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ABSTRACT 1. INTRODUCTION

Researchers have made great strides in improving the fault toler- In the distributed systems literature, it has long been a goal
ance of both centralized and replicated systems against arbitraryto offer clients the illusion of interacting with a single, reliable,
(Byzantine) faults. However, there are hard limits to how much can fail-stop server, despite the occurrence of Byzantine server faults.
be done with entirely untrusted components; for example, repli- While the initial results along these lines were largely theoretical,
cated state machines cannot tolerate more than a third of theirin recent years there has been an increasing interest in produc-
replica population being Byzantine. In this paper, we investigate ing practical Byzantine-fault tolerant systems, as exemplified by
how minimal trusted abstractions can push through these hard lim- PBFT [13], Q/U [6], Ivy [33], Plutus [20], SUNDR [26], HQ [14],
its in practical ways. We propose Attested Append-Only Memory and Zyzzyva [22].
(A2M), a trusted system facility that is small, easy to implement  The fault-tolerance properties of such systems can be divided
and easy to verify formally. A2M provides the programming ab- into safetyguarantees, properties that must be true at all times, and
straction of a trusted log, which leads to protocol designs immune livenessguarantees, properties that must become true within finite
to equivocation- the ability of a faulty host to lie in different ways ~ time from all execution states of the system. For replicated state
to different clients or servers —which is a common source of Byzan- machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target safety
tine headaches. Using A2M, we improve upon the state of the guarantee isinearizability [17]: completed client requests appear
art in Byzantine-fault tolerant replicated state machines, produc- to have been processed in a single, totally ordered, serial schedule
ing A2M-enabled protocols (variants of Castro and Liskov's PBFT) that is consistent with the order in which clients submitted their
that remain correct (linearizable) and keep making progress (live) requests and received their responses. The correspondingds/ene
even when half the replicas are faulty, in contrast to the previous up- guarantee is that a correct client's request is eventually procegsed. |
per bound. We also present an A2M-enabled single-server sharedis well established that if servers have no trusted components, then
storage protocol that guarantees linearizability despite server faults. N0 replicated system can provide these safety and liveness guaran-
We implement A2M and our protocols, evaluate them experimen- tees when more than a third of its replicas are faulty [25].
tally through micro- and macro-benchmarks, and argue thatthe im-  To improve on these results, some researchers have explored re-
proved fault tolerance is cost-effective for a broad range of uses, laxed correctness properties. For instarfoek* consistency{27]
opening up new avenues for practical, more reliable services. is a weaker safety property than linearizability, but can be achieved
when less than two thirds of the replica population are faulty. In
. . . single-server systems, the choice is only between 0% “replica”
Categones and SUbJeCt Descrlptors faults (the server is non-faulty) and 100% “replica” faults (the server
C.2.4 [Computer-Communication Networks]: Distributed Sys- is faulty). SUNDR showed how to achief@k consistencyslightly
tems; D.4.5 Qperating System$: Reliability stronger than fork*, but still weaker than linearizability) in the pres-

ence of a faulty server and non-faulty clients.

In this paper, our goal is to understand how the fault tolerance of

General Terms such systems might be improved through the use of realistic trusted
Algorithms, Design, Reliability, Security abstractions. Of course, placing the entire application (operating

system, application software, hardware, intervening network) into
Keywords _the truste_d computing base trivially s_olves the problem, but this

is totally impractical. Our focus here is on small-footprint trusted
Equivocation, Attested append-only memory, Byzantine-fault tol- primitives that have simple interfaces, are broadly applicable, and
erance, Replicated state machines, Shared storage can be implemented easily and cost effectively. We argue that a

trusted logabstraction, which we call Attested Append-Only Mem-

ory or A2M for short, is such a primitive. The power of A2M lies in

its ability to eliminateequivocation- telling different stories to dif-
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presents our first contribution, A2M, in more detail, describing its The service can be implemented as a single server (e.g., afile server)

interface, typical usage patterns, and implementation alternativesor multiple servers (e.g., replicated state machines). Clients re-

that trade off efficiency for the size and complexity of the trusted questauthenticatedoperations from the service, the service exe-

computing base. cutes those operations, which may change the service state, and
Next, we delve deeper into our second contribution: specific returns responses to the requesting clients.

system designs for replicated state machines and shared storage .

that use A2M to improve their fault tolerance, in the context of 2.2 Assumptions

agreement-based replicated state machines (Section 4) and other We use standard assumptions about the network model and about

centralized and distributed protocols (Section 5). These include: cryptography. In the network, packet drops, reorderings, ard du

. . . . plications can occur but retransmissions of a message eventually
e A2M-PBFT-E is an A2M variant of Castro and Liskov's S - :
. . . liver it. However, th h fini r n xist for mes-
Practical Byzantine Fault Tolerance (PBFT) protocol. Sim- deliver it owever, thoug te upper bounds exist for mes

. . sage delivery and operation execution times, those bounds are not
|Ie_1r to PBFT, ,ﬁ,le'PBFT'E guarantees safety ar.'d liveness known to protocol entities. A faulty node cannot violate intractabil-
with uphto 175 fauI]Efy replicas out of N tﬂtal’ how- h ity assumptions about standard cryptography. Therefore, the ad-
eI;/_er, w er(le)as PdBFfoo Iers nol_gua(antees Wd ag\szol\jvgrB\l':"Tenversary cannot produce pre-images or collisions for cryptographic
this upper bound of fau ty replicas Is crossed, ) " hash functions or forge previously unseen signatures for private

E can still guarantee safety without liveness when the num-

. . N_1 signing keys he does not possess.
ber of faulty replicas is more tha=3= ] but no more than In this paper, we consider fault models that depend on the cause

2[5 ‘This is an important advantage for applications, of the node’s misbehavior. In particular, we distinguish between
such as high-volume banking, in which correctness (captured 4 cases: (i) the node’s owner is well-intentioned but unaware
by safety) _under hea_vy fgults is desirable, even if it is Not {he node’s software has been compromised by a third-ptaujty
accompanied by availability (captured by the liveness prop- appjication model and (ii) the node’s Byzantine behavior is be-
erty). cause of a malicious owner instructing it to do $aufty operator

e A2M-PBFT-EA is an extension of PBFT that can guaran- mode}. The nature of the.trusted computing base is quitg differenF
tee both safety and liveness with up|t§5 | replica faults: in the two cases. In the flrst.mod_el, the trusted computing base is
whereas PBFT needs a three-fold replication to tolerate a set up by the service owner, for Instance, a bank owns all nodes
given number of faults, A2M-PBFT-EA needs only two-fold gnd ensures, throu_gh physmal_securlty and other means, that only
replication. The additional complexity of A2M-PBFT-EA its nodes can provide the service. Ou_r concern _here is to combat
may be justifiable in applications that require both low repli- softvygre attacks such as worms and viruses against those centrally
cationand high fault tolerance, as might be the case for crit- admmlstered_ nodes. In the seconql mode!, we do_not trust owners
ical applications with very high replication costs, such as de- but trust a third party (e.g., a special service prowder.or a trusted
pendable software for space missions. _hardware manu_facturer) to set up the trusted computing base; for

instance, a malicious storage server can manipulate all aspects of
e A2M-Storage is an A2M-enabled single-server storage ser- its node except what lies within the trusted device, which is the

vice similar to SUNDR [26]. A2M-Storage leverages A2M  purview of the device provider.

to guarantee linearizability whereas SUNDR, without help In the traditional Byzantine-fault model, the cause of Byzantine

from trusted components, can only provide fork consistency. behavior is not of immediate consequence — that is, tolerant proto-
cols work well regardless of whether the operator or a virus writer

Section 6 presents an experimental evaluation of the A2M ap- are doing the misbehaving. Nevertheless, the practical decision to
proach, using microbenchmarks on our implementation of A2M apply or not a solution to a target environment depends exactly on
and two of our A2ZM-enabled protocols, AZM-PBFT-E and A2M-  \hether the designer can explain why the Byzantine-fault bound

PBFT-EA. We also show macrobenchmarks on NFS running on top will not be violated; the justification is dependent on whether that

of A2M-PBFT-E and A2M-PBFT-EA, which suggest that the cost  environment consists of a single administrative domain (benign op-

of using A2M to increase fault tolerance (or, conversely, reduced erator, potential software attacks) or multiple administrative do-

redundancy) is minimal: using an AZM module through a system mains (potentially malicious operators, potential software attacks).
call-like interface, the overhead of NFS on top of A2M-PBFT-EA

is about 4% compared to that of NFS on top of traditional PBFT, 2.3 Notation
or about 24% compared to NFS on top of an untrusted NFS server, ., conciseness, throughout the paper we use the authentica-

for the benefit of reducing replication factor fom3to 2.~ tion notation of Yin et al. [39], according to which we denote by
We discuss the appropriate level for a trusted abstraction in Sec- (X)s.p.x an authentication certificate that any node in a/3e@an

tion 7, describe related work in Section 8, and then conclude in regard as proof that distinct nodes inS said X. For example, a

Section 9. traditional digital signature o from p that is verifiable by the en-
tire replica population? would be(X), r,1, two signatures from
2. MOTIVATION p andq put together would béX ), 41,72, and a MAC fromp

In this section, we detail the fundamental motivation behind our t0 ¢ with a shared key would béX), ;1. As a convention, we
work, starting with our basic assumptions and target system en- Usep to denote the singleton s¢p}, andoc as shorthand for the
vironments, and continuing with specific illustrations of an adver- universal set of all principals. When we use this notation to de-
sary’s power against existing systems, which will motivate our A2M scribe collective certificates made up of individual signatures, as
design in Section 3, and A2M-related protocols in Sections 4 and 5. 7 - .

