
Speculative Execution in a Distributed File System

Edmund B. Nightingale, Peter M. Chen, and Jason Flinn
Department of Electrical Engineering and Computer Science

University of Michigan

ABSTRACT
Speculator provides Linux kernel support for speculative exe-
cution. It allows multiple processes to share speculative state
by tracking causal dependencies propagated through inter-
process communication. It guarantees correct execution by
preventing speculative processes from externalizing output,
e.g., sending a network message or writing to the screen,
until the speculations on which that output depends have
proven to be correct. Speculator improves the performance of
distributed file systems by masking I/O latency and increas-
ing I/O throughput. Rather than block during a remote oper-
ation, a file system predicts the operation’s result, then uses
Speculator to checkpoint the state of the calling process and
speculatively continue its execution based on the predicted re-
sult. If the prediction is correct, the checkpoint is discarded;
if it is incorrect, the calling process is restored to the check-
point, and the operation is retried. We have modified the
client, server, and network protocol of two distributed file
systems to use Speculator. For PostMark and Andrew-style
benchmarks, speculative execution results in a factor of 2
performance improvement for NFS over local-area networks
and an order of magnitude improvement over wide-area net-
works. For the same benchmarks, Speculator enables the
Blue File System to provide the consistency of single-copy
file semantics and the safety of synchronous I/O, yet still
outperform current distributed file systems with weaker con-
sistency and safety.

General Terms
Performance, Design

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems; D.4.7 [Operating Systems]: Or-
ganization and Design; D.4.8 [Operating Systems]: Per-
formance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

Keywords
Distributed file systems, speculative execution, causality

1. INTRODUCTION
Distributed file systems often perform substantially worse

than local file systems because they perform synchronous
I/O operations for cache coherence and data safety. File sys-
tems such as AFS [13] and NFS [3] present users with the
abstraction of a single, coherent namespace shared across
multiple clients. Although caching data on local clients im-
proves performance, many file operations still use synchro-
nous message exchanges between client and server to main-
tain cache consistency and protect against client or server
failure. Even over a local-area network, the performance
impact of this communication is substantial. As latency in-
creases due to physical distance, middleboxes, and routing
delays, the performance cost may become prohibitive.

Many distributed file systems weaken consistency and
safety to improve performance. Whereas local file systems
typically guarantee that a process that reads data from a
file will see all modifications previously completed by other
processes, distributed file systems such as AFS and NFS
provide no such guarantee. For example, most NFS imple-
mentations provide close-to-open consistency, which guar-
antees only that a client that opens a file will see modi-
fications made by other clients that have previously closed
the file. Weaker consistency semantics improve performance
by reducing the number of synchronous messages that are
exchanged. Nevertheless, as our results show, even these
weaker semantics are time-consuming.

We demonstrate that, with operating system support for
lightweight checkpointing, speculative execution, and track-
ing of causal interdependencies between processes, distrib-
uted file systems can be fast, safe, and consistent. Rather
than block a process while waiting for the result of a re-
mote communication with a file server, the operating system
checkpoints its state, predicts the result of the communica-
tion, and continues to execute the process speculatively. If
the prediction is correct, the checkpoint is discarded; if it is
false, the application is rolled back to the checkpoint.

Our solution relies on three observations. First, file system
clients can correctly predict the result of many operations.
For instance, consistency checks seldom fail since concurrent
file updates are rare. Second, the time to take a lightweight
checkpoint is often much less than network round-trip time
to the server, so substantial work can be done while waiting
for a remote request to complete. Finally, modern comput-
ers often have spare resources that can be used to execute

191

Modify A
Write

Client 1 Client 2Server

Open BGetattr

Commit

Modify B
Write

Commit

Open CGetattr

Modify A

Client 1 Client 2Server

Modify Bspeculate

Open CGetattr
Open B speculate

Open BGetattr
speculate

Write+Commit

(a) Unmodified NFS (b) Speculative NFS

Figure 1: Example of speculative execution for NFS

processes speculatively. Encouraged by these observations,
and by the many prior successful applications of speculation
in processor design, we have added support for speculative
execution, which we call Speculator, to the Linux kernel.

In our work, the distributed file system controls when
speculations start, succeed, and fail. Speculator provides a
mechanism for correct execution of speculative code. It does
not allow a process that is executing speculatively to exter-
nalize output, e.g., make network transmissions or display
output to the screen, until the speculations on which that
output depends prove to be correct. If a speculative process
tries to execute a potentially unrecoverable operation, e.g.,
it calls the reboot system call, it is blocked until its specu-
lations are resolved. Speculator tracks causal dependencies
between kernel objects in order to share speculative state
among multiple processes. For instance, if a speculative pro-
cess sends a signal to its non-speculative parent, Speculator
checkpoints the parent and marks it as speculative before it
delivers the signal. If a speculation on which the child de-
pends fails, both the child and parent are restored to their
checkpoints (since the parent might not receive the signal
on the correct execution path). Speculator tracks depen-
dencies passed through fork, exit, signals, pipes, fifos, Unix
sockets, and files in local and distributed file systems. All
other forms of IPC currently block the speculative process
until the speculations on which it depends are resolved.

Since speculation is implemented entirely in the operating
system, no application modification is required. Speculative
state is never externally visible. In other words, the seman-
tics of the speculative version of a file system are identical to
the semantics of the non-speculative version; however, the
performance of the speculative version is better.

Results from PostMark and Andrew-style benchmarks
show that Speculator improves the performance of NFS by
more than a factor of 2 over local-area networks; over net-
works with 30 ms of round-trip latency, speculation makes
NFS more than 14 times faster. We have also created a
version of the Blue File System [24] that uses Speculator
to provide single-copy semantics, in which the file consis-
tency seen by two processes sharing a file and running on
two different file clients is identical to the consistency that
they would see if they were running on the same client. In

addition, our version of BlueFS provides synchronous I/O
in which all file modifications are safe on the server’s disk
before an operation is observed to complete. Despite pro-
viding these strong guarantees, BlueFS is 66% faster than
non-speculative NFS over a LAN and more than 11 times
faster with a 30 ms delay.

2. MOTIVATION: SPECULATION IN NFS
Figure 1 illustrates how Speculator improves distributed

file system performance. Two NFS version 3 clients collab-
orate on a shared project that consists of three files: A, B,
and C. At the start of the scenario, each client has up-to-
date copies of all files cached. Client 1 modifies A and B;
client 2 then opens C and B. Client 2 should see the modi-
fied version of B since that file was closed by client 1 before
it was opened by client 2.

When an application closes a file, the Linux 2.4.21 NFSv3
client first sends asynchronous write remote procedure calls
(RPCs) to the server to write back any data for that file
that is dirty in its file cache—these RPCs are necessary to
provide close-to-open consistency. After receiving replies for
all write RPCs, the client sends a synchronous commit RPC
to the server. The server replies only after it has committed
all modifications for that file to disk. The NFS client returns
from the close system call after receiving the commit reply.
The commit RPC provides a safety guarantee, namely that
no file modifications will be lost due to a server crash after
the file has been closed. Thus, a Linux application that
modifies a file in NFS incurs a performance penalty on close
of at least two network round-trips and one synchronous disk
access. Some other operating systems have NFS clients that
do not wait for a commit reply before returning from close—
these clients sacrifice safety, but improve performance since
they block only until replies for all outstanding write RPCs
have been received.

When an NFS client opens a file that it has previously
cached, it issues a getattr RPC to the server. The file at-
tributes returned by the server indicate whether the file has
been modified since it was cached (in which case the cached
copy is discarded and a new copy is fetched). Since the NFS
server is a single point of synchronization, the getattr RPC

192

guarantees that the cached copy is fresh; if another client
had modified and closed the file, the returned attributes
would show the modification. For instance, in Figure 1(a),
when client 2 reads file B, the attributes returned by getattr

indicate that the file was modified. Hence, client 2 discards
its cached copy of file B.

Cache coherence in NFS is time-consuming because a pro-
cess blocks each time a file is closed after being modified or
opened, as well as on directory lookups, permission checks,
and modifications. This cost is magnified many times during
activities such as listing a directory or compiling a program
because each activity invokes several file system operations;
for instance, most applications that show directory listings
fetch the attributes of all files within the directory to display
file types, sizes, or other metadata.

Our speculative version of NFS is shown in Figure 1(b).
Client 1 asynchronously executes write and commit RPCs,
speculating that all modifications will succeed at the server.
Client 2 asynchronously executes the getattr RPCs, specu-
lating that its cached copy of C and B are up-to-date. When
the latter speculation fails, the calling process is rolled back
to the start of the system call that opened B. This system
call is re-executed and a new speculation begins.

Speculation improves file system performance because it
hides latency: multiple file system operations can be per-
formed concurrently, and computation can be overlapped
with I/O. Speculation also improves write throughput. Be-
cause speculation transforms sequential operations issued by
a single thread of control into concurrent operations, it al-
lows the server to group commit such operations. Without
OS support for speculative execution, the system call inter-
face prevents these optimizations. The file system cannot
return to the application until it receives the results of a
remote operation, since that operation might fail.

