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ABSTRACT
We present Zyzzyva, a protocol that uses speculation to re-
duce the cost and simplify the design of Byzantine fault
tolerant state machine replication. In Zyzzyva, replicas re-
spond to a client’s request without first running an expensive
three-phase commit protocol to reach agreement on the or-
der in which the request must be processed. Instead, they
optimistically adopt the order proposed by the primary and
respond immediately to the client. Replicas can thus be-
come temporarily inconsistent with one another, but clients
detect inconsistencies, help correct replicas converge on a
single total ordering of requests, and only rely on responses
that are consistent with this total order. This approach al-
lows Zyzzyva to reduce replication overheads to near their
theoretical minima.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Distributed systems

General Terms
Performance, Reliability

Keywords
Byzantine fault tolerance, Speculative execution, Replica-
tion, Output commit

1. INTRODUCTION
Three trends make Byzantine Fault Tolerant (BFT) repli-

cation increasingly attractive for practical deployment. First,
the growing value of data and and falling costs of hardware
make it advantageous for service providers to trade increas-
ingly inexpensive hardware for the peace of mind potentially
provided by BFT replication. Second, mounting evidence of
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non-fail-stop behavior in real systems [2, 5, 6, 27, 30, 32,
36, 39, 40] suggest that BFT may yield significant benefits
even without resorting to n-version programming [4, 15, 33].
Third, improvements to the state of the art in BFT replica-
tion techniques [3, 9, 10, 18, 33, 41] make BFT replication
increasingly practical by narrowing the gap between BFT
replication costs and costs already being paid for non-BFT
replication. For example, by default, the Google file system
uses 3-way replication of storage, which is roughly the cost
of BFT replication for f = 1 failures with 4 agreement nodes
and 3 execution nodes [41].

This paper presents Zyzzyva1, a new protocol that uses
speculation to reduce the cost and simplify the design of BFT
state machine replication [19, 35]. Like traditional state ma-
chine replication protocols [9, 33, 41], a primary proposes an
order on client requests to the other replicas. In Zyzzyva,
unlike in traditional protocols, replicas speculatively exe-
cute requests without running an expensive agreement pro-
tocol to definitively establish the order. As a result, correct
replicas’ states may diverge, and replicas may send different
responses to clients. Nonetheless, applications at clients ob-
serve the traditional and powerful abstraction of a replicated
state machine that executes requests in a linearizable [13]
order because replies carry with them sufficient history in-
formation for clients to determine if the replies and history
are stable and guaranteed to be eventually committed. If a
speculative reply and history are stable, the client uses the
reply. Otherwise, the client waits until the system converges
on a stable reply and history.

The challenge in Zyzzyva is ensuring that responses to
correct clients become stable. Ultimately, replicas are re-
sponsible for ensuring that all requests from a correct client
eventually complete, but a client waiting for a reply and
history to become stable can speed the process by supplying
information that will either cause the request to become sta-
ble rapidly within the current view or trigger a view change.
Note that because clients do not require requests to commit
but only to become stable, clients act on requests in one or
two phases rather than the customary three [9, 33, 41].

Essentially, Zyzzyva rethinks the sync [28] for BFT: in-
stead of pessimistically ensuring that replicas establish a fi-
nal order on requests before communicating with a client, we
move the output commit to the client. Leveraging the client
in this way offers significant practical advantages. Compared

1Zyzzyva (ZIZ-uh-vuh) is the last word in the dictionary.
According to dictionary.com, a zyzzyva is “any of various tropi-
cal American weevils of the genus Zyzzyva, often destructive to
plants.”
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State Machine Repl.
PBFT Q/U HQ Zyzzyva Lower Bound

Cost Total replicas 3f+1 5f+1 3f+1 3f+1 3f+1 [31]
Replicas with application state 2f+1 [41] 5f+1 3f+1 2f+1 2f+1

Throughput MAC ops at bottleneck server 2+(8f+1)/b 2+8f 4+4f 2+3f/b 2†

Latency Critical path NW 1-way latencies 4 2 4 3 2/3‡

Table 1: Properties of state-of-the-art and optimal Byzantine fault tolerant service replication systems toler-
ating f faults, using MACs for authentication [9], and using a batch size of b [9]. Bold entries denote protocols
that match known lower bounds or those with the lowest known cost. †It is not clear that this trivial lower
bound is achievable. ‡The distributed systems literature typically considers 3 one-way latencies to be the
lower bound for agreement on client requests [11, 21, 25]; 2 one-way latencies is achievable if no concurrency
is assumed. We include detailed discussion of this table in our extended technical report [17].

to state of the art protocols including PBFT [9, 33, 41],
Q/U [3], and HQ [10], Zyzzyva reduces cryptographic over-
heads and increases peak throughput by a factor of two to an
order of magnitude for demanding workloads. In fact, Zyz-
zyva’s replication costs, processing overheads, and commu-
nication latencies approach their theoretical lower bounds.