A one-way — or pre-image resistant —

hash functtois one for
2.1 Setup which there is no polynomial-time algorithm that, givencan find
’ ) . o a previously unknowr8 such thaix = h(3). A collision-resistant
We consider client-server systems where a service is accessechash functiorh is one for which there is no polynomial-time algo-
and shared by multiple clients connected over a public network. rithm that can find two values andg for which h(«) = h(3).
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Figure 1: A forking attack example of two clients and one ma- Figure 2: An example that shows the violation of linearizabil-
licious server. The server convinces clients and b of different ity in PBFT when two replicas are faulty out of four replicas.
system states. Faulty serversr; and ry convince non-faulty serversro and r3

to commit different requests.
for the second example above, we usually remove any signer iden-
tification from the collective certificate format: for example, the new operation-eqa,. The faulty server dropsegs, off the tail of
certificate(X) 5, 3, r,2 above could correspond to the individually  the log, only returning reqiq, reqis }. Clientb executes its opera-
signed messagep, X), k.1 and(q, X)q,r.1. tion and has the log stafeeqi., reqiy, rega, }. The system state is
We useh() to denote a one-way collision-resistant hash func- now forked with regards to these two clients. The cause of the prob-
tion such as SHA-256, arjfito denote the bit-string concatenation  |em is the ability of the faulty server to misrepresent its operation

operator. log to the two clients, equivocating on what its state is according to
. . who is asking.
2.4 Equwocatlon Systems vulnerable to this kind of equivocation attacks are

In deterministic systems that aim to guarantee linearizability, ly- shared file systems such as Plutus [20], SUNDR [26], and Ivy [33],
ing is bad enough, but lying in different ways to different people quorum-based replicated state machines such as Q/U [6], and
is even worse. The “prototype” problem behind Byzantine-fault timestamping systems such as Timeweave [30]. SUNDR and Time-
tolerant agreement, the “Byzantine generals problem,” has beenweave alleviate the effects of equivocation, offering fork consis-
demonstrated unsolvable in a population of three parties when onetency, a weaker property than linearizability. For example, SUNDR
is faulty [25], precisely because of equivocation. Beyond agree- maintains state about the servers timeline at individual clients;
ment, especially when there is a single server to contend with, once forked, all clients within the same fork enjoy a linearized view
equivocation can wreak just as much havoc: a server can feign ig- of the system, but do not see state changes in another fork. Unfor-
norance to client for data that it has promised clief it would tunately, even then, unless two clients on different forks compare
broadcast to all. Even when it does not drop information, a faulty their notes, they cannot know that the server maintains multiple
server can order sequential requests — think about two concurrentversions of its state and history.
writesa andb to the same shared variable — in different ways when . .
responding to different clients, potentially changing the presumed 2.4.2  Servers Equivocating to Servers
state of the system substantially: one client seas the dominat- To demonstrate equivocation problems among servers, we con-
ing write whereas the other client seeimistead. sider BFT replicated state machines. In particular, we choose Prac-

In what follows, we present two detailed examples of equivoca- tical Byzantine Fault Tolerance (PBFT) [13] since it has had a pro-
tion attacks against single-server and replicated systems, to moti-found impact on the systems literature. Though we give more de-
vate our focus on eliminating equivocation through trusted system tailed background on PBFT in Section 4.1, for the purposes of this

abstractions. illustration, a PBFT client is satisfied with a result to its request if
) ) ) it receives at least™; | + 1 replies from distinct replicas out of
2.4.1 Servers Equivocating to Clients the NV total replicas, all with a matching result; a PBFT replica
We consider a log-structured storage server shared by multiple can commit a request to its local state as long as a quorum of

clients as an illustrative example. For example, in a straw-man de- 2| %5 | + 1 replicas agree on the request's ordering in history.

sign for SUNDR [26], to request an operation, a client first acquires  Given this behavior, PBFT guarantees safety (linearizability) and
alock at the server and downloads the entire operation log, a time- liveness, as long as no more tha#:— | replicas are faulty; if more
ordered collection of signed client operations. The client checks than L%J replicas are faulty, PBFT does not guarantee safety
whether the log is correct by verifying the signatures and by check- (and liveness is meaningless without safety): faulty replicas can
ing that the log contains all of its own operations in order; it then fool non-faulty replicas to commit different request histories, and
creates what must be the server’s current state by starting with andifferent clients may accept replies corresponding to different re-
initial state and then applying the logged operations in order, as a quest histories, violating linearizability.
correct server would have in a linearized system. It executes its op-  To illustrate, considelN = 4; replicasr, andrs are faulty, and
eration based on the constructed state, thus finding out the result ofnon-faulty replicag, andrs cannot temporarily communicate with
this operation. It then appends its signed operation to the end of theeach other (Figure 2). Client sendsreq,, to the system. The two
log, sends the updated log back to the server, and releases the lockiaulty replicas convince, to commit and executeeg,, first, since

A faulty server can mount a forking attack [26] by concealing the three of them form a quorum 8f= QL%J + 1. Later client
operations, which causes the system’s state to diverge into multi- b sendsreg, to the system. The two faulty replicas convinge
ple possibilities for different clients. Suppose two clients access to commit and executeeg, first, sincers never sawreg,. Faulty

a server as shown in Figure 1. Cliemtperformsreqiq, clientd servers andr, equivocate to non-faulty servers andrs.
performsreqi,, and clienta performsreqgz,. The latest state of Furthermore, the ability of faulty servers to equivocate to non-
the server becomeeqiq, reqis, reqaq } as far as client is con- faulty servers also allows the service to equivocate to clients, as

cerned. Now, clienb retrieves the log of the server to perform a in the previous section. For example, clieat&indb experience



via their accepted replies two different histories, in whielp, and
req, are, respectively, the single, first committed request, violat-
ing linearizability. The problem arises because of the faulty repli-
cas equivocating to clients. The faulty replicas are allowed to tell
client a, with r¢’s help, thatreg, is committed in their history at
sequence numbdr, and also to tell cliend, with r3’s help, that
req, is committed in their history at the same sequence number.
Systems vulnerable to servers equivocating to servers are
agreement-based Byzantine-fault tolerant state machine replication
protocols such as PBFT [12] and BFT2F [27]. BFT2F supports
fork* consistency by maintaining state at clients.

3. ATTESTED APPEND-ONLY MEMORY

In the previous section, we argued that the adversary’s ability
to equivocate undetected — e.g., to claim to have two different his-
tories depending on which host it is talking to — is a fundamental
weapon against safety, both in single-server and replicated services
Here we describe aattested append-only memd#2M), a sim-

ple attestation-based abstraction that, when trusted, can remove the

ability of adversarial replicas to equivocate without detection. Us-
ing an A2M implementation within the trusted computing base, a
protocol can assume that a seemingly correct host can give only a
single response to every distinct protocol request — for some proto-
col specific definition of “distinct” request —, even when that same
request is retransmitted multiple times by different clients or repli-
cas, and even if that response is undetectably faulty.
Informally, an A2M equips a host with a set of trusted, undeni-

able, ordered logs (illustrated in Figure 3). Each such log has an
identifierg (unique within the same computer) and consists of a se-

guence of values, each annotated with (1) a log-specific sequence

number that is incremented from 0 with every new value appended
to the log, and (2) an incremental cryptographic digest of all log
entries up to itself. Only a suffix of the log is stored in A2M, start-
ing with the slot in the “low” positionC > 0 and ending with the
last slot in the “high” positiort{ > L.

A2M essentially offers reliable services a bit-commitment
scheme [34] for sequential logs, placed within the trusted comput-
ing base. Section 3.1 describes the A2M interface, Section 3.2
presents simple usage scenarios illustrating how A2M can help
a service to remove equivocation from the arsenal of Byzantine-
faulty parties, and Section 3.3 explores the implementation options
for A2M, along with the trust-efficiency trade-off for each.

3.1 Interface

An A2M log offers methods tappend values, ta ookup val-
ues within the log or to obtain thend of the log, as well as to
truncat e and toadvance the log suffix stored in memory. There
are no methods to replace values that have already been assigned.

e append(q, z) takes a value, appends it to the log with iden-
tifier ¢, increments the highest assigned sequence nuhiber
by 1, populates the slot at that position withand computes
the cumulative digesty; = h(H||z||dn—1), wheredy = 0.

This method does not cause any values to be forgotten, i.e.,
it does not affect; if the log is unable to allocate storage to
the new entry, the method fails.

| ookup(g,n, z) — (LOOKUP,¢,n,z, z,w,n,d)a2n,, 00,1
takes log identifiery, a sequence number and a noncer
(for freshness), and returnsLabokup attestation.w is the
type of the attestation: if sequence numhbehas not been
assigned yet (i.en > H) thenw is UnassioNED andn/
'H; if n was assigned once but has now been forgotten (i.e.,
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Figure 3: Structure of an attested append-only memory (A2M).

An A2M contains a set of distinct logs §¢;) that map sequence
numbers (in the range of Z; to H;) to values.

n < L), thenw is ForcotTeENandn’ = L; if slot n has been
skipped over via thadvance method (see below) thean is
skippED andn’ is the sequence number of thevance call
that caused the skip; finally, if is a slot that was filled via
append or advance (see below), them is AssicnED and

n' = n. x andd are the assigned log value and digest when
w is AssiGNED) and0 otherwise.

end(q, z) is similar tol ookup, but returns the last entry of
the given log (currently in positiofi{). Attestations from

| ookup andend have the same format except for the request
nameEenp in the beginning.

truncate(q,n), Wwheren € (£, H], forgets all log entries
with sequence numbers lower thapsettingl to n. All sub-
sequent ookup requests for entries below will be hence-
forth of typew = FORGOTTEN

advance(q,n,d,z) allows log ¢ to skip ahead by multi-
ple sequence numbers. It takes a sequence numbger
‘H, a digestd, and a valuexr. It operates similarly to
append, but instead of usingly_; in the digest com-
putation, it uses the gived; skipped sequence numbers
are reported asskippPeD in | ookups. Any subsequent
I ookup(q,n”, z) request for a sequence numhke&rthat was
skipped by thisadvance will return an attestation of the
form (Lookup, ¢, n", z, z, SKiPPED, ', d) a2, 00,1, WhiCh
contains information about thelvance method that caused
the skip, until the slot is finallForGoTTEN

3.2 A2M Usage

Equipped with A2M in its trusted computing base, a reliable ser-
vice can mitigate the effects of Byzantine faults in its untrusted
components, by being able to rely on some small fallback infor-
mation about individual operations or histories of operations that
cannot be tampered with.

During setup, the untrusted component (e.g., a server) must make
known to all possible verifiers (e.g., clients or other servers) the
authentication keys for its A2M module and the identifier of the
A2M log used for each distinct purpose. As far as a verifier is
concerned, the A2M authentication key and log identifier are part of
the untrusted component’s identity. Therefore, a particular A2M-
enabled component is allowed to use only its associated A2M.