3. CONDITIONS FOR SUCCESS
We believe that adding support for speculative execution

to a commodity OS kernel will eventually benefit many ap-
plications. However, we have targeted distributed file sys-
tems as the first clients of Speculator because they exhibit
three ideal characteristics:

1. The results of speculative operations are highly
predictable. File system clients cache data in mem-
ory and on disk to improve performance. Due to ever-
increasing memory and disk capacities, today’s work-
stations can cache data for long periods of time. In
the absence of concurrent modifications, cached data
remains valid and can be used to successfully predict
the outcome of remote operations. Speculation is a
form of optimistic concurrency, since a client detects a
conflicting update by another client only when it next
accesses the modified file. Since concurrent updates
are rare in distributed file systems [13], we expect the
vast majority of speculations to succeed. However, our
results show that even when many speculations fail,
speculative file systems still substantially outperform
non-speculative ones.

2. Checkpointing is often faster than remote I/O.
Speculator checkpoints are essentially copy-on-write
forks where the forked child is typically never executed.
The time to take and discard a checkpoint of a small

create speculation (OUT spec id, OUT dependencies);
commit speculation (IN spec id);
fail speculation (IN spec id);

Figure 2: Speculator interface

process is 52 µs; considerably less than the cost of a
disk or network I/O. Although this time is greater for
larger processes (6.3 ms for a 64 MB process), check-
point cost can be amortized across several speculations
by having those speculations share a single process
checkpoint. Thus, there is considerable time available
to execute applications speculatively when they would
normally block on file system operations.

3. Modern computers often have spare resources.
Speculative execution requires CPU cycles, and check-
point storage requires memory. Fortunately, modern
workstations typically have these resources in abun-
dance. Since I/O is increasingly the performance bot-
tleneck in modern computers [25], we can improve ap-
plication performance by using these spare resources
to hide I/O latency and improve I/O throughput.

4. AN INTERFACE FOR SPECULATION
Our design for speculative execution exhibits a separation

of concerns between policy and mechanism. The distrib-
uted file system determines when speculations begin, suc-
ceed, and fail. Speculator provides a lightweight checkpoint
and rollback mechanism that allows speculative process exe-
cution. Speculator ensures that speculative state is never ex-
ternalized or directly observed by non-speculative processes.

Speculator is implemented as part of the core Linux 2.4.21
kernel and consists of roughly 7,500 lines of C source code.
Figure 2 shows Speculator’s interface. A process must be
executing in kernel mode (e.g., within a system call) to use
this interface. To initiate speculative execution, a process
calls create speculation. This function returns a spec id
that uniquely identifies the particular speculation and a
list of prior speculations on which the new speculation de-
pends. Any process may later declare whether that spec-
ulation succeeds or fails by calling commit speculation or
fail speculation with that spec id. This design enables
Speculator to remain ignorant of the particular hypothesis
that underlies each speculation, as well as the semantics
for success and failure. In turn, a Speculator client, e.g.,
a distributed file system, need not concern itself with the
details of how speculative execution is performed.

The next section describes our basic implementation of
speculative execution in the Linux kernel which allows pro-
cesses to execute speculatively in isolation. Section 6 ex-
tends this implementation by allowing multiple processes to
share speculative state. Section 7 describes how distributed
file systems use Speculator.

5. IMPLEMENTING SPECULATION

5.1 Process checkpoint and rollback
Speculator implements checkpointing by performing a

copy-on-write fork of the currently running process. It also
saves the state of any open file descriptors and copies any

193

signals pending for the checkpointed process. In contrast to
a normal fork, the child process is not placed on the run
queue—it is simply a vessel for storing state. If all specu-
lations on which a checkpoint depends prove to be correct,
Speculator discards the checkpoint by reclaiming the kernel
data structures associated with the child process.

If one of the speculations on which a checkpoint depends
fails, Speculator restores the process to the state captured
during the checkpoint. The process that is currently exe-
cuting speculatively, called the failed process, is marked for
termination by setting a flag in its task structure. When
the failed process is next scheduled, Speculator forces it to
exit. Speculator ensures that the failed process performs no
externally visible operations prior to termination.

The process that was forked during the checkpoint, called
the checkpoint process, assumes the identity of the failed
process. Speculator gives the checkpoint process the process
identifier, thread group identifier, and other distinguishing
characteristics of the failed process. It also changes its file
descriptors and pending signals to match the values saved
during the checkpoint. The program counter of the check-
point process is set to the system call entry point, and its
kernel stack pointer is set to the initial kernel stack frame.
Thus, after Speculator places the checkpoint process on the
run queue, the process re-executes the system call that was
being executed when the checkpoint was taken. Since the
checkpoint process steals the identity of the failed process,
this manipulation is hidden from observers outside the ker-
nel; to the user, it appears that the speculative execution
never happened.

5.2 Speculation
Speculator adds two new data structures to the kernel

to track speculative state. A speculation structure is cre-
ated during create speculation to track the set of kernel
objects that depend on the new speculation. An undo log
is associated with each kernel object that has speculative
state—this log is an ordered list of speculative operations
that have modified the object. Each entry in the log con-
tains sufficient information to undo the modifying operation,
as well as references to all new speculative dependencies that
were introduced by the operation. The presence of an en-
try in an object’s undo log indicates that the object will be
rolled back to the state associated with that entry if any of
the referenced speculations fail. We say that a kernel object
depends on all speculations for which references exist in its
undo log. The speculations on which an object depends are
resolved if all speculations commit (in which case, the ob-
ject becomes non-speculative) or if any speculation fails (in
which case, the object is rolled back to a prior state).

When a previously non-speculative process calls create

speculation, Speculator creates a new speculation struc-
ture and an undo log for the calling process. It checkpoints
the calling process as described in the previous section and
inserts an entry containing the checkpoint into its undo log.
The new entry and the new speculation structure refer to
each other. If the speculation fails, the checkpoint is used
to restore the process to its prior state. If the process calls
create speculation again, Speculator creates a new spec-
ulation structure and appends a new entry to the process
undo log. If the previous speculation was caused by a read-
only operation such as a stat on a file in the distributed
file system, no new checkpoint is needed. In this case, the

new undo log entry shares a reference to the checkpoint con-
tained in the previous log entry. If either speculation fails,
the process is rolled back to the common checkpoint. Allow-
ing speculations to share checkpoints improves performance
in the common case where speculations succeed. Of course,
in the uncommon case where the second speculation fails,
the application must re-execute more work than if separate
checkpoints had been taken.

Speculator caps the amount of work unnecessarily re-
executed by taking a new checkpoint if the prior checkpoint
for the process is more than 500 ms old. Speculator also caps
the number of outstanding speculations at 2000 to prevent
speculation from consuming too many system resources. As
we gain more experience with the system, it may also prove
useful to limit specific resources such as the amount of phys-
ical memory used for speculation.

Currently, two operations do not share a common check-
point if the first operation modifies state. For example, if
the first operation is a mkdir in the distributed file system,
a common checkpoint cannot be used since the file server
might make the effects of the mkdir visible to other clients,
then fail the second operation. When the second operation
fails, the client must roll back to the common checkpoint.
Any clients that view the new directory would see incorrect
state if the process that performed the mkdir does not recre-
ate the directory when it re-executes. If necessary, Specu-
lator could allow two mutating operations to share a check-
point by modifying the file server to atomically perform all
operations that share a checkpoint. However, this further
optimization requires substantial server modifications, and
our performance results indicate it is not needed.

5.3 Ensuring correct speculative execution
We define the speculative execution of a process to be

correct if two invariants hold. First, speculative state should
never be visible to the user or any external device. Enforcing
this invariant requires that Speculator prevent a speculative
process from externalizing output to the screen, network, or
other interfaces. Second, a process should never view specu-
lative state unless it is already speculatively dependent upon
that state (because it could produce output that depends on
that state). If a non-speculative process tries to view spec-
ulative state, Speculator either blocks the process until the
state becomes non-speculative, or it makes the process spec-
ulative and rolls it back if a speculation on which that state
depends fails.

Since interactions between a process and its external en-
vironment pass through the operating system, Speculator
can prevent a speculative process from performing poten-
tially incorrect operations by blocking that process until the
speculations on which it depends are resolved. If all of those
speculations prove successful, the process is unblocked and
allowed to execute the operation (which is correct since the
process is no longer speculative). If a speculation fails, the
process is terminated.

We observe that blocking a speculative process is always
correct, but that blocking limits the amount of work that
can be done while waiting for remote operations to complete.
Our approach to developing Speculator was to first create
a correct but slow implementation that blocked whenever a
speculative process performed a system call. We created a
new system call jump table and modified the Linux system
call entry point to use this table if the task structure of the

194

currently executing process is marked as speculative. Ini-
tially, we set all entries in this jump table to sys spec deny,
a function we created to block the calling process until its
speculations are resolved.

Next, we observed that system calls that do not modify
state (e.g., getpid) are correct if performed by a speculative
process. We let speculative processes perform these calls by
replacing sys spec deny entries with the addresses of the
functions that implement these syscalls. We also found that
several system calls modify only state that is private to the
calling process; these calls are correct to perform while spec-
ulative since their effects are not observed by other processes
and, on speculation failure, their effects are undone as a side
effect of restoring the checkpoint process. For example, dup2
creates a new file descriptor that is a copy of an existing
descriptor. This state is private to a process since file de-
scriptors are not shared (except on fork, which is handled in
Section 6.8). Further, when Speculator restores the check-
point process, the effect of dup2 is undone since the restored
checkpoint contains the descriptor state of the failed process
prior to calling dup2.

