced with a
per-application | P queue that is shared only among mul-
tiple sockets in a single application. As a result, the
system ensures traffic separation among traffic destined
for different applications, but not necessarily among traf-
fic destined for different sockets within a single appli-
cation. Depending on the thread scheduling policy and
the relative priority of the dedicated protocol processing
thread(s) and application thread(s), it is possible that in-
coming traffic can cause an application processto enter a
livel ock state, where the network library thread consumes
all CPU resources allocated to the application, with no
CPU time left for the application threads. Traffic sepa-
ration and livelock protection within an application pro-
cess are important, for instance, in single-processHTTP
servers.

Finally, UNIX based user-level TCP/IP implementa
tionsrevert to conventional network processing under cer-
tain conditions (e.g., whenever a socket is shared among
multiple processes.) In this case, the system’s overload
behavior issimilar tothan that of astandard BSD system.

In summary, we expect that user-level network
implementations—whiledesigned with different goalsin
mind—share some but not all of LRP's benefits with re-
spect to overload. This paper identifies and evaluates
techniques for stability, fairness, and performance under
overload, independent of the placement of the network
subsystem (application process, network server, or ker-
nel). We fully expect that LRP s design principlescan be
applied to improve the overload behavior of kernelized,
server-based, and user-level implementations of network
subsystems.

Livelock and other negative effects of BSD’sinterrupt-
driven network processing model can be viewed as an
instance of a priority inversion problem. The rea-time
OS community has developed techniques for avoiding
priority inversion in communication systems in order to
provide quality of service guarantees for rea-time data
streams [9, 10]. RT-Mach’s network subsystem [10],
which is based on the Mach user-level network imple-
mentation [11], performs early demultiplexing, and then
hands incoming packets for processing to a rea-time
thread with a priority and resource reservation appropri-
atefor thepacket’sstream. LikeLRP, the system employs
early demultiplexing, schedules protocol processing a a
priority appropriateto the data' s receiver, and chargesre-
sourcestothereceiver. UnlikeL RP, it does not attempt to
delay protocol processing until thedataisrequested by the
application. Moreover, the overhead of the Mach packet
filter is likely to make RT-Mach vulnerable to overload.
We fully expect that L RP, when combined with real-time
thread scheduling, is applicable to real-time networking,

without requiring user-level protocols.

6 Conclusion

This paper introduces a novel network subsystem archi-
tecture suitablefor network server systems. Performance
evaluations indicate that under conditions of high load,
the architecture offers increased throughput, stable over-
load behavior, and reduced interference among traffic
destined for separate communication endpoints.

More specificaly, LRP's lazy, delayed processing of
received network packets reduces context switching and
canresult inincreased server throughput under highload.
LRP scombination of early packet demultiplexing, early
packet discard, and the processing of incoming network
packets at the receiver’s priority provide improved traffic
separation and stability under overload.

A public release of our SunOS-based prototype is
planned for the Fall of 1996. The source code, along
with additional technical information can be found at
“http://www.cs.rice.edu/CS/Systems/LRP/”.

Acknowledgments

Weareindebtedto our OSDI shepherd Jeff Mogul and the
anonymous reviewers, whose comments have helped to
improve this paper. Also, thanksto Thorsten von Eicken
and the U-Net group at Cornell for making the U-Net NI
firmware available to us.

References

[1] A. Bas, V. Buch, W. Vogels, and T. von Eicken.
U-Net: A user-level network interface for para-
lel and distributed computing. In Proceedings of
the Fifteenth ACM Symposium on Operating Sys-
tem Principles, pages 40-53, 1995.

[2] G. Buzzard, D. Jacobson, S. Marovich, and
J. Wilkes. Hamlyn: A high-performance network
interface with sender-based memory management.
In Proceedings of the Hot Interconnects 111 Sympo-
sium, Palo Alto, CA, Aug. 1995.

[3] R.P Draves, B.N. Bershad, R. F. Rashid, and R. W.
Dean. Using continuations to implement thread
management and communication in operating sys-
tems. In Proceedings of 13th ACM Symposium on
Operating Systems Principles, pages 122—36. Asso-
ciationfor Computing Machinery SIGOPS, October
1991.