1.1 Why another BFT protocol?
The state of the art for BFT state machine replication is

distressingly complex. In a November 2006 paper describ-
ing Hybrid-Quorum replication (HQ replication) [10], Cowl-
ing et al. draw the following conclusions comparing three
state-of-the-art protocols (Practical Byzantine Fault Toler-
ance (PBFT) [9, 18, 33, 41], Query/Update (Q/U) [3], and
HQ replication [10]):

• “In the regions we studied (up to f = 5), if contention
is low and low latency is the main issue, then if it
is acceptable to use 5f + 1 replicas, Q/U is the best
choice, else HQ is the best since it outperforms [P]BFT
with a batch size of 1.” [10]

• “Otherwise, [P]BFT is the best choice in this region: it
can handle high contention workloads, and it can beat
the throughput of both HQ and Q/U through its use
of batching.” [10]

• “Outside of this region, we expect HQ will scale best:
HQ’s throughput decreases more slowly than Q/U’s
(because of the latter’s larger message and process-
ing costs) and [P]BFT’s (where eventually batching
cannot compensate for the quadratic number of mes-
sages).” [10]

Such complexity represents a barrier to adoption of BFT
techniques because it requires a system designer to choose
the right technique for a workload and then for the workload
not to deviate from expectations.

As Table 1 indicates, Zyzzyva simplifies the design space
of BFT replicated services by approaching the lower bounds
in almost every key metric.

With respect to replication cost, Zyzzyva and PBFT match
the lower bound both with respect to the total number of
replicas that participate in the protocol and the number of
replicas that must hold copies of application state and exe-
cute application requests. Both protocols hold cost advan-
tages of 1.5–2.5 over Q/U and 1.0–1.5 over HQ depending
on the number of faults to be tolerated and the relative cost
of application vs. agreement node replication.

With respect to throughput, both Zyzzyva and PBFT
use batching when load is high and thereby approach the
lower bound on the number of authentication operations per-
formed at the bottleneck node, and Zyzzyva approaches this
bound more rapidly than PBFT. Q/U and HQ’s inability to
support batching increases the work done at the bottleneck
node by factors approaching 5 and 4, respectively, when one
fault is tolerated and by higher factors in systems that tol-
erate more faults.

With respect to latency, Zyzzyva executes requests in three
one-way message delays, which matches the accepted lower
bound in the distributed systems literature for agreeing on
a client request [11, 21, 25] and improves upon both PBFT
and HQ. Q/U sidesteps this lower bound by providing a ser-
vice that is slightly weaker than state machine replication
(i.e., it does not put a total order on all requests) and by
optimizing for cases without concurrent access to any state.
This difference presents a chink in Zyzzyva’s armor, which
Zyzzyva minimizes by matching the lower bound on message
delays for full consensus. We believe that Zyzzyva’s other
advantages over Q/U—fewer replicas, improved throughput
via batching, simpler state machine replication semantics,
ability to support high-contention workloads—justify this
“extra” latency.

With respect to fault scalability [3], the metrics that de-
pend on f grow as slowly or more slowly in Zyzzyva as in
any other protocol.

Note that as is customary [3, 9, 10, 33, 41], Table 1 com-
pares the protocols’ performance during the expected com-
mon case of fault-free, timeout-free execution. All of the
protocols are guaranteed to operate correctly in the pres-
ence of up to f faults and arbitrary delays, but all of these
protocols can pay significantly higher overheads and laten-
cies in such scenarios. In §5.4, we consider the susceptibility
of these protocols to faults and argue that Zyzzyva remains
the most attractive choice.

2. SYSTEM MODEL
We assume the Byzantine failure model where faulty nodes

(replicas or clients) may behave arbitrarily. We assume a
strong adversary that can coordinate faulty nodes to com-
promise the replicated service. We do, however, assume
the adversary cannot break cryptographic techniques like
collision-resistant hashes, encryption, and signatures. In the
public-key version of our protocol, we denote a message X

signed by principal Y ’s public key as 〈X〉σY
. Our system

ensures its safety and liveness properties if at most f repli-
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cas are faulty. We assume a finite client population, any
number of which may be faulty.

Our system’s safety properties hold in any asynchronous
distributed system where nodes are connected by a network
that may fail to deliver messages, corrupt them, delay them,
or deliver them out of order. Liveness, however, is ensured
only during intervals in which messages sent to correct nodes
are processed within some fixed (but potentially unknown)
worst case delay from when they are sent.