We next allowed speculative processes to perform opera-
tions on files in speculative file systems. For these system
calls, it is insufficient to replace sys spec deny with syscalls
such as mkdir in the speculative jump table because the OS
may mount some file systems that support speculative exe-
cution and some that do not. For instance, one might use a
non-speculative version of ext3 along with a speculative ver-
sion of NFS—in this case, it is correct to allow speculative
processes to modify state in NFS but not in ext3.

When a speculative process performs a file system opera-
tion, Speculator inspects the file system type to determine
whether to block the calling process or allow speculative
execution. On mount, a file system may set a flag in its
superblock that indicates that speculative processes are al-
lowed to read and write the files and directories it contains.
Another flag allows just speculative read-only operations.
All file system syscalls check these flags if the current pro-
cess is speculative to decide whether to block or permit the
operation. For example, mkdir blocks speculative processes
unless the superblock of the parent directory indicates that
mutating operations are allowed, and stat blocks unless
read-only operations are allowed. Our speculative versions
of NFS and BlueFS set the read/write flag. Because file
systems that we have not modified do not set either flag,
operations in those file systems block speculative processes
until their speculations are resolved.

Speculator uses a similar strategy for the read and write

system calls. When a file descriptor is opened, the type-
specific VFS open function can set flags in the Linux file
structure to indicate that speculative reads and/or writes
are permitted. If a speculative process tries to read from
or write to a file descriptor for which the appropriate flag
is not set, that process is blocked until its speculations are
resolved. The read flag is needed because read is a mutating
operation for some inode types—for instance, reading from
a Unix socket consumes the data that is read. For this inode
type, speculative reads are incorrect. For other inode types,
such as files in local file systems that do not update access
times, reads are correct since they do not change object
state.

If a speculative process writes to a tty or other external
device, its action is incorrect since it is externalizing output.

Yet, blocking such writes greatly limits the amount of work
that can be done while speculative. This led us to support
a third behavior for write: the data being written can be
buffered in the kernel until the speculations on which it de-
pends have been resolved. Speculator first validates such
output operations to ensure that they can be performed. It
then stores the output in a queue associated with the last
checkpoint of the current process. After all speculations as-
sociated with that checkpoint commit, the buffered output
is delivered to the device for which it was destined. If a spec-
ulation fails, the output is discarded. Currently, Speculator
uses this strategy for output to the screen and network.

Output from a speculative process can appear before all
of the speculations for that process are resolved. Consider
a process that speculates on a remote operation, outputs a
message, and then performs another speculative operation.
Since the output depends only on the first speculation, Spec-
ulator can deliver it to the output device once the first spec-
ulation succeeds—Speculator need not wait for the second
speculation to succeed or fail. In a non-speculative system,
the output would be delayed while the process blocked on
the remote I/O operation. Thus, the condition on which
the output awaits, the completion of the remote I/O, is the
same in non-speculative and speculative systems. In fact,
output in the speculative system often appears faster than
in the non-speculative system since the remote operations
on which that output waits complete faster. An exception
occurs if two speculations share a checkpoint since output
that depends on only one speculation must wait for both to
complete—this is another reason Speculator limits the max-
imum time difference between speculations that depend on
the same checkpoint.

6. MULTI-PROCESS SPECULATION
We next allowed speculative processes to participate in

inter-process communication. This significantly extends the
amount of speculative work done by applications composed
of multiple cooperating processes. For example, make forks
children to perform compilation and linking; these processes
communicate via pipes, signals, and files. If we limit spec-
ulation to a single process, make would often block waiting
for a signal to be delivered or for data to arrive on a pipe.

6.1 Generic strategy
Speculator’s strategy for IPC allows selected data struc-

tures within the kernel to have speculative state. Figure 3
illustrates how speculative state is propagated. In Fig-
ure 3(a), processes 8000 and 8001 both stat different files in
BlueFS—BlueFS calls create speculation, sends an asyn-
chronous RPC to check cache consistency, and continues ex-
ecution assuming that the cached attributes are up-to-date.
Speculations 1 and 2 track the state associated with each
speculation. Each process is marked as speculative, associ-
ated with an undo log, and checkpointed. Each undo log
entry contains the process checkpoint and a reference to the
speculation on which the process depends.

In Figure 3(b), process 8000 writes data to a file in /tmp.
This causes Speculator to propagate dependencies from pro-
cess 8000 to inode 3556. After this operation, the file con-
tains speculative state; for example, if speculation 1 fails,
process 8000 may write different data to the file on re-
execution. Speculator therefore creates an undo log for in-
ode 3556 and marks it as speculative. The entry in the file’s

195

Inode
3556

Write-1
Process

8000

Ckpt

Spec
1

Process
8001

Ckpt

Spec
2

Process
8000

Ckpt

Spec
1

Process
8001

Ckpt

Spec
2

(a) Process 8000 and 8001 become speculative

(b) Process 8000 writes to /tmp/file (inode 3556)

Inode
3556

Write-1
Process

8000

Ckpt

Spec
1

Write-1
Process

8001

Ckpt

Spec
2

Ckpt

(c) Process 8001 writes to /tmp/file (inode 3556)

Inode
3556

Process
8000

Spec
1

Process
8001

Ckpt

Spec
2

(d) Speculation 1 fails

X

Figure 3: Propagating causal dependencies

undo log describes how to restore it to its previous state;
in this case, the entry describes how to reverse the write
operation that modified the file. The association between
speculation 1 and this entry indicates that the write opera-
tion will be undone if speculation 1 fails.

In general, Speculator propagates dependencies from a
process P to an object X whenever P modifies X and P
depends on speculations that X does not. The entry in X’s
undo log for that operation is associated with all specula-
tions on which P depended but X did not.

In Figure 3(c), process 8001 writes data to the same file.
This operation creates another entry in the inode’s undo
log—this entry is associated with speculation 2. This op-
eration also creates an entry in the process 8001 undo log
since the process may have observed speculative state as a
result of writing to the file. For example, if a speculative op-
eration changes file permissions, the return value of a later
write might depend on whether that speculation succeeds.

In general, Speculator propagates dependencies from an
object X to a process P whenever P observes X’s state and
X depends on speculations that P does not. The entry in
P’s undo log for that operation is associated with all specu-
lations on which X depended but P did not.

In our experience, almost all operations that modify kernel
objects also observe the object being modified (in fact, the
only exception we have seen is a signal sent by an exiting
process). Thus, mutating operations normally propagate
dependencies bi-directionally between the mutating process
and the mutated object.

Process undo entries are not needed for many operations.
For instance, an undo entry is not created for process 8000
when it modifies the file because the file depended on no
speculations. Similarly, if process 8001 modifies the file
again after step (c), an entry is not put in its undo log
since the file and process 8001 depend on the same set of
speculations.

During commit speculation, Speculator deletes the spec-
ulation structure and removes its association with any undo

log entries. Entries at the front of an undo log are deleted
once they depend on no more speculations. When an undo
log has no more entries, it is deleted, and its associated ob-
ject becomes non-speculative.

Figure 3(d) shows what happens when a speculation fails.
The failed speculation, speculation 1, is deleted. Each ker-
nel object that depends on that speculation is rolled back to
the state captured by the undo entry with which the failed
speculation is associated. In this example, process 8000 is
restored to its checkpoint and will retry the failed opera-
tion. Inode 3556 is restored to the state that existed before
it was modified by process 8000—this is done by applying
the two inverse operations in its undo log. Process 8001 is
rolled back to its second checkpoint (because it could have
observed incorrect speculative state in inode 3556). When
process 8001 is restarted, it will attempt to write to inode
3556 again. This rollback is performed atomically during
fail speculation.

The undo log, undo entries, and speculations are generic
kernel data structures. However, each undo log entry con-
tains pointers to type-specific state and functions that im-
plement type-specific rollback and roll forward processing.
This design allows a common implementation for the type-
independent logic associated with propagating dependen-
cies, rolling state forward, and rolling state back. We next
describe the type-specific logic for each form of IPC that
Speculator currently supports.

6.2 Objects in a distributed file system
In our design, the file server always knows the correct

state of each object (file, directory, etc.) If a speculation
on which an object depends fails, Speculator simply inval-
idates the cached copy. When the object is next accessed,
its correct state is retrieved from the server. Thus, undo
log entries do not contain type-specific data. However, the
undo log must still track each object’s speculative dependen-
cies so as to propagate those dependencies when one process
reads a locally-cached object previously modified by another
speculative process.

6.3 Objects in a local memory file system
We have modified the RAMFS memory-only file system to

support speculative state. When a VFS operation modifies
a speculative RAMFS object, Speculator inserts an entry
in the inode’s undo log that describes the inverse operation
needed during rollback. For instance, a rmdir entry con-
tains a reference to the directory being deleted as well as
the name of the directory. The reference prevents the OS
from reclaiming the directory object until the speculation is
resolved. Thus, if a speculation on which the rmdir depends
fails, Speculator can reinsert the directory into its original
parent.

6.4 Objects in a local disk file system
We also modified the ext3 file system to support specula-

tion. While Speculator uses the same strategy for managing
ext3 inode undo logs that it uses for RAMFS, the presence
of persistent state in ext3 presents many challenges.