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

P. Druschel. Operating systems support for high-
speed networking. Technical Report TR 94-24, De-
partment of Computer Science, University of Ari-
zona, Oct. 1994.

P. Druschel, B. S. Davie, and L. L. Peterson. Ex-
periences with a high-speed network adaptor: A
software perspective. In Proceedings of the S G-
COMM ' 94 Conference, pages 2-13, London, UK,
Aug. 1994.

P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In Pro-
ceedings of the Fourteenth ACM Symposium on
Operating System Principles, pages 189-202, Dec.
1993.

A. Edwards, G. Watson, J. Lumley, D. Banks,
C. Cdamvokis, and C. Ddton. User-space pro-
tocols deliver high performance to applications on
a low-cost gb/s LAN. In Proceedings of the SG-
COMM’ 94 Conference, pages 1423, London, UK,
Aug. 1994.

D. Engler and M. F. Kaashoek. DPF: Fagt, flexible
message demultiplexing using dynamic code gen-
eration. In Proceedings of the SGCOMM ' 96 Con-
ference, pages 53-59, Palo Alto, CA, Aug. 1996.

K. Jeffay. On Latency Management in Time-Shared
Operating Systems. In Proceedings of the 11th
|EEE Workshop on Real-Time Operating Systems
and Software, pages 86-90, Sesattle, WA, May 1994.

C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar.
Predictable communication protocol processing in
real-time Mach. In the proceedings of IEEE Real-
time Technol ogy and Applications Symposium, June
1996.

C. Maeda and B. N. Bershad. Protocol service
decomposition for high-performance networking.
In Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles, pages 244-255,
1993.

S.McCanneandV. Jacobson. TheBSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the USENI X’ 93 Winter Conference,
pages 259-269, Jan. 1993.

M. K. McKusick, K. Bogtic, M. J. Karels, and J. S.
Quarterman. The Design and | mplementation of the
4.4B3D Operating System. Addison-Wedley Pub-
lishing Company, 1996.

J. C. Mogul. Persona communication, Nov. 1992.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. C.Mogul. Network behavior of abusy web server
and its clients. Technical Report WRL 95/5, DEC
Western Research Laboratory, Palo Alto, CA, 1995.

J. C. Mogul. Operating system support for busy in-
ternet servers. In Proceedings of the Fifth Workshop
on Hot Topicsin Operating Systems (HotOS-V), Or-
cas Island, WA, May 1995.

J. C. Mogul and K. K. Ramakrishnan. Eliminat-
ing receive livelock in an interrupt-driven kernel.
In Proc. of the 1996 Usenix Technical Conference,
pages 99-111, 1996.

J. C. Mogul, R. F. Rashid, and M. J. Accetta. The
packet filter: An efficient mechanism for user-level
network code. In Proceedings of the Eleventh ACM
Symposiumon Operating Systems Principles, pages
39-51, Nov. 1987.

A. B. Montz et a. Scout: A communications-
oriented operating system. Technica Report TR
94-20, Department of Computer Science, Univer-
sity of Arizona, June 1994.

K. K. Ramakrishnan. Scheduling issues for inter-
facing to high speed networks. In Proc. Globe-
com' 92 |EEE Global Telecommunications Confer-
ence, pages 622—626, Orlando, FL, Dec. 1992.

J. M. Smithand C. B. S. Traw. Giving applications
access to Gb/snetworking. | EEE Network, 7(4):44—
52, July 1993.

D. L. Tennenhouse. Layered multiplexing consid-
ered harmful. In H. Rudin and R. Williamson,
editors, Protocols for High-Speed Networks, pages
143-148, Amsterdam, 1989. North-Holland.

C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.
Implementing network protocols at user level. In
Proceedings of the SGCOMM 93 Symposium,
pages 64—73, Sept. 1993.

G. Wright and W. Stevens. TCP/IP Illustrated \ol-
ume 2. Addison-Wedley, Reading, MA, 1995.

M. Yuhara, B. N. Bershad, C. Maeda, and J. E.
Moss. Efficient packet demultiplexing for multi-
ple endpoints and large messages. In Winter 1994
Usenix Conference, pages 153-165, Jan. 1994.