An untrusted componerdt can commit individual data items or
operations byappending them to an A2M log. For example, to
prove that it has committed to a data itdiy the component can
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Figure 4: A2M implementation scenarios. Thick boxes delineate the trsted computing base. (a) trusted service, (b) trusted softwe
isolation, (c) trusted VM, (d) trusted VMM, and (e) trusted hardware.

executeappend(q, h(D)). The data item is hashed before append-  To revisit the scenario of a storage server that maintains a log
ing to facilitate A2M implementations in which every log slot has for committed client requests but maliciously drops some off the
a fixed length. end when talking to a victim client (Section 2.4.1), consider forc-
An interested verifier can establish that the data item is, indeed, ing the server to maintain that log in A2M. Cliebtcan demand
in the untrusted component’s committed state by demanding the a freshEnp attestation from the server's A2M log, along with the
attestation(LookUP, g, n, z, ¢, ASSIGNEDQ 1, d) A2M 00,1 fOr SOME history itself, and ensure that the included digest is indeed the cu-
sequence number and nonce;, wherex = h(D) 5. This conclu- mulative digest of the history; this guaranteegttat the server
sively establishes that the untrusted component indeed put the datdhas not omitted any requests from the end of its committed log in
item D somewhere into its committed log. The sequence number its response, eliminating this particular problem. Similarly, to re-
can be further constrained (e.g., it can be associated with individual visit the replicated scenario in which malicious replicas profess to
protocol steps) to ensure that the untrusted component only com-different committed requests to different non-faulty replicas, con-
mits a single data item for that protocol step; in this sense, multi- vincing them to commit divergent requests (Section 2.4.2), consider
ple verifiers who are mutually disconnected can be assured that therequiring replicas to place such messages into an A2M message
component cannot equivocate on the contents of-itis slot. log before transmitting them. Now a non-faulty replica, before it
To ensure that the untrusted component has a particular dataallows itself to be convinced by another replica’s message, ensures
item as the last element in its log, a verifier can provide the un- that the message is attested in@kup attestation drawn from the
trusted component with a random noncand demand the attes- message sender's A2M message log. In this way, the faulty replica
tation (END, g, n, z, x, ASSIGNED 1, d) a20(,00,1. AS lONg as the cannot equivocate to two different non-faulty replicas to effect the
request type i€nD, the nonce is the verifier-supplied nonce, and scenario.
the valuex = h(D), the verifier can establish that as of the time These simple illustrations miss many finer details. We present
of nonce transmission to the component, the last entry in the log detailed A2M-enabled protocol designs that achieve fault tolerance
was that containing, and thus no trailing entries were spuriously that they did not possess before, or increase their fault tolerance, in
chopped off by the untrusted component. Sections 4 and 5.
The untrusted component is not bound to committing to indi- . . .
vidual data items in sequential log slots; it can swance o 3.3 Implementation Considerations
skip some sequence numbers. For example, if it only needs to The fundamental premise behind an implementation of A2M
commit to a value for every:-th sequence number, instead of s that it is harder to subvert than the main application. Differ-
append(q, k(D)) as above, it can usslvance(q,n,0, h(D)) for ent implementation scenarios (illustrated in Figure 4) lead to dif-
n = ik. Invocation ofadvance does not “unprove” things that the  ferent threat models and degrees of trust in the resulting system,
A2M has attested to before. It merely gives up the ability to attest and are appropriate for different applications. Our contribution
to a real value for the skipped sequence numbers, and disassociis a novel division of functionality between trusted and untrusted
ates the newly appended request’s digest from the log’s cumulative components, not a specific implementation of it — our experimental
history digest thus far, which is not required when committing to  evaluation in Section 6 is a proof of concept, but other implementa-
individual data items. tion scenarios are possible, some of which we characterize below.
When interested in entire histories of data items (e.g., request The implementation scenarios we present are a separate service
logs), verifiers can make use of not only the committed data item offered by a trusted provider or a hardened component (Figuj 4(a
itself, but also the cumulative digedt Thanks to the collision- a software-isolated module (Figure 4(b)), a trusted virtual machine
resistant properties of the hash function used, there is a single se<(Figure 4(c)), a trusted virtual machine monitor (Figure 4(d)), and
quence of data items appended to tpfpr which the cumulative trusted hardware (Figure 4(e)). These implementations are viable
digest isd. Therefore, by comparing the digests in twookup at- in the face of different threats. All five implementations work under
testations from two different untrusted servers, a verifier can estab- the faulty application model (external attacks against server soft-
lish conclusively that the two servers have committed to the same ware) but only (a) and (e) work under the faulty operator model

history up to the looked up sequence numbedvance can be (malicious operators that own, operate, and can manipulate entire
used, as above, to disassociate two portions of the log, for example,servers).
when part of the log is missing during a node’s recovery. In the simplest case, A2M can be a software abstraction imple-

mented as a service visible to applications via an RPC-like interface

’Note that we used2M, to denote the authentication principal  same sequence number and digises not implynecessarily that
corresponding to hogts A2M module. Trusting A2M means that  the two logs must also agree on attestations about all preceding

hostp cannot forge authenticators by2M, without A2M’s co- sequence numbers and digests; the usadefince legitimately
operation, and that even then, it can only coerce A2M to generate contradicts this implication. It is possible to change the interface
such authenticators as per the A2M interface. so as to guarantee this implication, but this is not required for our

3Itis important to point out that agreement of two A2M logs on the case studies in this paper.



(Figure 4(a)). For instance, it could be a service offered by a trusted Intel Active Management Technology (AMT) chip [2], or to use
provider, such as Amazon’s S3 [1], or by a separate, hardermmad co  a programmable secure coprocessor such as IBM's commercially
ponent with significantly greater assurances in the face of software available PCIXCC [8] board, a programmable PCI-X card with
errors than the main application software and hardware. This is cryptographic primitives as well as physical and electrical tamper-
similar to notarization-like approaches [15, 30, 40] that rely on a resistance. Tamper resistance offers incregstegsical security
trusted write-once medium external to the main system. Though even a malicious host operator armed with electrical probes can-
the entire application stack can fail (application, operating system, not coerce A2M to give responses that are inconsistent with its
and hardware), as long as the A2M is running on a trusted system specification or to reveal its authentication key material, except for
the application can be protected. The big drawback with this imple- extremely expensive physical cryptanalytic attacks that are unreal-
mentation scenario is its network-bound nature — in fact, many of istic for most practical situations. Moreover, whereas in the past
its prior instances in practice use this external write-once medium tamper resistance implied low performance, products such as the
once a day or so — as well as the requirement that everyone need$CIXCC coprocessor make a hardware A2M implementation po-
on-line access to the trusted A2M service provider. Applications tentially the best performing one — albeit most expensive —among
with fairly slow request rates such as shared backup services, long-our scenarios. Nevertheless, pervasive hardware implementations
term digital preservation, or certificate authorities may be able to of new programming abstractions tend to be slow to arrive, slow
absorb the high-latency interaction with A2M in their relatively in-  to change, and slow to turn into commodities, making this a more
frequent state changes. tenuous scenario, except for the most sensitive applications.
Figure 4(b) presents a more decentralized approach, in which In this paper, we experiment with a software A2M implementa-
the A2M implementation relies on the software-based isolation be- tion. Values stored within A2M logs can have a configurable fixed
tween A2M and an A2M-enabled application. This approach takes size, e.g., 32 bytes. The A2M sequence number field needs to have
advantage of programming language type and memory safety for a size large enough to hold sequence numbers of long-running ap-
isolation. Therefore, A2M can be implemented as a library. For in- plications (e.g., 160 bits). We implement authentication based on
stance, in the Singularity [19] operating system, the A2M module both digital signatures and MACs (with a slightly modified inter-
would be a program that runs as a separate software-isolated proface from that in Section 3.1), though we describe the digital sig-
cess in the same address space. If the Singularity isolation mechanature version of all protocol designs for simplicity.
nism is trusted, it is possible to trust A2M even if the A2M-enabled
application is untrusted. Similarly, in the Java Virtual Machine
(JVM) [3], an application using A2M runs in a sandbox, which 4. A2M STATE MACHINE REPLICATION
constitutes a safe execution environment. The assumption is that PROTOCOLS

if the JVM interpreter, JVM core classes, and an operating system |n this section, we present state machine replication protocols
that runs the JVM can be trusted, A2M can be trusted, even if the through the use of A2M, improve their fault tolerance by rendering
A2M-enabled Java application is not. Though the isolation is no equivocation extinct or evident. First, in Section 4.1, we present a
longer physical as with the scenario of Figure 4(a), communication prief overview of the salient features of Castro and Liskov’s PBFT
between the application and A2M is fast since they are both in the protocol for replicated state machines. Second, in Section 4.2, we
same address space. present a simple extension of PBFT, in which A2M protects clients
Figure 4(c) presents the A2M implementation that relies on the from the replicas’ misbehavior, retaining PBFT’s safety and live-
inherent fault isolation properties of a virtual machine monitor ness for up tOL%J faulty replicas out ofN, but also guaran-
(VMM). In the figure, the A2M module is a user-space program (eeing safety without liveness for up & 2= | faulty replicas.
running on a small, verifiable operating system on top of a VMM.  gecond, Section 4.3 goes further to protect not only clients from
As long as the VMM and the mini-operating system are trusted t0 gpjica misbehavior in PBFT, but also replicas from each other, al-

be exploit-free, it is possible to trust the A2M abstraction, even lowing the fault tolerance of the protocol to go up“yflj with
if the application and its general-purpose operating system are bothsafety and liveness. 2

compromised. For instance, the virtual Trusted Platform Module
(VTPM) [11] has this architecture. Communication between the ap- 4.1 Background; PBFT
plication and A2M is only subject to VMM-optimized RPCs, which
systems such as Xen [10] make very efficient.

Further reducing the trusted footprint, the A2M implementation
could be placed within the VMM, as in Figure 4(d). Here, the as-
sumption is that a small VMM (or, indeed, a microkernel) can be
carefully implemented (or formally verified) as bug-free, isolating
the correctness of the A2M implementation from potential oper-
ating system or application errors above the VMM. For instance,
Xen'’s trusted hypervisor interfaces [10] could host such an imple-

Castro and Liskov’s PBFT protocol [13] is a replicated, fault-
tolerant mechanism for implementingstate maching37]: an ab-
straction that represents a deterministic service, in which a starting
state (e.g., an empty database) and the sequence of read-compute-
write operations at the service determine precisely the state of that
service at the end of the operation sequence. Such state machines
are relatively straightforward to implement on a single, single-
threaded server at an individual computer, though any faults at that
computer always cause a service failure. For fault-tolerance rea-

ggg;a“zgiﬂczr;zngér?oﬁgI\é“gmggﬁ{oﬁlctgfscfviuci:% ?;gitc%f ?c())rn- sons, it often makes sense to implement the state machine abstrac-
ng 7 Y ! . P . tion over a population of such potentially faulty computers inter-
applications such as file systems or transaction processing SyStemS(:onnected via a potentially faulty network. hoping that even if some
Finally, Figure 4(e) places the A2M within the hardware itself. P y y » oping

Since it tends o be much harder to coerce a hardware moclulecomputers fail, the service as a whole can continue functioning cor-
10 operate aqainst its specification than it is for software mod- rectly. Unfortunately, implementing the state machine abstraction
ulespespeciagllly without ghysical access to the hardware, this sce_over such a population and network is no simple task. In PBFT,
nario provides the greatest level of trust in A2M. Hardware im- each participating computer implements the entire state machine

plementation options might be to extend a standard Trusted Plat_or_1 its local replica of the service state, and replicas communicate
form Module (TPM) with some additional non-volatile RAM or an with each other to ensure that they all execute the same sequence

of operations, and mask individual computers’ faults. We describe
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Figure 5: Three-phase agreement protocol. Thicker lines denote essages that are attested to using A2M.