One challenge is dealing with the possibility of system
crashes. For instance, it would be incorrect to write specula-
tive state to disk while maintaining undo information only in
memory, since uncommitted speculative state would be vis-
ible after a crash. While Speculator could potentially write

196

undo logs to disk to deal with this possibility, we felt a sim-
pler solution is to never write speculative data to disk (i.e.,
use a no-steal policy [11]). Speculator attaches undo logs
to kernel buffer head objects. When a speculative process
modifies a buffer, Speculator marks the buffer as speculative
and inserts a record in its undo log. Kernel daemons that
asynchronously write buffers to disk skip any buffer marked
as speculative. A process that explicitly forces a speculative
buffer to disk, e.g., by calling fdatasync, is blocked until the
buffer’s speculations are resolved. A substantial advantage
of using a no-steal policy is that Speculator often does not
need to shadow data overwritten by a speculative operation
in memory—if the speculation fails, it invalidates the buffer,
which will cause the prior state to be re-read from disk.

A second challenge is presented by shared on-disk meta-
data structures such as the superblock and allocation bit-
maps. Ext3 operations often read and modify these struc-
tures, potentially creating too many speculative dependen-
cies. For instance, when a speculative process allocates a
new disk block for a file, it modifies the count of free blocks
in the superblock. Under our previously described policy,
any non-speculative process performing an ext3 operation
would become speculative since it would observe specula-
tive state in the superblock.

We felt that this policy was too aggressive as these meta-
data objects are seldom observed outside the kernel. Even
in the case of inode numbers, which are externally visible,
the impact of observing speculative state is limited (e.g.,
a new file might receive a different inode number than it
would have received in the absence of speculation, yet the
particular number received is typically unimportant as long
as that number is unique). Speculator therefore allows pro-
cesses to observe speculative metadata in ext3 superblocks,
bitmaps, and group descriptors without propagating causal
dependencies.

Speculator must allow these ext3 metadata structures to
be occasionally written to disk. For instance, the ext3 su-
perblock could remain speculative indefinitely if it is con-
tinuously modified by speculative processes. In this case,
writing the superblock to disk is incorrect since it contains
speculative data, yet if it is not written out periodically,
substantial data could be lost after a crash. Speculator ad-
dresses this issue by maintaining shadow buffers for the su-
perblock, bitmaps, and group descriptors. The actual buffer
contains the current non-speculative state, while the shadow
buffer contains the speculative state. When a speculative
operation modifies one of these structures, it supplies redo
and undo functions for the modification. The redo function
is initially used to modify the speculative state. If the spec-
ulative operation commits, the redo function is applied to
the non-speculative state. If the operation rolls back, the
undo function is applied to the speculative state. Only the
actual buffer containing non-speculative state is written to
disk. This design relies on metadata operations being com-
mutative (which is the case in Speculator).

A final challenge is presented by the ext3 journal, which
groups multiple file system operations into compound trans-
actions. A compound transaction may contain both specula-
tive and non-speculative operations. To preserve the invari-
ant that no speculative state is written to disk, we initially
decided to block the commit of a compound transaction until
all of its operations became non-speculative. However, this
proved too restrictive since there are many instances in the

ext3 code that wait for the current transaction to commit.
We therefore adopted an approach that leverages Specula-
tor’s tracking of causal dependencies. Any file system oper-
ation that is causally dependent upon a speculative opera-
tion must itself be speculative. Thus, any non-speculative
operation within a compound transaction cannot depend on
a speculative operation within that transaction. Prior to
committing a compound transaction, Speculator moves any
speculative buffers in that transaction to the next compound
transaction. For shared metadata buffers such as the su-
perblock, Speculator commits the non-speculative version of
the buffer as part of the current transaction. This approach
lets the journal immediately commit non-speculative opera-
tions without writing speculative data to disk.

6.5 Pipes and fifos
Speculator handles pipes and fifos with a strategy similar

to that used for local file systems. Since the read and write

system calls both modify and observe pipe state, they propa-
gate dependencies bi-directionally between the pipe and the
calling process. The undo entry for read saves the data read
so that it can be restored to the pipe if a speculation fails.
The write entry saves the amount and location of data writ-
ten so that it can be deleted on failure. Undo entries are also
created when a pipe is created or deleted—the latter entry
prevents the pipe from being destroyed until its speculations
are resolved.

6.6 Unix sockets
Speculator tracks speculative dependencies propagated

through Unix sockets by allowing kernel socket structures to
contain speculative state. When data is written to a Unix
socket, it is placed in a queue associated with the destination
socket. Thus, any speculative dependencies are propagated
bi-directionally between the sending process and the desti-
nation socket. Additionally, since the process sending data
observes the state of the source socket, any speculative de-
pendencies associated with that socket are propagated to
both the sending process and destination socket. When a
process reads data from the destination socket, dependen-
cies are propagated bi-directionally between the process and
the socket.

6.7 Signals
Signals proved difficult to handle. Our initial design had

the sending process propagate dependencies directly to the
process that receives the signal. However, this design re-
quires Speculator to be able to checkpoint the receiving
process at arbitrary points in its execution. The receiving
process could receive a signal while it is in the middle of
a system call. If the process has already performed some
non-idempotent operation during the system call, restarting
from the beginning of the system call is incorrect. If the
checkpoint process is instead restarted from the location at
which the signal was received, it would not have any kernel
resources such as locks that were previously acquired during
the system call by the process that received the signal.

Speculator solves this problem by requiring that all check-
points be taken by the process being checkpointed. Check-
points are only taken at well-known code locations where the
checkpoint process will behave correctly if a rollback occurs.

Speculator delivers signals using a two-step process. First,
when the signal is sent, it creates an undo log for that

197

signal—the log’s only entry depends on the same specula-
tions as the sending process. The signal is put in a specula-
tive sigqueue associated with the receiving process. Signals
in this queue are not yet considered delivered; thus, these
signals are not visible to the receiving process when it checks
its pending signals. During this step, Speculator propagates
dependencies from the receiving process to the sending pro-
cess, since the sender observes that it is allowed to send a
signal to the destination process.

The second step occurs immediately before a process re-
turns from kernel mode. At this time, Linux delivers any
pending signals. We modified this code to first move any
signals from the speculative sigqueue to the list of pending
signals. If necessary, the receiving process is checkpointed
and dependencies are propagated from the signals being de-
livered to the process. A flag is set in the checkpoint so
that the checkpoint process will exit the kernel instead of
restarting the system call if a rollback occurs. This pre-
serves the invariant that checkpoints are only taken by the
checkpointed process.

When a signal is moved from the speculative sigqueue to
the list of pending signals, a new entry is inserted into the
signal undo log. This ensures that if the receiving process
rolls back to a point before the signal was delivered, that
signal will be re-delivered. On the other hand, if a specula-
tion on which the signal depends fails, the signal is destroyed
and the receiving process rolls back to the checkpoint taken
before delivery.

If a signal becomes non-speculative while it waits in the
speculative sigqueue (because all speculations on which it
depends commit), it is immediately delivered to the receiv-
ing process. This ensures that a process will eventually pro-
ceed if it blocks in the kernel waiting for a speculative signal
to be delivered. However, to maximize performance, such
signals should be delivered immediately. Speculator there-
fore interrupts wait and select when a signal arrives in
the speculative sigqueue (just as they are interrupted for a
pending signal). In these instances, we have ensured that
these system calls can be restarted correctly if a speculation
on which the delivered signal depends fails.

6.8 Fork
When a process forks a child, that child inherits all depen-

dencies of its parent. If one of these speculations fails, the
forked process is simply destroyed since it may never exist
on the correct execution path.

6.9 Exit
When a speculative process exits, its pid is not deallo-

cated until all of its dependencies are resolved. This ensures
that checkpoints can be restarted with that pid if a spec-
ulation fails. The rest of the Linux exit code is executed,
including the sending of signals to the parent of the exiting
process. Speculating through exit is important for support-
ing applications such as make that fork children to perform
sub-tasks. Without this support, the parent process would
block until its child’s speculations are resolved.

6.10 Other forms of IPC
Speculator does not currently let speculative processes

communicate via System V IPC, futexes, or shared mem-
ory. It does allow speculative execution of processes with
read-only access to shared memory segments or write ac-

cess to private segments. However, it blocks processes that
have write access to one or more shared memory segments—
this precludes multi-threaded applications from speculating.
Rather than track individual memory accesses, our planned
approach to support multi-threaded processes is to consis-
tently checkpoint all threads within a single thread group
whenever a checkpoint is needed for any thread.

7. USING SPECULATION
Modifying a distributed file system to use Speculator typi-

cally involves changes to the client, server, and network pro-
tocol. We first inspect the client code and identify instances
in which the client can accurately predict the outcome of
remote operations. Predicting the outcome of read-only op-
erations typically requires that the client memory or disk
cache contain some information about the state of the file
system. For instance, an NFS client can predict the result of
a getattr RPC only when the inode attributes are cached.
In this case, the client is speculating that the file has not
been modified after it was cached.

We change the synchronous RPCs in these instances
to be asynchronous, and have the client create a new
speculation before sending each request. When a re-
ply to the asynchronous RPC arrives, the client calls
commit speculation if it correctly predicted the result of
the RPC and fail speculation if it did not. Normally,
if a prediction fails, the file system invalidates any cached
values on which that prediction depended—this forces a
non-speculative, synchronous RPC when the operation is
re-executed. However, if the reply contains updated state,
the file system instead caches the new state—in this case, a
new speculation based on the updated values is made when
the operation is re-executed.

In the next two subsections, we address two generic issues
that occur when modifying a file system to use Speculator:
correctly supporting mutating operations and implementing
group commit. Sections 7.3 and 7.4 describe our speculative
implementations of NFS and BlueFS in more detail. Sec-
tion 7.5 discusses how other file system might benefit from
using Speculator.