Our system implements a BFT service using state machine
replication [9, 18, 35]. Traditional state machine replication
techniques can be applied only to deterministic services. We
cope with the non-determinism present in many real-word
applications (such as file systems [26] and databases [38]) by
abstracting the observable application state at the replicas
and using the agreement stage to resolve divergences [33].

Services limit the damage done by Byzantine clients by au-
thenticating clients, enforcing access control to deny clients
access to objects they do not have a right to, and (option-
ally) by maintaining multiple versions of shared data (e.g.,
snapshots in a file system [34, 16]) so that data can be recov-
ered from older versions if a faulty client destroys data [14].

3. PROTOCOL
Zyzzyva is a state machine replication protocol based on

three sub-protocols: (1) agreement, (2) view change, and (3)
checkpoint. The agreement protocol orders requests for exe-
cution by the replicas. The view change protocol coordinates
the election of a new primary when the current primary is
faulty or the system is running slowly. The checkpoint pro-
tocol limits the state that must be stored by replicas and
reduces the cost of performing view changes.

Principles and Challenges.
Zyzzyva focuses on safety properties as they are observed

by the client. In Zyzzyva, replicas can become temporarily
inconsistent with one another, but clients detect inconsis-
tencies, drive replicas to converge on a single total ordering
of requests, and only rely on responses that are consistent
with this total order.

Given the duties BFT replication protocols already place
on clients [3, 9, 10, 22, 33, 41], it is not a large step to
fully move the output commit to the client, but this small
step pays big dividends. First, Zyzzyva leverages specula-
tive execution—replicas execute a request before its order
is fully established. Second, Zyzzyva leverages fast agree-
ment protocols [11, 21, 25] to establish a request ordering in
as few as three message delays. Third, the agreement sub-
protocol stops working on a request once a client knows the
request’s order, thereby avoiding work that would otherwise
be needed to establish this knowledge at the replicas.

These choices lead to two key challenges in designing Zyz-
zyva. First, we must specify carefully the conditions under
which a request completes at a client and define agreement,
checkpoint, and view change sub-protocols to retain the ab-
straction that requests execute on a single, correct state ma-
chine. Intuitively, a request completes when a correct client
may safely act on the reply to that request. To help a client
determine when it is appropriate to act on a reply, Zyz-
zyva appends history information to the replies received by
a client so that the client can judge whether the replies are
based on the same ordering of requests. Zyzzyva ensures the
following safety condition:
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Figure 1: Protocol communication pattern within a
view for (a) gracious execution and (b) faulty replica
cases. The numbers refer to the main steps of the
protocol numbered in the text.

saf If a request with sequence number n and history hn

completes, then any request that completes with a
higher sequence number n′ ≥ n has a history hn′ that
includes hn as a prefix.

Second, the view change sub-protocol must ensure liveness
despite an agreement sub-protocol that never requires more
than two phases to complete during a view. We shift work
from the agreement sub-protocol to the view change sub-
protocol by introducing a new “I hate the primary” phase
that guarantees that a correct replica only abandons the
current view if it can ensure that all other correct replicas
will join the mutiny. Zyzzyva ensures the following liveness
condition under eventual synchrony2 [12]:

liv Any request issued by a correct client eventually com-
pletes.

Protocol Overview.
Zyzzyva is executed by 3f + 1 replicas, and execution is

organized into a sequence of views. Within a view, a single
replica is designated as the primary responsible for leading
the agreement sub-protocol.

Figure 1 shows the communication pattern for a single
instance of our client-centric fast agreement sub-protocol.
A client sends a request to the primary, the primary for-
wards the request to the replicas, and the replicas execute
the request and send their responses to the client. A re-
quest completes at a client in one of two ways. First, if
the client receives 3f + 1 mutually-consistent responses (in-
cluding an application-level reply and the history on which
it depends), then the client considers the request complete
and acts on it. Second, if the client receives between 2f + 1
and 3f mutually-consistent responses, then the client gath-
ers 2f + 1 responses and distributes this commit certificate
to the replicas. Once 2f +1 replicas acknowledge receiving a

2In practice eventual synchrony can be achieved by using expo-
nentially increasing timeouts [9].
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commit certificate, the client considers the request complete
and acts on the corresponding reply.

If a sufficient number of replicas suspect that the current
primary is faulty, then a view change occurs and a new pri-
mary is elected.