the protocol in more detail below. When replica: has out-of-date service state (e.g., due to tran-
In PBFT, a client ¢ multicasts a request message sient network partitions or because it is slow), it can catch up with
(REQUEST, 0,t,¢)c,r,1 10 the N service replicas in replica set the rest by retrieving missing committed requests, along with their
R, whereo is the operation requested, ahid the timestamp. The committed certificates, from another, more up-to-date replica. If
client accepts a reply for its request (and only then can submit an- other replicas no longer have those certificates in their logs due to
other) when it receiveE%J +1 valid matchingRepLy messages, garbage collection, the lagging replica can fetch the latest stable
forming the reply certificate (RepLy, v, n,t,c, T>R,c,L%J+1‘ checkpoint and certificate, and then any subsequent committed re-

wherew is the view numberr is the assigned sequence number, dquests after that checkpoint.

andr is the result of the request. iewis a particular assignhment Finally, PBFT has a view-change protocol that changes the sys-
of roles to replicas: the single actiyarimary vs. the passive  tem’s primary when the primary is suspected faulty. When backup
backupswhen the primary changes, so does the view number replicai in view v times out waiting for a request to commit, it sus-

Replicas linearize requests via a three-phase agreement protofects the primary as faulty, and multicastgta (VIEwCHANGE, v+
col (Figure 5(a)), starting when the primary (chosen to be the 1.7,s,C,P)i r,1 message, where is the sequence number for
replica with identifierp = v mod N) multicasts toR a newly the latest stable checkpointjs the digest of the stable checkpoint,
received request messageg, encapsulated within a message C is a stable checkpoint certificate, aftis a set of prepared cer-
(PREPREPARE v, 1, T¢q)p, r,1. When backup replicareceives this tificates whose sequence number is higher than .
PREPREPARE it multicasts toR a (PREPARE v, n, 1eq);, r,1 MES- _ _When anew p”marﬂ(: v+1mod ]\_7) collects a new view cer-
sage. Once replicg has collected?| Y1 | + 1 PREPREPARE tificateV’ that consists o2 | Y- | +1 valid ViEwCHANGE messages
or PrRePARE messages from distinct replicas for this request containing correct” and P, it multicasts toR a (NEwVIEW, v +

(which constitute theprepared certificatefor this request of the ~ 1,V,O)p r1 message, wher® is a set ofPRePREPARE Messages
form (PREPARE v, 7, 7eq)  p s N=1,,,), the request becomes in the new view. To determin®, let ¢ be the sequence number of
2L T

prepared  To complete the protocol, a replica with a pre- the latest stable checkpoint i, and letu be the highest sequence
pared request then multicasts % a <’COMMIT v, 1, Teq)5.R1 number inP. For each sequence number betwéen1 andw, the

message. When replica collects 2| Y1 | +’ 1’ éuch Jﬁwés— primary creates 8RePREPAREMeSsage if a prepared certificate ex-
sages (which constitute theommitted c3ertificateof the form istsinV, or aPREPREPAREMeESSage for a no-op operation otherwise

; . to skip that sequence number in the new view).
ComMMIT _ , the replica has established the ( . . . -
{ 10T Teq>RvRv2th 1J+1) P When a backup replica receivesNawView message, it verifies

Iinearize(_:i sequence for this request, commit_ting to execute it as O is correctly computed by performing the same procedure as the
soon as it can; this concludes tagreemenportion of the PBFT primary. If the message is valid, the replica adds the new infor-

protocol for this request, whose purpose is to ensure that the repli- 40 to its log, logs and multicasts fo PRErARE messages for

cas agree on a single operation sequence for the service, as morg ., message if, and enters view + 1. The backup processes

clients submit requests for further operations. _ messages with a view numberhigher than the current view only
Areplica can execute the requestinits local state as soon as it hasygar it receives a valitiEwV iEw message fov'.

finished executing the committed requests for all sequence numbers

lower thann. It packages the result inRerLY message, which it 4.2 A2M-PBFT-E
sends to the client directly. When the client has received a quorum
of such matching replies — the reply certificate described above —
the executiorportion of the protocol concludes; the purpose of the
execution portion is to represent to the client accurately the service
state (and reply to the client’s request accordingly), as determined
by executing the sequence of operations that the agreement proto
col portion maintains.

Though the request log can itself represent the service state,
replicas periodically garbage-collect their operation log to reduce .
storage consumption: they create a checkpoint of their local state 4.2.1 Design
at a particular sequence numberand a cryptographic hashof Replicas: An A2M-PBFT-E replica: maintains all state main-
that state. When replica creates such a checkpoint, it multi- tained by a PBFT replica, as well as an A2M log for what it believes
casts toR a (CHECKPOINT, 7, 5,1);, r,1 Message. Once it has col- ~ as the agreed request sequence; that log has idenjifieDther
lected a checkpoint certifica@EHECKPOINT, n, 8) 1oy -1 |y, replicas and clients identify this replica as a p@ir4 2M ;) of prin-
the replica deems that checkpoint “stable,” and truncates its opera-c'pals'l for the replica r)ode itself, and 21/ for the replica’s A2M
tion log up to sequence number module_. As a convenience, we _uA@MR to mean the set of all

A2M principals used by replicas iR.

In this section, we describe A2M-PBFT-E, a simple extension
of PBFT that uses A2M logs to protect the execution portion of
PBFT (hence the “E” suffix of the acronym); that is, it ensures that
replicas cannot equivocate about their locally computed results for
a particular requested client operation when replying to that or any
other client (Figure 5(b)). As before, we consider a populafibn
of N replicas.



An A2M-PBFT-E replica is functionally identical to a PBFT
replica with regards to agreement, but differs on protocol aspects
that involve execution, namely client interaction and checkpoint
management.

Once replica collects a committed certificate for sequence num-
bern, it executes the requestq on its local application state ob-
taining resultr, it appends the associated request to itsgogith
append(qi, h(req)), and uses ookup(gi, n, n) to obtain the A2M
attestation (LOOKUP, i, n, n, h(req), ASSIGNED 1, d) A2m, R,1-
Finally, it packages the regular PBFT reply message and the
attestation into a single message, which it sends back to the client.

As per PBFT, replica ¢ performs garbage collec-
tion on its log and A2M request history by exchanging
CHECKPOINT messages. When replica creates a check-
point, it multicasts to R a ({(CHECKPOINT,n,s,d’ i) Rr.1,
(LOOKUP, ¢;, m, n, x, ASSIGNED 1, d) A2, R,1) message
where n is the sequence number of the last executed re-
quest to produce the checkpoint state,is the state digest,

d is the A2M digest for sequence — 1 (need not be at-
tested), andz is the hash of then-th committed request.
The checkpoint becomes stable when a replica collects a
checkpoint certificate <<CHECKPOINT,TL,S,d/>R7R_’2L¥J+1,
(Lookup, n, n, z, ASSIGNED n’d>A2MR,R,2L¥J+1>' The
replica adds this information to its log, removes all messages
with sequence number up to from the log, and performs
truncate(qi,n).

When replicai performs a state transfer, it performs the regular-
PBFT process of fetching and installing a state with a stable check-

point certificate and subsequent agreement messages into its mesz-L

sage log. In addition to this, an A2M-PBFT-E replica must also up-
date its A2M request log, by performinglvance(g;, n,d’, z), and
thenappending all subsequently committed requests in ascending
sequence order.

Clients: In A2M-PBFT-E, a client ¢ is identical to
a PBFT client, except it expects from replica re-
ply messages of the form ((RePLY,v,n,t,c,T)ic1,

(LOOKUP, ¢;, m, n, h(req), ASSIGNED n, d) a2nr; R,1)  for its
pending requesteq. This is the PBFTRepLY along with the A2M-
attested content of the-th A2M log entry at the sender. To con-
sider its request completed and accept the result, a client waits until
it collects a reply certificatd(RepLy, v, n,t,c,r)
(Lookup, n, n, h(req), ASSIGNED, nvd)AzMR,R,2L¥J+1>'

Note that the size of the reply certificate2is™ - | + 1 in A2M-
PBFT-E, as opposed to™~* | + 1 in PBFT. However, the popu-
lar read-only optimization in PBFT — in which read-only requests
can be answered by replicas immediately upon reception without
a three-phase commit — also requires replies of 8{Z8-1 | + 1,
making this difference moot in practiée.

R,e,2| NFL 410

4.2.2 Correctness

At a high level, we show that if at mogt®>2 | replicas are
faulty, AZM-PBFT-E does not cause clients to accept more replies
than they would under PBFT (therefore does not violate safety)
and does not block operations that would have proceeded in PBFT

4A2M-PBFT-E supports this read-only optimization by replacing
Lookup attestations wittEnp attestations in the client reply, and
using a client-supplied nonce in the attestation, when handling a
read-only request; this proves to the client that the result provided
is drawn from the latest state of the service, rather than an ear-
lier state (in which case, faulty up-to-date replicas would have ad-

(i.e., does not remove liveness). When the number of faulty repli-
cas ranges betwegr' | + 1 and2| &5 |, we show that A2M-
PBFT-E can only assign to any sequence number a unique client
request, and that the reply delivered to clients for any sequence
number is that which a non-faulty replica would have produced
processing the sequence requests in order.

Case 1:When no more thap; | replicas are faulty, the safety
of A2M-PBFT-E follows from PBFT’s safety: A2M-PBFT-E at-
testations in replies at worgreventa client from accepting a re-
ply that PBFT would otherwise accept (if tiRepLy portion of the
message matches but the A2M portion does not); A2M-PBFT-E at-
testations never cause what would have been an unacceptable set
of REpLY messages in PBFT to be acceptable. The same holds for
liveness, since the addition of the A2M log attestatiorRi&pLy
messages cannot hinder progress: there exist atil@g%}lj +1
non-faulty replicas that maintain their A2M request logs correctly,
and as a result, there always exists a quorum[@fg—lj + 1 repli-
cas that can provide clients withRerLy certificate. Replicas can
also create a stable checkpoint since there always exists a quorum
of 2L%j -+ 1 non-faulty replicas to produce @HEckPOINT Cer-
tificate.

Case 2:When faulty replicas are more thaA’;* | and no more
than2| &1 |, we argue inductively that for every sequence num-
ber, any non-faulty client can only accept a unique request — which
establishes that there exists a single linearized schedule of requests
— and can only accept the correct result value for that linearized
schedule. In the base case, consider a client acceptingor se-
quencen = 1. Since the correspondirgerLy certificate (of size
%J + 1) includes at least one non-faulty replica, the reply and
result certainly correspond to what that non-faulty replica would
do with a singleton schedule containing onlyy;. Suppose an-
other non-faulty client accepts a different request. and result
for the same sequence number= 1. Such a client would also
possess a vali@epLy certificate of the same size; the two certifi-
cates contain at least one replica in common. However, since that
replica is bound by A2M to supply the same A2M log entry to both
clients, the A2M attestation of that replica present in the two certifi-
cates must be identical, which means that the two certificates must
match; this meanseq; = reqz, since the request hashes using a
collision-resistant hash function also match. This is a contradiction,
so there can be no suehgz.