7.1 Handling mutating operations
Operations that mutate file system state at the server are

challenging since a speculative mutation could potentially
be viewed by a client other than the one that made the mu-
tation. For example, a process might read the contents of a
cached directory and write them to a file (e.g., ls /dfs/foo

> /dfs/bar). The readdir operation creates a speculation
that the cached version of directory foo is up-to-date. After
the process writes to and closes bar, the contents of this file
depend on that speculation. If a process running on another
file system client reads /dfs/bar, it views speculative state.
Thus, if the original speculation made during the readdir

fails, both clients and the server must roll back state.
Potentially, Speculator could allow multiple clients to

share speculative state using a mechanism such as Time
Warp’s virtual time [14]. Alternatively, it could allow each
client to share its speculative state with the server, but not
with other clients, by having the server block any clients
that attempt to read or write data that has been specula-
tively modified by another client. However, we realized that
the restricted nature of communication in a server-based
distributed file system enables a much simpler solution.

198

The file server always knows the true state of the file sys-
tem; thus, when it receives a speculative mutating oper-
ation, it can immediately evaluate whether the hypothesis
that underlies that speculation is true or false. Based on this
observation, we modify the server to only perform a muta-
tion if its hypothesis is valid. If the hypothesis is false, the
server fails the mutation. Thus, the server effectively con-
trols whether a speculation succeeds or fails. A client that
receives a failure response cannot commit that speculation.

In each speculative RPC, the client includes the hypoth-
esis underlying that speculation. In the above example, a
BlueFS client would send a check version RPC contain-
ing the version number of its cached copy of foo when it
executes a speculative readdir. The server checks this ver-
sion number against the current file version and fails the
speculation if the two differ. Part of the hypothesis of any
mutating operation is that all prior speculations on which it
depends have succeeded. In the example, the modification
to bar depends on the success of the readdir speculation.
These causal dependencies are precisely the set of specula-
tions that are associated with the undo log of the process
prior to transmitting the mutating operation. This list is
returned by create speculation and included in any spec-
ulative RPC sent to the server. If the server has previously
failed any of the listed speculations, it fails the mutation.

This design requires that the server keep a per-client list of
failed speculations. It also requires that the server process
messages in the same order that a client generates them
(otherwise the server could erroneously allow a mutation
because it has not yet processed an invalid speculation on
which that mutation depends). We enforce this ordering
using client-generated sequence numbers for all RPCs. This
sequence number also limits the amount of state that the
server must keep. Each client appends the sequence number
of the last reply that it received from the server to each new
RPC. Once the server learns that the reply associated with a
failed speculation has been processed, it discards that state
(since the client will not allow any process that depends on
that speculation to execute further).

A substantial advantage of this approach is simplicity:
the server never stores speculative file data. Because all file
modifications must pass through the server, other clients
never view speculative state in the file system. Thus, when
a speculation fails, only a single client must roll back state.
To enable this simple design we had to modify each file sys-
tem’s underlying RPC protocol to support dependencies and
asynchronous messages. While we have chosen to explicitly
modify each file server, all server modifications (with the
exception of group commit described below) could be im-
plemented with a server-side proxy.

Speculator reduces the size of the list sent to the server by
representing speculations as <pid,spec id> tuples and gen-
erating the low-order spec id with a per-process counter that
is incremented on each new speculation. The dependency
list is encoded as a list of extents of consecutive identifiers.
Typically, this produces a list size proportional to the num-
ber of processes sharing speculative state, rather than the
number of speculations (it is not quite proportional because
rollbacks can create gaps in the spec id sequence).

Speculator assumes that a client communicates with only
one file server at a time. In the future, we plan to block
any process that attempts to write to a server while it has
uncommitted speculations that depend on another server.

7.2 Speculative group commit
Our original intent in using speculative execution was

to hide the latency associated with remote communication.
However, we soon realized that speculative execution can
also improve throughput. Without speculation, synchronous
operations performed by a single thread of control must be
done sequentially. Speculative execution allows such opera-
tions to be performed concurrently. This creates opportuni-
ties to amortize expensive activities across multiple opera-
tions. A prime example of this is group commit.

In most distributed file systems (e.g., Coda and NFS),
the file server commits synchronous mutating operations to
disk before replying to clients. Commits limit throughput
because each requires a synchronous disk write. A well-
known optimization in the presence of concurrent operations
is to group commit multiple operations with a single disk
write. However, opportunities for group commit in a file
server are limited because each thread of control has at most
one in-flight synchronous mutating operation (although the
Linux NFS server groups the commit of asynchronous writes
to the same file). In contrast, speculative execution lets a
single thread of control have many synchronous mutating
operations in-flight—these can be committed with a single
disk command.

We modify the file server to delay committing and replying
to operations until either (a) no operations are in its network
buffer, or (b) it has processed 100 operations. The server
then group commits all operations and replies to clients.

7.3 Network File System
In order to explore how much speculative execution can

improve the performance of existing distributed file systems,
we modified NFS version 3 to use Speculator. Our modified
version, called SpecNFS, preserves existing NFS semantics,
including close-to-open consistency. It issues the same RPCs
that the non-speculative version issues; however, in Spec-
NFS, many of these RPCs are speculative and contain the
additional hypothesis data described in Section 7.1.

The NFS version 3 specification requires data to be com-
mitted to stable storage before returning from a synchronous
mutating RPC such as mkdir (the Linux 2.4.21 implemen-
tation meets this specification unless the async mount flag
is used). Implicit in this specification is the assumption
that the operation should not be observed to complete until
its modifications are safe on stable storage. In SpecNFS,
although a process may continue to execute speculatively
while it waits for a reply, it cannot externalize any output
that depends on the speculation. Thus, any operation that
is observed to complete has already been committed to sta-
ble storage at the server.

The SpecNFS client speculatively executes getattr RPCs
when it has a locally cached copy of the inode being queried.
If the inode is not cached, a blocking, non-speculative
getattr is issued. The client also speculatively executes
lookup and access RPCs if cached data is available. Mu-
tating RPCs such as setattr, create, commit, and unlink

always speculate.
One complication with the NFS protocol is that the

server generates new file handles and fileids on RPCs
such as create and mkdir. These values are chosen non-
deterministically, making it difficult for the client to predict
which values the server will choose. The SpecNFS client
chooses aliases for these values that it can use until it re-

199

ceives the reply to its original RPC. After the client receives
the reply, it discards the aliases and uses the real values.
When the server receives a message that uses an alias, it re-
places the alias with the actual value before performing the
request. It discards an alias once it learns that the client
has received the reply that contains the actual value.

The Linux NFS server does not use a write-ahead log; in-
stead, it updates files in place. The server syncs data to disk
whenever it processes commit RPCs and RPCs that modify
directory data. Rather than sync data during the process-
ing of these individual RPCs, the SpecNFS server syncs its
file cache as a whole when no more incoming operations are
in its network buffer, or when its commit limit of 100 op-
erations has been reached. After syncing the file cache, the
server replies to the RPCs sent by its clients—these clients
then commit the speculations associated with those RPCs.
This implementation of group commit is less efficient than
one that uses a write-ahead log; however, it still improves
disk throughput because the kernel orders disk writes during
syncs and coalesces writes to the same disk block.

For example, consider a client that quickly modifies and
closes a small file twice. The Linux NFS client generates a
write RPC, followed by a commit RPC for the first close.
It then generates additional write and commit RPCs for
the second close. Given the Linux client implementation
that waits for replies to all write RPCs before sending the
commit, this activity results in four network round-trip de-
lays. Furthermore, the client must wait twice for file data
to be committed to disk—once for each commit RPC. In
comparison, SpecNFS creates four speculations and sends
all four RPCs asynchronously. The SpecNFS server delays
committing data to disk and replying to the client until it
processes all four messages. Committing the file data re-
quires only a single disk write if the two writes are to the
same file location.

7.4 Blue File System
We next explored whether speculative execution enables

a distributed file system to provide strong consistency and
safety, yet still have reasonable performance. Since we
are currently developing a new distributed file system,
BlueFS [24], we had the opportunity to develop a clean-sheet
design that used Speculator. We exploited this opportunity
to provide the consistency of single-copy file semantics and
the safety of synchronous I/O.

Single-copy file semantics are equivalent to the consistency
of a shared local disk, i.e., any read operation sees the effects
of all preceding modifications. In contrast, the weaker close-
to-open consistency of NFS guarantees only that a process
that opens a file on one client will see the modifications of
any client that previously closed that file. NFS makes only
loose, timeout-based guarantees about data written before a
file is closed, file attributes, and directory operations. This
creates a window during which clients may view stale data
or create inconsistent versions, leading to erroneous results.

In BlueFS, each file system object has a version number
that is incremented when it is modified. All file system op-
erations that read data from the client cache speculate and
issue an asynchronous RPC that verifies that the version of
the cached object matches the version at the server. All
operations that modify an object verify that the cached ver-
sion prior to modification matches the server’s version prior
to modification. In the event of a write/write or read/write

conflict, the version numbers do not match—in this case,
the speculation fails and the calling process is restored to a
prior checkpoint.

Clearly, an implementation that performs these version
checks synchronously provides single-copy semantics since
all file system operations are synchronized at the server. Our
speculative version (which performs version checks asyn-
chronously) also provides single-copy semantics since no op-
eration is observed to complete until the server’s reply is
received. Until some output is observed, the status of the
operation is unknown (similar to the fate of Schrödinger’s
cat). In order for a write operation on one client to pre-
cede a read (or write) operation on another, the read must
begin after the write has been observed to complete. Since
that observation can only be made after the write reply has
been received from the server, the incrementing of the ver-
sion number at the server also precedes the beginning of the
read operation. Thus, if the read operation uses stale data
in its cache that does not include the modification made
during the write operation, the version check fails. In this
event, a rollback occurs and the read is re-executed with the
modified version.

Our second goal was to provide the safety of synchro-
nous I/O. Before the server replies to a client RPC, it com-
mits any modifications associated with that RPC to a write-
ahead log. Since the client does not externalize any output
that depends on that RPC until it receives the reply, any
operation that is observed to complete is already safe on
the server’s disk. In NFS, this safety guarantee is provided
only when a file is closed; our modified version of BlueFS
provides safety for all file system operations, including each
write. Since commits occur frequently, BlueFS uses group
commit to improve throughput. After a group commit, the
server reduces network traffic by summarizing the outcome
of all operations committed on behalf of a client in a single
reply message

7.5 Discussion: Other file systems
While we have modified only NFS and BlueFS to use

speculation, it is useful to consider how Speculator could
benefit other distributed file systems. Since speculation im-
proves performance by eliminating synchronous communica-
tion, the performance improvement seen by a particular file
system will depend on how often it performs synchronous
operations.

Both NFS and BlueFS implement cache coherence by
polling the file server to verify that cached files are up-to-
date. Since polling requires frequent synchronous RPCs to
the server, these file systems see substantial benefit from
Speculator. Other file systems use cache coherence schemes
that reduce the number of synchronous RPCs performed
in common usage scenarios. AFS [13] and Coda [18] grant
clients callbacks, which are promises by the server to notify
the client before a file system object is modified. A client
holding a callback on an object does not need to poll the
server before executing a read-only operation on that object.
File delegations in NFSv4 [27] provide similar functional-
ity. SFS [22] also extends the NFS protocol with callbacks
and leases on file attributes. Echo [2] uses leases to pro-
vide single-copy consistency; a client granted an exclusive
lease on an object can read or modify that object without
contacting the server.

While the use of callbacks or leases reduces the number of

200

synchronous RPCs, it can increase the latency of individual
RPCs. Before a server can accept a file modification or grant
a client exclusive access to a file, it must first synchronously
revoke any callbacks or leases held by other clients. Po-
tentially, a well-connected client must wait on one or more
poorly-connected clients. Speculator would help hide the la-
tency of these expensive operations. Thus, we expect that
file systems that use leases or callbacks would see substan-
tial benefit from Speculator, even though the relative benefit
would be less than that seen by file systems that use polling.

Speculator also reduces the cost of providing safety guar-
antees. AFS, Coda (in its strongly-connected mode), and
NFS write file modifications synchronously to the server
on close. Directory caching in these file systems is write-
through. Speculator would substantially improve write per-
formance in these file systems by hiding the latency of these
synchronous operations. Since file modifications may not be
written back to the server until the file is closed, data can
be lost in the event of a system crash. Echo caches mod-
ifications for longer periods of time and writes back mod-
ifications asynchronously (unless a lease is revoked). This
improves performance by reducing the number of synchro-
nous RPCs but increases the size of the window during which
data can be lost due to system crashes.

To date, file system designers have had to choose whether
to provide strong consistency guarantees, strong safety guar-
antees, or good performance. Speculative execution changes
this equation by eliminating synchronous communication.
As our BlueFS results in the next section demonstrate: a
distributed file system using Speculator can provide the
safety of synchronous I/O, as well as single-copy semantics,
and still perform better than current file systems.

8. EVALUATION
Our evaluation answers two questions:
• How much does Speculator improve the performance

of an existing file system (NFS)?

• With Speculator, what is the performance impact of
providing single-copy file semantics and synchronous
I/O (in BlueFS)?

8.1 Methodology
We use two Dell Precision 370 desktops as the client and

file server. Each machine has a 3 GHz Pentium 4 processor,
2 GB DRAM, and a 160 GB disk. We run RedHat Enterprise
Linux release 3 with kernel version 2.4.21. To insert delays,
we route packets through a Dell Optiplex GX270 desktop
running the NISTnet [4] network emulator. All comput-
ers communicate via 100 Mb/s Ethernet switches—the mea-
sured ping time between client and server is 229 µs.

SpecNFS mounts with the -o tcp option to use TCP as
the transport protocol. For comparison, we run the non-
speculative version of NFS with both UDP and TCP. Al-
though results were roughly equivalent, we always report
the best of the two results for non-speculative NFS. While
BlueFS can cache data on local disk and portable storage,
it uses only the Linux file cache in these experiments—this
provides a fair comparison with NFS, which uses only the file
cache. The client /tmp directory is a RAMFS memory-only
file system for all tests.

We ran each experiment in two configurations: one with
no latency, and the other with 15 ms of latency added be-
tween client and server (for a 30 ms round-trip time). The

No delay

0

5

10

15

T
im

e
(s

ec
on

ds
)

30ms delay

0

100

200

300

NFS
SpecNFS
BlueFS

This figure shows the time to run the PostMark benchmark.
Each value is the mean of 5 trials—the error bars are 90%
confidence intervals. Note that the scale of the y-axis differs
between the two graphs.

Figure 4: PostMark file system benchmark

former configuration represents the LAN environments in
which current distributed file systems perform relatively
well, and the latter configuration represents a wide-area link
over which current distributed file systems perform poorly.

8.2 PostMark
We first ran the PostMark benchmark, which was designed

to replicate the small-file workloads seen in electronic mail,
netnews, and web-based commerce [16]. We used PostMark
version 1.5, running in its default configuration that creates
500 files, performs 500 transactions consisting of file reads,
writes, creates, and deletes, and then removes all files.

The left graph in Figure 4 shows benchmark results with
no additional delay inserted between the file client and
server. The difference between the first two bars shows that
NFS is 2.5 times faster with speculation. This speedup is
a result of using speculative group commit and the abil-
ity to pipeline previously sequential file system operations.
Because PostMark is a single process that performs little
computation, this benchmark does not show the benefit of
propagating speculative state within the OS or the benefit
of overlapping communication and computation.

The right graph in Figure 4 shows results with a 30 ms
delay. The adverse impact of latency on NFS is apparent
by the difference in scales between the two graphs: NFS
without speculation is 41 times slower with 30 ms round-trip
time than in a LAN environment. In contrast, SpecNFS is
much less affected by network latency since it does not block
on most remote operations. Thus, it runs the PostMark
benchmark 24 times faster than NFS without speculation.

The benefits of speculative execution are even more ap-
parent for BlueFS. BlueFS runs the PostMark benchmark
53% faster than the non-speculative version of NFS with
no delay, and BlueFS is 49 times faster with a 30 ms de-
lay. This performance improvement is realized even though
BlueFS provides single-copy file semantics and synchronous
I/O. Interestingly, BlueFS outperforms the speculative ver-
sion of NFS with a 30 ms delay. This is attributable to two

201

NFS SpecNFS BlueFS Coda ext3

No delay

0

100

200

300
T

im
e

(S
ec

on
ds

)

NFS SpecNFS BlueFS Coda ext3

30ms delay

0

1000

2000

3000

Untar
Configure
Make
Remove

This figure shows the time to untar, configure, make and
remove the Apache 2.0.28 source tree. Each value is the mean
of 5 trials—the error bars are 90% confidence intervals. Note
that the scale of the y-axis differs between the two graphs.

Figure 5: Apache build benchmark

factors: BlueFS uses write-ahead logging to achieve better
disk throughput, and NFS network throughput is limited
by the legacy sunrpc package. The BlueFS server achieves
better disk throughput than NFS because its use of a write-
ahead log reduces the number of disk seeks compared to the
Linux NFS server, which updates file data in place. The
sunrpc package used by NFS has some synchronous behav-
ior that we were unable to eliminate; for example, we could
only have a maximum of 160 asynchronous RPCs in flight.

8.3 Apache build benchmark
We next ran a benchmark in which we untar the Apache

2.0.48 source tree into a file system, run configure in an
object directory within that file system, run make in the ob-
ject directory, and remove all files. During the benchmark,
make and configure fork many processes to perform sub-
tasks—these processes communicate via signals, pipes, and
files in the /tmp directory. Thus, propagating speculative
kernel state is important during this benchmark.

In Figure 5, each bar shows the total time to perform the
benchmark, and shadings within each bar show the time
to perform each stage. With no delay inserted between
client and server, speculative execution improves NFS per-
formance by a factor of 2. The largest speedup comes during
the configure stage, which is 3.4 times faster. The bar on
the far right shows the time to perform the benchmark on
the local ext3 file system—this gives a lower bound for per-
formance of a distributed file system. The potential speedup
for make is limited since computation represents a large por-
tion of the execution of that stage. However, speculative
execution still improves make time by 30%. With 30 ms of
delay, NFS is 14 times faster with speculation. The cost
of cache coherence is quite high without speculation since
every RPC incurs a 30 ms round-trip delay.

SpecNFS typically has less than 10 rollbacks during the
Apache benchmark. When a file is moved to a new directory,
the Linux NFS server assigns it a new file handle; when the
client next tries to access the file by the old handle, the

server returns ESTALE if the entry with the old file handle
has been evicted from its file cache. The client then issues
a lookup RPC to learn the new file handle. Since SpecNFS
does not anticipate the file handle changing, an ESTALE
response causes a rollback. Like the non-speculative version
of NFS, SpecNFS learns the correct file handle when it issues
a non-speculative lookup on re-execution.