The inductive step for sequence number 1 given a linearized
schedule up ta is similar. Any two clients accepting a reply for
n+1 will have matching requests for that sequence number (as wit-
nessed by the matching request hashes in the two log attestations),
andmatching request histories up to that sequence number (as wit-
nessed by the digedtin the A2M log attestations). Therefore, the
result computed by the non-faulty replica in each of the two reply
certificates must correspond to the same request history and, due
to the deterministic nature of the state machines we consider here,
must produce the same result.

Replicas participating in a reply that have used the state transfer
mechanism at some point in their history do not affect this correct-
ness argument. After accepting a stable checkpoint certificate, a
replica has am-th A2M log entry that is identical to all the replicas
in the checkpoint certificate, including at least another non-faulty
replica. Furthermore, the state described in the checkpoint is that
held by at least another non-faulty replica.

4.2.3 Discussion
In the A2M-PBFT-E presentation above, A2M is used to protect

vanced their committed request log beyond the attestation they areonly the sequence of committed requests, as they are presented to

required to return freshly).

clients inRepLY messages. However, when faulty replicas are at



IeastL%J + 1, they can confuse non-faulty replicas by equivo- contains PREPREPARES) and CommiT for the three-phase agree-
cating during agreement. For example, in Figure 2, the use of A2M ment, CHeckpPoINT for garbage collection, andiEwCHANGE and
will not prevent the faulty replicas from causing non-faulty replica NewView for view changes. Before sending any such PBFT mes-
ro to place requesteq,, in its A2M positionl and, at the same time,  sage(M), an A2M-PBFT-EA replica inserts that message to the
causing non-faulty replicaz to placereg, in its A2M at the same corresponding message loga,; (via anadvance call), uses
position. Though no client will accept inconsistent replies (since | ookup to obtain an attestatiof€) 42u, r,1 for that message, and
reply messages contain A2M attestations), the replicas themselvessends((M), (£) a2um,,r,1) t0 the intended destination. Conve-
are not protected. For the purposes of the protocol, one of the two niently, a message that has been committed to A2M in this way
non-faulty replicas effectively becomes faulty when convinced to need not itself be authenticated to its destination principal; the
adopt a fork in the request history. A2M attestation of the message hash is enough to protect that mes-
The great benefit of A2M-PBFT-E is that such misbehavior sage from integrity attacks and to make it non-repudiable. Non-
causes the system to stop making progress but not to violate its cor-attested messages still need to be authenticated as before. Since
rectness breaking linearizability. In the simplest scenario, an oper- message logs are typically used for individual attestations and not
ator who notices lack of forward progress can take the system off- for message histories, anlvance call is sufficient, as opposed to
line, identify the history fork (where committed histories diverged), anappend.
repair the divergent replicas, change their A2M log identifiers, ad- A non-faulty replica might have to send multiple versions of a
vance their new A2M logs to an earlier correct sequence number PREPREPAREPREPAREOr a CoMMIT message for a given sequence
from which A2M-PBFT-E can do state transfers, and restart the numbern, but for different views. The protocdlattensthe (v, n)
system with no loss beyond transient unavailability and human ef- identifier of such messages to fit them in the A2M log entry se-
fort. guence space, by partitioning log sequence numbers into two parts:
However, a natural next step is to remove this denial-of-service the x most significant bits (e.g., 64 bits) represent a view num-
attack from the arsenal of the adversary, by ensuring that the agree-ber while the remaining, bits (e.g., 96 bits) represent a PBFT
ment portion of the protocol is itself also protected from equivo- request sequence number. The log entry number fBrREPRE-
cation. In the next section, we describe A2M-PBFT-EA, a PBFT PARE/PREPAREOr COMMIT message about viewand sequence num-
extension that protects not only the execution portion (i.e., client- bern is thenn + v2¥; we use{v|n] to denote this flattened number
facing messages) against equivocation, but also the agreement porin what follows. Note that the A2M module is oblivious to this
tion (i.e., replica-facing messages), thereby increasing the fault tol- “overloading” of its sequence number space; no changes are re-

erance of PBFT with both safegndliveness. quired to the A2M interface.
To illustrate the concepts of message attestation and iden-
4.3 AZM-PBFT-EA tifier flattening, we present as an example the prepare phase
To protect against equivocation during agreement, A2M-PBFT- of A2M-PBFT-EA. Where a PBFT replica would send the
EA (the “EA’ suffix stands foExecutior-Agreemerjtrequires repli- PREPARE messageprep = (PREPAREw,n,req), an A2M-

cas to append to A2M logs all protocol messages before sendingPBFT-EA replica commits the message to its correspond-
them to their peers (Figure 5(c)). Unlike the history log, message ing log m, by invoking advance(m,,[v|n],0,h(prep)),
logs need not protect a sequence of entries, but only an individual extracts the correspondingLookup attestation att =
message; therefore, A2Masdvance is used to place a message (Lookup, my, [v|n], [v|n], h(prep), AsSIGNED [v|n], d’) a2m;, R,1,
into an A2M message log, as opposedatpend. Unlike A2M- and then bundles and sen@sep, att). When an A2M-PBFT-EA
PBFT-E and PBFT, which can have multiple requests in flight at replica receives such an attesteRErARE message, it verifies the
the same time, in A2M-PBFT-EA we require that non-faulty repli- A2M authentication, and then checks that the value attested is the
cas handle one request at a time, in increasing sequence-number ohash of the include®rerARE message. When a replica collects
der? This ensures that messages are appended to their correspondt -1 | + 1 such messages that matety for the same sequence
ing A2M logs in the order of their corresponding sequence number. numbern and vieww, the request is prepared. The commit phase
By protecting protocol steps from equivocation, A2M-PBFT-EA is similar to the prepare phase described. The checkpoints, state
requires only one — potentially faulty — replica in the intersection transfer, and execution portions of A2M-PBFT-EA are the same as
of two quorums. Note, in comparison, that PBFT requires at least with A2M-PBFT-E, except for the addition of message attestations
onenon-faultyreplica in the intersection of two quorums. in certificates and the different quorum sizes.

When configured with A2M-PBFT-E’'s quorum sizes, A2M- View Change: View changes are different from PBFT and A2M-
PBFT-EA has the same safety and liveness properties as A2M-PBFT-E. In PBFT, the quorum forming MewVew certificate is
PBFT-E. In what follows, we instead present A2M-PBFT-EA with guaranteed to contain at least one non-faulty replica with the latest

quorum sizes that allow it to tolerate up {té’> | faults with both committed requests, thanks to the quorum size and the maximum
safety and liveness. number of faulty replicas. In contrast, the A2M-PBFT-EA quo-
. rum size can guarantee, in the worst case, that a single potentially-
4.3.1 Design faulty replica with the latest committed requests will participate
Clients: An A2M-PBFT-EA client is similar to an A2M-PBFT- in the view change. To address the challenge, an A2M-PBFT-EA
E client, but it expects reply certificates of sik@;—lj + 1 instead replica must be forced to give its latest A2M-committed informa-
of QL%J +1. tion, which requires a fresh, shared nonce in the assodiat@d.ip

Replicas: All certificates (for prepared and committed requests, A2M operations. To accomplish this, the protocol requires an ex-
for view changes, and for checkpoints) in A2M-PBFT-EA have size tra phase before the normal view-change protocol, which enables

L%J + 1, as opposed tm%j + 1in A2M-PBFT-E. replicas to construct a fresh nonce for the subsequent phases (via
In addition to a committed request history log, an A2M-PBFT- WANTVIEWCHANGE messages). For similar reasons, the protocol
EA replicai maintains five message log®repArRE (Which also must ensure that replicas committed to a view change (as evidenced

by their issuance of an attesteédwCHANGE message) cannot sub-

5 . . .
PBFT offers a runtime setting (the high- and low-watermark val- - goquently help commit requests in the previous view. Therefore,

ues) that can be configured to guarantee this requirement.



a VIEWCHANGE message in A2M-PBFT-EA requires the sending The state is captured by a set of version structures, each of which is
replica to explicitlyabandorthe previous view: a replica does this  owned by a client (principal) and contains a hash that summarizes
by advanceing its CommiT message log to the end of the old view the whole state on which the client operates.

and attesting to this advancement withiniis wCHANGE message. To perform an operation (read/write on a file), a SUNDR client
We present the detailed A2M-PBFT-EA view change protocol in  submits to the server its intended request, calledahate certifi-
Appendix A. cate The server assigns an order to the request relative to pending
operations that have not committed yet, and returns the latest com-
4.3.2 Correctness mitted version structures and ordered pending update certificates.

At a high level, A2M-PBFT-E and A2M-PBFT-EA differintwo  The client ensures that the state transits correctly forward from its
fundamental ways: on one hand A2M-PBFT-EA has smaller quo- last committed version the server gives via a sequence of pending
rum sizes, but on the other hand, it requires all protocol messagesoperations. The client can then perform its operation locally, poten-
to be attested to from an appropriate A2M log before use. How- tially fetching missing blocks by following digests of the hash tree,
ever, the argument presented in the case 2 of Section 4.2.2 alsccompute and sign a new state digest creating a new version struc-
applies to the safety of A2M-PBFT-EA. It guarantees safety with ture, and return it along with changed blocks to the server. The
up to | Y1 | faults since clients accefepLy certificates of size server stores the new version structure and modified blocks.

L%J + 1. As described in simpler terms in Section 2.4.1, a SUNDR client

To show that A2M-PBFT-EA is live despite up 8’5 | faults, cannot ensure that the server sends it the_ latest state resulting from
we show a new safety invariant that is not necessary for lineariz- the committed history of requests; though it cannot remove requests
ability: all non-faulty replicas agree on a single committed request from the middle, the server can still chop off the tail of history
sequence. That is, a faulty replica cannot convince two non-faulty Past the last request known to that client, and start a new “fork”
replicas to commit to their respective A2M request logs different N that history, specific to Fhe client. Until two clients on dlfferent_
requests for the same sequence number. The argument is split into &NStory forks compare their notes, they cannot know the system is
same-view case and a different-view case. For the same-view caseN©t linearized. This is what makes SUNDR only fork-consistent
it follows backwards the agreement process from appending a re- but not linearizable.
quest to the log, to emitting@ommIT message, to emitting Rre- .