BlueFS is 66% faster than non-speculative NFS with no
delay; with a 30 ms delay, BlueFS is 12 times faster. These
results demonstrate that, with speculative execution, it is
possible for a distributed file system to be safe, consistent,
and fast. BlueFS does not experience any rollbacks during
this benchmark.

To provide a point of comparison with file systems that use
callbacks, we ran the benchmark using version 6 of the Coda
distributed file system; we executed the benchmark with
Coda in strongly-connected mode (which provides AFS-like
consistency guarantees). BlueFS, which provides stronger
consistency, outperforms Coda by 12%. With 30ms of delay,
BlueFS is 3 times faster than Coda. While we would need to
implement a speculative version of Coda to determine pre-
cisely how much Speculator would improve its performance,
our existing results provide some insight. Since Coda’s use
of callbacks results in fewer synchronous RPCs than NFS,
we suspect that a speculative version of Coda would perform
better than SpecNFS.

8.4 The cost of rollback
In the previous two benchmarks, almost all speculations

made by the distributed file system are correct. We were
therefore curious to measure the performance impact of hav-
ing speculations fail. We quantified this cost by performing
the make stage of the Apache benchmark while varying the
percentage of out-of-date files in the NFS client cache.

To create out-of-date files, we append garbage characters
to a randomly selected subset of the files in the Apache
source directory—if one of these modified files were to be
erroneously used during the make, the Apache build would
fail. Before the experiment begins, the client caches all files
in the source directory—this includes both the unmodified
and modified files. We then replace each modified file with
its correct version at the server. Thus, before the experiment
begins, the client cache contains a certain percentage of out-
of-date files that contain garbage characters.

Non-speculative NFS detects that the out-of-date files
have changed when it issues synchronous getattr RPCs
during file open. The client discards its cached copies of
these files and fetches new versions from the server. Spec-
NFS continues to execute with the out-of-date copies and
issues asynchronous getattr RPCs. When an RPC fails, it
invalidates its cached copy and rolls back to the beginning
of the open system call. In all cases, the compile completes
successfully.

Figure 6 shows make time when approximately 10%, 50%
and 100% of the files are initially out-of-date. As the number
of out-of-date files grows, the time to complete the bench-
mark increases slightly due to the time needed to fetch up-
to-date file versions from the server. This delay is small since
network bandwidth is high—however, this cost must be in-
curred by both speculative and non-speculative versions of
NFS. Even when all files are initially out-of-date, SpecNFS
still substantially outperforms NFS without speculative ex-
ecution: SpecNFS is 31% faster with no delay and over 11

202

NFS SpecNFS ext3

No delay

0

50

100

T
im

e
(s

ec
on

ds
)

NFS SpecNFS ext3

30ms delay

0

500

1000

1500

No files invalid
10% files invalid
50% files invalid
100% files invalid

This figure shows the time to make Apache 2.0.28 with differ-
ent percentages of files out-of-date in the client cache. Each
value is the mean of 5 trials—the error bars are 90% con-
fidence intervals. Note that the scale of the y-axis differs
between the two graphs.

Figure 6: Measuring the cost of rollback

Files out No delay 30 ms delay
of date Rollbacks Commits Rollbacks Commits

0 0 25973 0 25739
80 40 25870 40 26446
374 183 25869 183 26803
758 362 25831 358 27451

This figure shows the average number of speculations that
roll back and commit during the make stage of the Apache
benchmark when different numbers of source files are initially
out-of-date in the client cache.

Figure 7: Rollback benchmark detail

times faster with 30 ms delay. These improvements are com-
parable to results with no files out-of-date (30% and 13 times
faster, respectively). Thus, the impact of failed speculations
is almost imperceptible in this benchmark. However, the
impact could be greater on a loaded system with less spare
CPU cycles for speculation, or when the network bandwidth
between client and server is limited.

Figure 7 shows more detail about these experiments. The
first column shows the number of out-of-date files in the
source directory actually accessed by make. The remaining
columns show the average number of speculations that roll
back and commit during execution of the benchmark. We
were initially surprised to see that the number of rollbacks
is substantially less than the number of out-of-date files ac-
cessed by the benchmark, meaning that several out-of-date
files do not cause a rollback. This disparity is caused by make

accessing several out-of-date files in short succession. For
example, consider a case where make reads the attributes of
two out-of-date files before it receives the getattr response
for the first file. The first response causes a rollback since the
attributes in the client cache were incorrect. Since this roll-
back eliminates all state modified after the first request was
issued, a rollback is not needed when the second getattr

response is received. SpecNFS updates file attributes in

NFS SpecNFS BlueFS

No delay

0

100

200

300

400

500

T
im

e
(s

ec
on

ds
)

NFS SpecNFS BlueFS

30ms delay

0

1000

2000

3000

Default
No propagation
No group commit
No group commit
& no propagation

This figure shows how speculative group commit and propa-
gating state within the kernel impact the performance of spec-
ulative file systems for the Apache benchmark. Each value is
the mean of 5 trials—the error bars are 90% confidence in-
tervals. Note that the scale of the y-axis differs between the
two graphs.

Figure 8: Measuring components of speculation

the client cache based upon both responses. Thus, on re-
execution, the new speculations for both files are correct. In
this example, although two files are out-of-date, the client
only rolls back once. In effect, this is a type of prefetch-
ing of out-of-date file attributes, somewhat similar to the
prefetching of file data proposed by Chang and Gibson [6].

8.5 Impact of group commit and sharing state
Figure 8 isolates the impact of two ideas presented in this

paper. The left bar of each graph shows the time needed
by the non-speculative version of NFS to perform all four
stages of the Apache benchmark described in Section 8.3.
The next two datasets show the performance of SpecNFS
and BlueFS. For each file system, we show the default con-
figuration (with full support for speculative execution), and
three configurations that omit various parts of Speculator.

The second bar in each data set shows performance when
Speculator does not let processes share speculative state
through kernel data structures. This implementation blocks
speculative processes that read or write to pipes and files in
RAMFS, send signals to other processes, fork, or exit. Only
speculative state in the distributed file system is shared be-
tween processes. The third bar in each data set shows the
performance of speculative execution when the server does
not allow speculative group commit. The last bar shows per-
formance when both speculative group commit and sharing
of speculative state are disallowed.

The benefit of propagation is most clearly seen with 30 ms
delay. Blocking until speculations are resolved is more costly
in this scenario since sever replies take longer to arrive. The
benefit of speculative group commit is less dependent on la-
tency. Without propagation and speculative group commit,
the improved consistency and safety of BlueFS are much
more costly. Especially on low-latency networks, both im-
provements are needed for good performance.

203

9. RELATED WORK
To the best of our knowledge, Speculator is the first sup-

port for multi-process speculative execution in a commodity
operating system and the first use of speculative execution
to improve cache coherence and write throughput in distrib-
uted file systems.

Chang and Gibson [6] and Fraser and Chang [10] use
speculative execution to generate I/O prefetch hints for a
local file system. In their work, the speculative thread exe-
cutes only when the foreground process blocks on disk I/O.
When the speculative thread attempts to read from disk, a
prefetch hint is generated and fake data is returned so that
the thread can continue to execute. Their work improves
read performance through prefetching, whereas Speculator
improves read performance by reducing the cost of cache
coherence. Speculator also allows write-path optimizations
such as group commit. In Speculator, speculative processes
commit their work in the common case where speculations
are correct. However, since Chang’s speculative threads do
not see correct file data, any computation done by a spec-
ulative thread must be later re-done by a non-speculative
thread. Speculator also allows multiple processes to partic-
ipate in a speculation; Chang’s speculative threads are not
allowed to communicate with other processes.

Time Warp [15] explored how speculative execution can
improve the performance of distributed simulations. Time
Warp is specialized for executing simulations, and imposes
certain restrictions that may be onerous to developers of
general applications: processes must be deterministic, can-
not use heap storage, and must communicate via asyn-
chronous messages. Speculator is targeted for a general-
purpose operating system and does not impose these restric-
tions. Time Warp’s abstraction of virtual time [14] tracks
causal dependencies using Lamport’s clock conditions [19].
Speculator’s dependency lists are more general than a one-
dimensional value. This generality is most useful with con-
current speculations where a one-dimensional time value cre-
ates an unnecessary dependency between two independent
events. In contrast to Time Warp, the client-server nature
of distributed file systems allows Speculator to simplify its
handling of speculative state: failed speculative state cre-
ated by a client is never committed at the server, nor is
it visible to other clients. Speculator’s design for buffering
output was inspired by Time Warp’s handling of external
output.

Common applications of speculative execution in proces-
sor design range from branch prediction to cache coherence
in multiprocessors. Steffan et al. [31] have investigated the
use of speculation to extract greater parallelism from appli-
cation code. Similar proposals advocating hardware specu-
lation are [9, 12, 33]. The difference between implementing
speculation in the processor and in the OS is the level of
granularity: OS speculation can be applied at much higher
levels of abstraction where processor-level speculation is in-
appropriate.

Speculative execution provides a limited subset of the
functionality of a transaction. Thus, transactional systems
such as QuickSilver [26], Locus [32], or TABS [28] could
potentially supply the needed functionality. However, the
overhead associated with providing atomicity and durability
might preclude transactions from achieving the same perfor-
mance gains as speculative execution.