PARE message, showing that for two different requests to be placed 5.1.2 Design

in two non-faulty replicas’ request logs, some A2M must be faulty, =~ A2M-Storage can be simpler than SUNDR, and guarantees lin-
which is incompatible with our fault model. For the different-view ~€arizability instead of only fork consistency, thanks to the use of
case, the argument is similar, but must also traveiseViEw cer- the trusted A2M module, which affords clients the ability to de-
tificates; view abandonment in such certificates helps show that it mand the latest committed request on a history, via a feeeh

is not possible for a single replica (faulty or not) to have an attested attestation.

CommIT message for one request in one view, and at the same time The server maintains a version block, a snapshot of a file system
support a view change feigning ignorance for that message, leadingcaptured by a Merkle tree, and two A2M logs. A version block

to a contradiction. The argument is highly technical, so we defer it holds a state digest (i.e., the root hash of a snapshot) computed as

to Appendix B. for SUNDR and a sequence number that tracks the latest A2M log
sequence number with a signature signed by the latest writer. A2M
5 OTHER A2M PROTOCOLS has logg;, for the write request history, and lag for digests of ver-

] ] ) sion blocks, one for each state version generated by the application
In this section, we describe A2M-Storage, an A2M-enabled stor- of writes to the state. Each write/read request is associated with a
age system on a single untrusted server shared by multiple clients.|ogical timestamp, of the fornfseq, atts. scq, atts <cq), CONtaining
Thanks to the use of a trusted AZM module, A2M-Storage provides the request sequence number, the A2M attestation from the request
linearizability in contrast to SUNDR's weaker fork consistency and  pjstory logg;, when that request was appended, and the A2M attes-
is simpler than SUNDR. We then briefly sketch how A2M can be  tation from the state version lag when that request was executed.

used with Q/U to improve its fault tolerance. The client remembers the latest timestamp it has seen.
_ An A2M-Storage client performs write operations optimistically,
5.1 A2M Storage assuming the timestamp it knows is the latest. When it submits a
write requestreq for sequence numbet, it also submits a nonce
5.1.1 Background: SUNDR questreg 'or €9

(for freshness), its known timestamp on whiely is conditioned,

SUNDR targets the same problem as PBFT: linearize client re- and a new version block with sequence numbearbtained after
quests and ensure that the service state used to respond to eacxecutingreq. If the conditioned-on timestamp has not changed,
request corresponds to a correct system having executed this lin-the server modifies the state accordingly, stores the new version
ear request history. In PBFT, agreement is used among replicasp|ock that the client sends, and appends the request and state ver-
to obtain a linearized request order. The presence of at least onesjon digests to A2M logsg, andgs, respectively. In other words,
non-faulty replica corroborating a reply to the client ensures that execution of the request is conditioned on the latest timestamp at
the agreed upon linearized order has been executed correctly prothe server being the same as that known by the client. The server
ducing the result in the reply. Unfortunately, in a single-server en- then forms its response, containing a success ddeattestations
vironment such as SUNDR's, there is no non-faulty replica trusted from the two logs, and a proof that the operation was committed to
to execute linearized requests; instead, the clients must trust eachhe service state using the state digest function. The client accepts
other and cooperate to check themselves that requests are properlyhe response if the attestations and stage digest proofs are valid.
linearized and execution is performed correctly at the server. If however the client had a stale timestamp, indicated by a failure

A SUNDR server maintains the current service state (a snapshotcode in the response, it updates its timestamp with the one returned
of a shared file system), which is represented by Merkle tree<[32].

What is important is that an entire file system can be cryptographi-
®We omit the details of how files and directories are organized. cally digested and verified against a set of digests efficiently.



by the server, and tries again potentially after fetching fresher state
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blocks and potentially backing off in case of write contention. Y E———- S
An A2M-Storage client performs read operations that include és L 1L ) |
nonces. The server returisp attestations from the two A2M logs Al 1 [ AAeerree® |
whose freshness is proven by a nonce, the version block to which 5 A2M-PBFT-EAMAC) ---*---

i ; 3| | | A2M-PBFT-E(MAC) - |
the last A2Mg; entry points, and a proof that the read contentis @ ™ PBFT - & -
the valid part of the current snapshot. Note that the version block  §2 -
should include the same sequence number as the A2M attestation ag b
sequence number to be valid. 0

Instead of the optimistic, one-phase version of the protocol, a 0 1 2 3 4 o 1 2 3 4
pessimistic two-phase version is straightforward as well, in which Request size (KB) Response size (KB)

clients always fetch a “grant” to perform their operation at a par- Figure 6: Microbenchmark results varying request (left) and
ticular sequence number, and then submit their operation with a response (right) sizes, measured in KBytes.

guarantee of success, as per SUNDR.

In terms of its software architecture, A2M-Storage is similar to out of5f + 1 total replicas) accept its request, makingamplete
a version of SUNDR that entrusts the task of ordering requests If fewer than2f + 1 replicas have accepted the client’'s request,
and maintaining version structures to a separate, trusted compo-then it isincompleteand the client tries again after some back-off.
nent called a consistency server. In A2M-Storage, this task is “em- When a client receives matching replies from betw2¢én+ 1 and
ulated” with the help of A2M, a general-purpose abstraction that 4f replicas, the request iepairable A client attempts to repair
works not only for SUNDR but also for other systems as we have a repairable request, by trying to see if enough other replicas exist

demonstrated in other sections. to make it complete, or by trying to convince other replicas to ac-
cept it. If a client’s operation is complete, the protocol guarantees
5.1.3 Correctness that, in any other quorum in the system, that operation would be

A2M-Storage clients and server need maintain far less state thanfepairable, a fundamental invariant for Q/U’s linearizability guar-
is necessary for SUNDR: clients only require a single global times- antee.
tamp, instead of per-client version structures. Yet, A2M-Storage ~ Q/U’s linearizability properties stem from the sizes of the pop-
provides linearizability, because a client accepts a write operation ulation NV, quorums@, and repairable set®, given the number
as complete only when the server proves that the request is com-/ Of tolerable faults. A quorum must be always available even if
mitted to its A2M logs — and A2M logs are trusted not to violate &l faulty replicas remain silent — implying/ > @ + f (1) —all
linearization. Similarly, a client accepts a read operation response quorums must intersect over a repairable set, excluding all faulty
as complete only when the response carries the latest timestampreplicas —implyin@ — N > R + f (2) —and all quorums must
whose freshness is attested by the A2M module. intersect over at least one non-faulty replica of all repairable sets of
We show informally that there exists a sequential history of ac- Other quorums —implying + & — N > f (3).
cepted writes, and that each read is partially ordered to the cor- A2M's contribution to Q/U is that, by having replicas place ac-
rect immediately preceding write. When a write operation is ac- cepted requests into A2M logs and having clients requir&wn
cepted by a client, we know that the operation is committed to A2M attestation before accepting a replica’s response, the sizes of quo-
right after the conditioned-on timestamp. By following a chain of rum and repairable set intersections can be reduced. Essentially,
conditioned-on timestamps backwards, we can construct a single/ 1 1 replicas form a repairable set since faulty replicas commit to
history of accepted client write operations. In addition, when a ©ne history with A2M and they cannot form a repairable set with
read is accepted by a client, we know that the read response caron-faulty replicas with an old history. Therefore, the above con-
ries the latest committed state version. The read operation can bedition (3) changes t&) + R — N > 1. An A2M-enabled Q/U
placed right after the write that produces a state version attestedProtocol can toleratg faults with vV = 4f +1,Q = 3f + 1, and
by A2M and on which the read depends. Therefore, there exists a2 = f + 1, reducing the replication factor required frofrto 4.
linearizable history of accepted write and read operations. We defer the full details to an extended version of this paper.
Since there is only one server, there is no guarantee on liveness
when the server fails. Moreover, due to the nature of optimistic pro- 6. EVALUATION

tocols, A2M-Storage does not provide any guarantees on fairness |n this section, we evaluate the overhead of applying A2M to

among clients; a greedy client can overuse the system. BFT state machine replication. We have implemented A2M-PBFT-
E and A2M-PBFT-EA (without its view change algorithm) in C/C++
5.2 AZM'Q/U with a BFT library [13, 36] ported to Fedora Core 6 and the SFSlite

The Query/Update protocol (Q/U) [6] is a quorum-based BFT library [4]. The A2M protocols have versions that use signatures or
replicated state machine. It offers an optimistic protocol that com- MACSs for authentication.
pletes client requests in a single round-trip message exchange be- We ran our experiments with four replica nodes for A2M-PBFT-
tween a client and the replicas, in the absence of faults and write E and one client node. For A2M-PBFT-EA experiments, we use
contention. At a very high level, Q/U is similar to A2M-Storage three replica nodes to tolerate one fault. The replica nodes are
(with more than a single server): the client sends a request along1.8GHz Pentium 4 machines and the client node is a 3.2GHz Pen-
with its view of all replicas’ latest timestamps, each of which con- tium 4 machine. All machines are equipped with 1GB RAM and
tains a replica’s history. Each replica commits the request if its lo- 3Com 3C905C Ethernet cards, and are connected over a dual speed
cal timestamp is compatible with the client’s view; otherwise, e.g., 10/100Mbps 3Com switch.
if another client has already advanced that replica’s state with an- A2M uses SHA-1 as its digest function (also used for MACs),
other conflicting update request, the replica refuses to execute theand NTT’s ESIGN with 2048-bit keys for signatures. On a 1.8GHz
request and sends back its latest replica history. A client is satis- machine, signature creation and verification of 20 bytes take on
fied about its request’s linearization if a quorum of replichg 1 averageb6us and194 s, respectively.



NFS -S| -PBFT | -A2M-PBFT-E | -A2M-PBFT-E | -A2M-PBFT-EA | -A2M-PBFT-EA
Phase (sig) (MAC) (sig) (MAC)
Copy 0.219| 0.709 1.026 0.728 2.141 0.763
Uncompress| 1.015| 3.027 4.378 3.103 8.601 3.236
Untar 2.322| 4.448 6.826 4.553 12.896 4.669
Configure 12.748| 12.412 19.173 12.659 26.181 13.040
Make 7.241| 7.461 9.778 7.500 11.379 7.510
Clean 0.180| 0.298 0.640 0.312 0.742 0.311
Total 23.725| 28.355 41.821 28.854 61.940 29.528

Table 1: Mean time to complete the six macrobenchmark phases in sewads.

Additional NFS-| A2M-PBFT-E A2M-PBFT-E A2M-PBFT-EA A2M-PBFT-EA
latency (us) (MAC) (MAC) with batching (MAC) (MAC) with batching
1 28.854 28.763 29.528 29.505

10 29.598 29.025 31.299 30.188

50 32.735 30.232 36.242 32.214

250 48.784 37.237 66.441 45.199

1000 117.59 65.813 192.53 101.62

Table 2: Mean time to complete the six macrobenchmark phases in saads for different A2M additional latency costs.