Checkpointing and rollback-recovery are well-studied [8].

However, most prior work in checkpointing focuses on fault
tolerance; a key difference in Speculator is that checkpoints
capture only volatile and not persistent state. In this man-
ner, they are similar to the lightweight checkpoints used for
debugging by Srinivasan et al. [29]. Previous work in log-
ging virtual memory [7] might offer performance optimiza-
tions over Speculator’s current fork-based checkpoint strat-
egy. Causal dependency tracking has been applied in several
other projects, including QuickSilver [26], BackTracker [17],
and the Repairable File Service [34].

Prior distributed file systems have provided single-copy
file semantics—examples include Sprite [23] and Spritely
NFS [30]. However, these semantics came at a performance
cost. On the other hand, Liskov and Rodrigues [21] demon-
strated that read-only transactions in a file system can be
fast, but only by allowing clients to read slightly stale (but
consistent) data. A major contribution of Speculator is
showing that strong safety and cache coherence guarantees
can be provided with minimal performance impact. In this
manner, it is possible that speculative execution might im-
prove the performance of distributed file systems such as
BFS [5], SUNDR [20], and FARSITE [1] that require ad-
ditional communication to deal with faulty or untrusted
servers.

10. CONCLUSION
Speculator supports multi-process speculative execution

within a commodity OS kernel. In this paper, we have shown
that Speculator substantially improves the performance of
existing distributed file systems. We have also shown how
speculation enables the development of new file systems that
are safe, consistent, and fast, even over high-latency links.
Our modified version of BlueFS provides single-copy file se-
mantics and synchronous I/O, yet still performs better than
current file systems. While our investigation to date has
focused on distributed file systems, we believe that generic
OS support for speculative execution and causal dependency
tracking will prove useful in many other domains. Our fu-
ture plans therefore include investigating what other appli-
cations can benefit from Speculator.

Acknowledgments
We thank Manish Anand, Dan Peek, Ya-Yunn Su, the
anonymous reviewers, and especially our shepherd, Frans
Kaashoek, for suggestions that improved the quality of this
paper. Jan Harkes and Mahadev Satyanarayanan helped
explain details of the Coda file system. We used David A.
Wheeler’s SLOCCount to estimate the lines of code for our
implementation. The work is supported by the National
Science Foundation under award CCR-0509093. NSF has
also supported development of the Blue File System through
award CNS-0306251. Jason Flinn is supported by NSF CA-
REER award CNS-0346686. Intel Corp and Motorola Corp
have provided additional support. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of NSF, Intel, Motorola,
the University of Michigan, or the U.S. government.

204

11. REFERENCES
[1] Adya, A., Bolosky, W. J., Castro, M., Cermak, G.,

Chaiken, R., Douceur, J. R., Howell, J., Lorch, J. R.,
Theimer, M., and Wattenhofer, R. P. FARSITE:
Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (Boston, MA, December 2002), pp. 1–14.

[2] Birrell, A. D., Hisgen, A., Jerian, C., Mann, T., and
Swart, G. The Echo distributed file system. Tech. Rep.
111, Digital Equipment Corporation, Palo Alto, CA, USA,
October 1993.

[3] Callaghan, B., Pavlowski, B., and Staubach, P. NFS
Version 3 Protocol Specification. Tech. Rep. RFC 1813,
IETF, June 1995.

[4] Carson, M. Adaptation and Protocol Testing thorugh
Network Emulation. NIST,
http://snad.ncsl.nist.gov/itg/nistnet/slides/index.htm.

[5] Castro, M., and Liskov, B. Proactive recovery in a
byzantine-fault-tolerant system. In Proceedings of the 4th
Symposium on Operating Systems Design and
Implementation (San Diego, CA, October 2000).

[6] Chang, F., and Gibson, G. Automatic I/O hint
generation through speculative execution. In Proceedings of
the 3rd Symposium on Operating Systems Design and
Implementation (New Orleans, LA, February 1999),
pp. 1–14.

[7] Cheriton, D., and Duda, K. Logged virtual memory. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles (Copper Mountain, CO, Dec. 1995),
pp. 26–39.

[8] Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson,
D. B. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys 34, 3
(September 2002), 375–408.

[9] Franklin, M., and Sohi, G. ARB: A hardware mechanism
for dynamic reordering of memory references. IEEE
Transactions on Computers 45, 5 (May 1996), 552–571.

[10] Fraser, K., and Chang, F. Operating system I/O
speculation: How two invocations are faster than one. In
Proceedings of the 2003 USENIX Technical Conference
(San Antonio, TX, June 2003), pp. 325–338.

[11] Haerder, T., and Reuter, A. Principles of
Transaction-Oriented Database Recovery. ACM Computing
Surveys 15, 4 (December 1983), 287–317.

[12] Hammond, L., Willey, M., and Olukotun, K. Data
speculation support for a chip multiprocessor. In Proc. of
the 8th Intl. ACM Conf. on Arch. Support for
Programming Languages and Operating Systems (San Jose,
CA, October 1998), pp. 58–69.

[13] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols,
D. A., Satyanarayanan, M., Sidebotham, R. N., and
West, M. J. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems 6, 1
(February 1988).

[14] Jefferson, D. Virtual time. ACM Transactions on
Programming Languages and Systems 7, 3 (July 1985),
404–425.

[15] Jefferson, D., Beckman, B., Wieland, F., Blume, L.,
DiLoreto, M., P.Hontalas, Laroche, P., Sturdevant,
K., Tupman, J., Warren, V., Weidel, J., Younger, H.,
and Bellenot, S. Time Warp operating system. In
Proceedings of the 11th ACM Symposium on Operating
Systems Principles (Austin, TX, November 1987),
pp. 77–93.

[16] Katcher, J. PostMark: A new file system benchmark.
Tech. Rep. TR3022, Network Appliance, 1997.

[17] King, S. T., and Chen, P. M. Backtracking intrusions. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (Bolton Landing, NY, October 2003),
pp. 223–236.

[18] Kistler, J. J., and Satyanarayanan, M. Disconnected
operation in the Coda file system. ACM Transactions on
Computer Systems 10, 1 (February 1992).

[19] Lamport, L. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (1978), 558–565.

[20] Li, J., Krohn, M., Mazières, D., and Shasha, D. Secure
untrusted data repository (SUNDR). In Proceedings of the
6th Symposium on Operating Systems Design and
Implementation (San Francisco, CA, December 2004),
pp. 121–136.

[21] Liskov, B., and Rodrigues, R. Transactional file systems
can be fast. In Proceedings of the 11th SIGOPS European
Workshop (Leuven, Belgium, September 2004).

[22] Mazières, D., Kaminsky, M., Kaashoek, M. F., and
Witchel, E. Separating key management from file system
security. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (Kiawah Island, SC,
December 1999), pp. 124–139.

[23] Nelson, M. N., Welsh, B. B., and Ousterhout, J. K.
Caching in the Sprite network file system. ACM
Transactions on Computer Systems 6, 1 (1988), 134–154.

[24] Nightingale, E. B., and Flinn, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation (San Francisco, CA, December 2004),
pp. 363–378.

[25] Rosenblum, M., Bugnion, E., Herrod, S. A., Witchel,
E., and Gupta, A. The impact of architectural trends on
operating system performance. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles
(Copper Mountain, CO, December 1995), pp. 285–298.

[26] Schmuck, F., and Wyllie, J. Experience with
transactions in QuickSilver. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles
(October 1991), pp. 239–53.

[27] Shepler, S., Callaghan, B., Robinson, D., Thurlow,
R., Beame, C., Eisler, M., and Noveck, D. Network File
System (NFS) version 4 Protocol. Tech. Rep. RFC 3530,
IETF, April 2003.

[28] Spector, A. Z., Daniels, D., Duchamp, D., Eppinger,
J. L., and Pauch, R. Distributed transactions for reliable
systems. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles (Orcas Island, WA,
December 1985), pp. 127–146.

[29] Srinivasan, S., Andrews, C., Kandula, S., and Zhou,
Y. Flashback: A light-weight extension for rollback and
deterministic replay for software debugging. In Proceedings
of the 2004 USENIX Technical Conference (Boston, MA,
June 2004).

[30] Srinivasan, V., and Mogul, J. Spritely NFS: Experiments
with cache consistency protocols. In Proceedings of the 12th
ACM Symposium on Operating System Principles
(December 1989), pp. 45–57.

[31] Steffan, J. G., Colohan, C. B., Zhai, A., and Mowry,
T. C. A scalable approach to thread-level speculation. In
Proceedings of the 27th Annual International Symposium
on Computer Architecture (ISCA) (Vancouver, Canada,
June 2000), pp. 1–24.

[32] Weinstein, M. J., Thomas W. Page, J., Livezey, B. K.,
and Popek, G. J. Transactions and synchronization in a
distributed operating system. In Proceedings of the 10th
ACM Symposium on Operating Systems Principles (Orcas
Island, WA, December 1985), pp. 115–126.

[33] Zhang, Y., Rauchwerger, L., and Torrellas, J.
Hardware for speculative parallelization of partially-parallel
loops in DSM multiprocessors. In Proc. of the 5th Intl.
Symposium on High Performance Computer Architecture
(Orlando, FL, January 1999), p. 135.

[34] Zhu, N., and Chiueh, T. Design, implementation and
evaluation of the Repairable File Service. In Proceedings of
the International Conference on Dependable Systems and
Networks (San Francisco, CA, June 2003).

205