All experiments used A2M as a library in the same address spacefigure), 5) compile the package by running makeake, and 6)
as the PBFT protocol and the user application. However, dependingclean up the built object and execution filete@r). The workload
on the A2M implementation scenario (see Section 3.3), A2M oper- includes 8790 read-only BFT operations out of a total of 14500
ations will experience a different additional interface latency cost. operations invoked.
To account for the costs in accessing A2M, we impose by default We compare six NFS¥ protocols, whereX is the name of the

1us of delay, which is a conservative system call laténfyig- back-end protocol implementing the NFS interface. In addition
ure 4(d)) or a cross-SIP communication latency [18] (Figure 4(b)), to PBFT and our four A2M-enabled variants, we also run NFS-S,
to each A2M request using the Pentium RDTSC instruction. which uses a single server without replication. Table 1 shows the

In our experiments, we compare PBFT to A2M-PBFT-E and average time to complete each phase, out of 10 runs. The standard
A2M-PBFT-EA, using two A2M implementations: one using sig- deviations of all results are within 4% of the mean. NFS-PBFT is
natures for authentication (denoted “sig”) and one using MACs (de- 19.5% slower than NFS-S. NFS-A2M-PBFT-E (MAC) and NFS-

noted “MAC”). Shown PBFT measurements used MACs. A2M-PBFT-EA (MAC) are 1.8% and 4.1% slower than NFS-
. PBFT, respectively, whereas NFS-A2M-PBFT-E (sig) and NFS-
6.1 Microbenchmarks A2M-PBFT-EA (sig) are 47.5% and 118.4% slower than NFS-

We use a simple microbenchmark program, which is a part of PBFT, respectively. Overall, NFS-A2M-PBFT-E (MAC) and NFS-
the PBFT library. A simple client sends 100,000 null operation re- A2M-PBFT-EA (MAC) achieve significantly better fault tolerance
quests of size bytes to replicas, which elicit replies of sizdytes at a slight increase in cost over PBFT.
fromreplicas. We ran experiments wiits andb’s varying between

0 and4000. Figure 6 plots the results. In all cases, operation turn- 6.3 Effects of A2M Placement
around times grow at the same pace with request/response sizes To explore the associated costs of other A2M implementation

astirr: PEF-[.’ with an zti.dditivi/loA\grhead.duet o the addjtiodnaI'AAzzl\D\IA scenarios, we impose delays to each A2M request, varying delay
authentication operations ( $ or signatures) required. " duration from10us (for the order of magnitude of typical inter-

PBFT-E (MAC) and A2M-PBFT-EA (MAC) add a small extra cost process communication) tbms (for the order of magnitude of
because of the relative efflc!ency of MAC comp_utatlon compared RPC on the same LAN).

to the_ne;v_vork delays. The signature-based versions of the pr_oto_c_ol Table 2 shows the average time to complete the macrobench-
add significant compu.tatlonal ovgrhea.ds, apd only become Ju.s’t'f" mark, out of 10 runs when the additional A2M interface latencies
able for very large replica populations, in which the cost of carrying are 10, 50, 250, anth00ys. The mean times of NFS-A2M-PBFT-

MAC-based authenticators becomes comparatively expensive. E (MAC) are 2.6, 13.5, 68.0, and 307.5% slower than the base NFS-

. A2M-PBFT-E (MAC) with 1s delay; the slowdown corresponds
6.2 MacrObenghmar,ks' NF‘S to two delayed A2M operations and three A2M MAC verifications
_ To under_staljd the implications ?f using A2M-enabled protocols per BFT operation. For NFS-A2M-PBFT-EA (MAC), the mean
in real applications, we use PBFT's NFS front end on a PBFT (O times are 6.0, 22.7, 125.0, 552.0% slower than the base NFS-A2M-
A2M protocol) back end. As with BFS [13], we use a local NFS  pgET.EA (MAC) with 1,45 delay: the slowdown is greater because
loop-back server and an NFS kernel client at the client side. of the greater number of A2M operations invoked during agreement
The workload we use consists of compiling a software package steps.

(nano- 2. 0. 3. tar. gz) in six phases: 1) copy the file to the To amortize the effect of this A2M access latency, we explore a
NFS file systemdopy), 2) uncompress the fileugcompress 3) multiple-operation batching optimization. In A2M-PBFT-E repli-

untar the uncompressed filertar), 4) run a configure scriptpn- cas bundle anppend with its subsequeritookup when they send

On a 1.8GHz Pentium 4 machine running Fedora Core 6, we ran rep_Iies. In A2M-PBFT-EA _replicas also bundle advance with
Imbench [31] to measure the time to perform nontrivial entry into their subsequentookup during agreement steps. Furthermore, the
the operating system. The system call takes @.8ih average. client batches A2M MAC verifications. When additional latencies




are 1 and 1Qus, this batching effect is negligible. However, when and cannot be retrieved or modified without physically destroying
additional latencies are 50, 250, an@D0us, A2M-PBFT-E with the module. Unfortunately, software is not bug-free, and even if
batching improves mean times by 7.6, 23.5, and 44.0% respectively correctly loaded at secure boot time, it can be overcome by ex-
and A2M-PBFT-EA with batching improves mean times by 11.1, ploits such as buffer overflows. As a result, while existing secure

32.0, and 47.2% respectively. hardware can make machines strictly harder to compromise, it does
not obviate the need for Byzantine-fault tolerant systems, nor does
7. THE RIGHT ABSTRACTION it improve their safety and liveness properties: it makes the likeli-

) i ) hood of faults smaller, but does not improve fault bounds.

In the previous sections, we have argued and experimentally  shared Servers: Ivy [33] is a read/write peer-to-peer file sys-
demonstrated that systems incorporating in their design a small, 1o shared by multiple clients. A file system consists of a set of
trusted abstraction, A2M in our examples, can improve their fault logs, each of which is owned by a participant who has a public-
tolerance at certainly tolerable cost. However, an interesting open private key pair. A log is a list of immutable log records. Each
question remains: is AZM theght trusted abstraction, for the  |og has a log-head that points to the most recent log record and the
types of applications we demonstrated here — state machines, rep|'1og-head is signed by the private key. A write appends a new log
cated or centralized? Furthermore, is it the right trusted abstraction record and modifies the log-head to point to it. A read scans all
for qther reliable applipations that are more loosely organized than log records owned by all participants of the file system to find ap-
replicated state machines? ~ propriate information. A malicious server hosting the log-head can

In systems that strive for Ilnearl_zablllty, such as those fc_)rmlng easily mount forking attacks by concealing log records depending
the focus of our work here, the notion of a common event (i.e., ré- on clients. With A2M, we can ensure that a malicious server tells
quest) history is central. Therefore, being able to commit to and the same sequence of log records including the most recent one.
compare histories seems, at a minimum, a required trusted func-note, however, that vy depends on a distributed hash table under-
tion, which is exactly what A2M’s log abstraction offers. Arguably, neath, and any “strengthening” of the protocol must be predicated
when histories need not be compared, as is the case when ensuring, 53 pHT with provable routing guarantees.

A2M-PBFT-EA replicas commit to their messages before sending  pjytus [20] is a shared storage system that enables file sharing
them, it is sufficient to be able to commit to individual key-value  wjthout placing much trust in the file servers. All data is stored
pairs that are independent of all others, which is a narrower Spec-in an encrypted form, and key distribution is decentralized. A file
ification than what A2M offers. However, given that the differ- system is represented by a hash tree, and the root hash of the tree
ence between attested key-value pairs and attested logs is small (thgs signed. Plutus is also vulnerable to forking attacks wherein a
computation of an incremental digest with every append), we opted majicious server can show different file system states to different
to make a trusted log the basic, common abstraction that coversgjients.

both replicated and single-server systems. Replicated State Machines:Byzantine-fault tolerant state ma-

Would a larger trusted abstraction be preferable? Arguably, one chine replication has received much attention since PBFT [12]
could push an entire replicated state machine protocol, such asadded the word “practical” in its title. Researchers have proposed
PBFT, into the trusted computing base. The application interface seyeral improvements on PBFT such as proactive recovery (PBFT-
exported — an invocation method, and an execution callback [13] pR [13]), abstraction to tolerate non-determinism [36], and an ar-
— is certainly simple, and applies to any deterministic application chitecture that separates execution from agreement to improve per-
state machine. For example, one could imagine a trusted imple-formance and confidentiality [39]. In all cases, however, no im-
mentation of a fail-stop replicated state machine protocol, such as provement can offer liveness and safety beyond the uni[dﬁ}klj
Paxos [24]. However, a replicated state machine abstraction, evenga it bound. In Yin et al. [39], the architecture uses two groups
one that is trusted not to be Byzantine, remains fairly complex to ¢ replicas —N agreement and/ execution replicas — by divid-
implement; it requires transmission and reception of network mes- jng functionalities. This architecture can toleraf: | faults and
sages and several sets of local variables per request per remoteﬁ%J faults. A2M-enabled protocols divide functionalities into
re;l)llca. In Iconéraf?t, AhZM regwresbno EeMorrhlnterr?ctI?]nsa and o mmitting a sequence of protocol steps to A2M and performing
_onyl a circutar uf er that tends to | ?IS or't{ adt ougr al ardware an original protocol. A2M-PBFT-EA can tolerafe®>! | faults
implementation of A2M appears trivial, a hardware implementa- v of 7 total replicas since A2M is in a trusted computing base.
tlog of P%X(IJ.S mlght le be. i q hi . . Compared to agreement replicas, A2M is a small, general-purpose

eyond linearizable replicated state machines, an Interesting e chanism that is applicable to various protocols to defend against
qguestion might be what other, orthogonal, trusted abstractions equivocation
might make sense under different consistency requirements. For pocondy BFT2F [27], a PBFT variant, uses some of the ideas in
|n§tfince, when dispensing session guarantees weqker than IInearIZSUNDR to provide linearizability and liveness up[tgg;lj faults,
a.b"'ty (such as r(_aad your writes [.35] or fork <_:o_n5|stency [26)), and a weaker safety property called fork* consistency without live-
simple trust_ed logical clocks [23] might be sufficient compared to ness for up IQL%J faults, relying on clients’ help to protect
an abstraction such as A2M. consistency. With the help of A2M, A2M-PBFT-E can instead

guarantee linearizability up @ £5- | faults, and A2M-PBFT-EA

8. RELATED WORK guarantee both linearizability and liveness up 85 | faults.
Beyond related work we have presented as background, we ad- In loosely related work, BAR [7] fault tolerance contains a no-
dress the following categories: tion of protocol-action commitment (to a quorum maintained by

Trusted Devices: Trusted hardware, such as today’s commod- replicas themselves) to capture rational behavior. Also, PeerRe-
ity Trusted Platform Module (TPM) hardware developed by the View [16], CATS [40], and Timeweave [30] use authenticated his-
Trusted Computing Group [5], has been previously proposed, im- tories to allow fault detection given areplica’s self-inconsistent his-
plemented, and marketed as a way to securely boot a sensitive hostory; this might be a helpful mechanism to allow A2M-based pro-
with approved software. Operations performed by the TPM are au- tocols to recover even when the safety fault bound is (temporarily)
thenticated using a private signing key that resides on the module Violated.
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APPENDIX
A. A2M-PBFT-EA VIEW CHANGE

When replicai in view vs.,,, SUspects the primary is faulty as per
the PBFT protocol, it broadcasts its intent to change views via
a (WANTVIEWCHANGE, v10, 2, 1)i,r,1 Message, where is a fresh
nonce andvs, is vsom + 1 if the replica was not already in the
midst of a view change, ar+ 1 if the replica was in the process of
switching to viewv when it decided to change yet again.

When a replica collects aanTVIEwWCHANGE certificate that
consists oﬂ%j + 1 valid WANTVIEWCHANGE messages for the

same viewvy,, it computes the appropriate nongefor its attesta-
tions by hashing together all the nonces inVitsNTVIEWCHANGE
certificate in increasing replica identifier order. It abandons its cur-
rent VieWvgrom if vgem < vt (Or its participation in a prior view
change protocol towards view if v' < vy,), as well as all inter-
vening views up tay,. For all viewsv in [vfom, vi,) in order, the
replica performsadvance(mc, [v 4+ 1|0] — 1,0, 0) (if it has not
already);[v + 1]0] — 1 is the lastCommiT log entry belonging to
view v. Now the replica constructs it8lIEwWCHANGE message.

The message form i§(VIEWCHANGE, Ufrom, Vto, 1, S, C, P, Q,

W, A,B,H), (£)azu,,r,1). Among the contents of the main mes-
sage,vi, m, s, and C are as in regular PBFTy.n IS as de-
fined above() is the set of committed certificates with sequence
number higher tham and P is the set of prepared certificates
for requests that are prepared but are not committed aftéi”

is a WANTVIEWCHANGE certificate, A is the set of AZMCommIT
log attestations corresponding to the certificate®jnB contains
the view abandonment attestations from the replicasimiT log
(see below), and finallyd is a list of committed request log en-
tries that attest those requestsin (€) is the attestation from the
sender's A2M message log fonEwCHANGE messages, computed
via al ookup (mye, Vi, vto) A2M command.

For each abandoned view between v, and vy,
the set B contains the attestation(Lookupr, m., [v|n’ +
1], Z,0, skipPep, [v + 1|0] — 1,d") a2m,,r,1), Wherem, is the
CommiT log identifier, andn’ is the highest sequence number in
@ and P. For each abandoned view, this attestation shows that the
replica could not have committed a request for a sequence number
greater than those included in ffsand P sets.

When a new primaryy = v, mod N) collects a new view cer-
tificate V' that consists of -1 | + 1 valid VIEWCHANGE messages
that have the samey..,, andv,, and contain correct’, P, @,

W, A, B, and H, it multicasts toR a NEwVIEw message of the
form ((NEWVIEW, vy, V, Oc, Op), (€) A20m1,,r,1); the latter part is

the usual A2M attestation for the message, whereas the contents of
the message are a new view certificate, with the&ketontaining
PREPREPARE messages for requests to be committed, and the set
O, containingPREPREPARE messages for requests to be prepared
in view v;,. When a replica receives the validwView message,

it enters viewv;,. Any requests in prepared or committed certifi-
cates for sequence numbers later than the latest stable checkpoint
are prepared (issuing a new attestedimiT message) and commit-

ted (appending the request in the request log if not already there) in
order, without need for further inter-replica communication.

Note that allviEwCHANGE messages within BEwVIEw certifi-
cate must have the sameg.,; this is essential for the correctness
properties described next. If the primary fails to collect a quorum of
such messages, it refuses to generateaView message. To en-
sure progress, any non-faulty replica that receiv&SswCHANGE
message with as.., later than its own asks the issuer of that mes-
sage for theNewV Ew certificate that allowed it to entet,,,. Us-
ing that certificate, the lagging replica can bring itself to that view.
When a timeout indicates that the previous view change attempt
stalled — either due to a faulty new primary or because qj,
mismatches — the replica initiates another view change for the next
target view number. Thanks to the eventual synchrony of our net-
work, this guarantees that eventually enough replicas will initiate a
view change with the sams..,, and the change will go through.

B. A2M-PBFT-EA LIVENESS PROOF

We show that no two non-faulty replicas can place different re-
quests in the same sequence number of the A2M request log. We
split our argument into a same-view case, and a different-view case.



Case 1 — Same View:Suppose two non-faulty replicas have

(LookuP, me, [v|n' 4+ 1], Z,0, SKiPPED, [v+1|0] — 1, d") a2m, R 1

appended two different requests to the same sequence number ofor somen’ < n, which is disallowed by the A2M interface given

their respective A2M request logs, during the same view. They
both did that after having constructed a valid committed certifi-

the existence of aAssicNEDattestation for entryw|n] and the in-
equality[v|n’ + 1] < [v|n] < [v + 1|0] — 1.

cate over two quorums. Those two quorums must have at least one This leaves the common replieabetween quorum® andV

common (perhaps faulty) repligawhich managed to attest to two

only with the option of reporting requestas prepared in view

CommIT messages, one for each request, in each of the two quo-v. As a result, any correct replica in quoru@, which can only

rums. This, however, is a contradiction with our assumption that
A2M is trusted to avoid equivocation for the same log entry, and
the collision-resistance of the hash function.

It is worth noting that along similar lines, it is trivial to show
that no two non-faulty replicas can be convinced to place different
requests in theicommit A2M log for the same sequence number

commit requests in view’ after having seen thBewView cer-
tificate for that view, must have issued at leagR&PARE message

for requestr in view v" while processing thalewView certificate.
However, since this replica is also a member of the committed cer-
tificate for request’ in view v’, it must also have prepared and
subsequently committed that reque&t This clearly contradicts

and view, by the analogous argument on the prepared certificatenot only the properties of the A2M message logs at that replica, but

quorums and thererAREA2M log of the common replica. Finally,

also the operation of a non-faulty replica. This completes the proof

the exact same argument can be used to show that no two non-faultyfor this subcase.

replicas can put different requests in theiteraArRe A2M logs for

Case 2b —v and v’ are not consecutive active viewsSuppose

the same sequence number and view, since the single primary forthere arev:, v, ..., v 1 active views between(= vo) andv’(=

the view can only attest to a singRRePREPARE message for that
sequence number in any given view.

Case 2 — Different Views:Now we must show that no two non-
faulty replicas can commit two requestandr’ # r in sequence
n and in viewsv andv’ > v, respectively.

We define aractiveview as a view for which a valithewView
certificate has been constructad seen by a non-faulty replica. A
non-faulty replica cannot commit a request in a view for which it
has not seen a validewView certificate, therefore if a non-faulty
replica commits a request in a view, then that view must be active.

We split our argument into two further subcases, first the case in
which no other active views exist betweemandv’, and the case in
which at least one active view exists betweeandv’.

Case 2a-v and v’ are consecutive active viewsSince no other
active views exist betweemnandv’, then theNewView certificate
for v' — and there can be at most one since only biEe/\VIEw
message can be attested by the primary for vigw= v’ — must
havevs.,, < v. This is because at least one non-faulty replica
must have produced\aewCHANGE message for the certificate, and
that non-faulty replica guarantees thatits,, represents an active
view, which cannot be later than(or it would have to be’). As a
result, thisNewVEw certificate contains view abandonments for all
VIEWS iN itS[vfrom, v10) FANge, which includef, v’) as we argued
above.

Now consider three quorums, the one that produced the commit-
ted certificate for- in view v (denoted@), the one that produced
the NewView certificate tov’ (denoted))), and the one that pro-
duced the committed cetrtificate fetin view v’ (denotedQ’). Let
i € @ NV, which always exists thanks to quorum intersection.

Replicai unavoidably contributed an attestedmmiT message
for r at sequence numberin the committed certificate far along
with the rest of quorun®. What can have beei's VIEWCHANGE
contribution to theNewView certificate in quorun¥’ with regards
to sequence number? If ¢ reported a valid stable checkpoint
no earlier thann in its ViIEwCHANGE, then the resulting, unique
NewVIew certificate forv’ should convince any non-faulty replica
that sees it to never commit anything elsenain view v’, since

vk ). We can prove inductively on the intervening active views that
at least a prepared certificate for requesit sequence will be
propagated to view’, preventing a commitment of a conflicting
request’ at the same sequence number there.

In the base case, we can use the argument of the previous subcase
2a to show that thélewView certificate for viewwv, will either
preclude any subsequent commitment to sequerarewill contain
at least a prepared certificate for requeat that sequence number.

To show the inductive step, assume thatitzevView certificate
for view v; contains a prepared certificate for request that is
the only viable choice since, if it contains a stable checkpointfor
or later, then no subsequent view will admit a different committed
request’, leading to a contradiction. Now consider tkewView
certificate, formed by quoruny, that will lead away fromw; to
vi+1. Any non-faulty replica inV (there must be at least one),
must have seen the earlifiewView certificate leading ta;, or
else it would be unable to assumeas its active view. Therefore,
that replica must also have prepared that same reguestew v;,
including the prepared certificate in MeEwCHANGE contribution
to the lateNewVIEw certificate.

The induction proves that committed requesat n in active
view v will either preclude the commitment of another request at
n in view v’ (because somewhere in betweeN@awView certifi-
cate contained a stable checkpoint for a sequence at orsgfter
or cause the inclusion of @ommiT attestation for the same at
n in all subsequent valillewView certificates. This contradicts
the assumption that a non-faulty replica at active vigwwhich
must have seen suchNewView certificate, will commit request
r’ atn in view v’. This last subcase concludes the proof that two
commitments for the same sequence number at different non-faulty
replicas must commit the same request.

Beyond quorum availability (i.e., ensuring that no quorum can
be blocked from forming due to non-faulty replicas caused to com-
mit incorrect requests), A2M-PBFT-EA also guarantees that no
replica is left behind during view changes: a replica only abandons
its current vieww if it has collected anvaNTVIEWCHANGE certifi-
cate; even if the current view change does not complete due to net-

n belongs in the past; this contradicts our assumption that somework faults or a faulty new primary, the replica can retransmit the

non-faulty replica will in fact commit- atn in view v’.

If instead: reported a stable checkpoint earlier thann its
VIEWCHANGE, it can only have reported the sar@emmiT attesta-
tion for request atn, since thalViEwCHANGE message must con-
tain a view abandonment foras we showed above, and omitting an
attestation for th€ommiT log entry[v|n] is not an option; to omit it

WANTVIEWCHANGE certificate until eventually enough other non-
faulty replicas have received it to complete the view change, or to
trigger another one with a different primary. This is guaranteed by
the eventual synchrony of our network and processing model.

successfully, it would have to produce an abandonment attestation