In the rest of this section, we describe the basic proto-
col and outline the proof of its correctness [17]. In §4 we
describe a number of optimizations, all implemented in our
prototype, that reduce encryption costs by replacing public
key signatures with message authentication codes (MACs),
improve throughput by batching requests, reduce the impact
of lost messages by caching out-of-order messages, improve
read performance by optimizing read-only requests, reduce
bandwidth by having most replicas send hashes rather than
full replies, reduce overheads by including MACs only for a
preferred quorum, and improve performance in the presence
of faulty nodes by including additional witness replicas.

In §4.1 we discuss Zyzzyva5, a variation of the protocol
that requires 5f + 1 agreement replicas but that completes
in three one-way message exchanges as in Figure 2(a) even
when up to f non-primary replicas are faulty.

3.1 Node State and Checkpoint Protocol
To ground our discussion in definite terms, we begin by

discussing the state maintained by each replica as summa-
rized by Figure 2. Each replica i maintains an ordered his-
tory of the requests it has executed and a copy of the max
commit certificate, the commit certificate (defined below)
seen by i that covers the largest prefix of i’s stored history.
The history up to and including the request with the highest
sequence number covered by this commit certificate is the
committed history, and the history that follows is the specu-
lative history. We say that a commit certificate has sequence
number n if n is the highest sequence number of any request
in the committed history.

A replica constructs a checkpoint every CP INTERVAL
requests. A replica maintains one stable checkpoint and a
corresponding stable application state snapshot, and it may
store up to one tentative checkpoint and corresponding ten-
tative application state snapshot. The process by which a
tentative checkpoint and application state become commit-
ted is similar to the one used by earlier BFT protocols [9,
10, 18, 33, 41], so we defer a detailed discussion to our ex-
tended technical report [17]. However, to summarize briefly:
when a correct replica generates a tentative checkpoint, it
sends a signed checkpoint message to all replicas. The
message includes the highest sequence number of any re-
quest included in the checkpoint and a digest of the corre-
sponding tentative checkpoint and application snapshot. A
correct Zyzzyva replica considers the checkpoint and corre-
sponding application snapshot stable when it collects f + 1
matching checkpoint messages signed by different replicas.

To bound the size of the history, a replica (1) truncates the
history before the committed checkpoint and (2) blocks pro-
cessing of new requests after processing 2×CP INTERVAL
requests since the last committed checkpoint.

Finally, each replica maintains a response cache containing
a copy of the latest ordered request from, and corresponding
response to, each client.

3.2 Agreement Protocol
Figure 1 illustrates the basic flow of the agreement sub-

protocol during a view. Because replicas execute requests

Label Meaning

c Client ID
CC Commit certificate
d Digest of client request message

d = H(m)
i, j Server IDs
hn History through sequence number n

hn = H(hn−1, d)
m Message containing client request

maxn Max sequence number accepted by replica
n Sequence number
o Operation requested by client

OR Order Request message
POM Proof Of Misbehavior

r Application reply to a client operation
t Timestamp assigned to an operation by a client
v View number

Table 2: Labels given to fields in messages.

speculatively in the order proposed by the primary without
communicating with other replicas, the key challenge is en-
suring that clients only act upon replies that correspond to
stable requests executed in a total order that is guaranteed
to eventually commit at all correct servers. The protocol is
constructed so that a request completes at a client when the
client receives 3f + 1 matching responses or acknowledge-
ments from 2f +1 replicas that they have received a commit
certificate comprising a local commit from 2f + 1 replicas.
Either of these conditions serves to prove that the request
will eventually be committed at all correct replicas with the
same sequence number and history of preceding requests ob-
served by the client.

To describe how the system deals with this and other chal-
lenging, but standard, issues—lost messages, faulty primary,
faulty clients, etc.—we follow a request through the system,
defining the rules a server uses to process each message. The
numbers in Figure 1 correspond to numbers in the text iden-
tifying major steps in the protocol and Table 2 summarizes
the labels we give fields in messages. Most readers will be
happier if on their first reading they skip the text marked
Additional Pedantic Details.

1. Client sends request to the primary.

A client c requests an operation o be performed by the
replicated service by sending a message 〈request, o, t, c〉σc

to the replica it believes to be the primary (i.e., the primary
for the last response the client received).

Additional Pedantic Details: If the client guesses the wrong
primary, the retransmission mechanisms discussed in step
4c below forwards the request to the current primary. The
client’s timestamp t is included to ensure exactly-once se-
mantics of execution of requests.

2. Primary receives request, assigns sequence num-
ber, and forwards ordered request to replicas.

When the primary p receives message m =〈request, o, t,

c〉σc from client c, the primary assigns a sequence number n

in view v to the request and relays a message 〈〈order-req,

v, n, hn, d, ND〉σp , m〉 to the backup replicas where v indi-
cates the view in which the message is being sent, n is the
proposed sequence number for m, d = H(m) is the digest of
m, hn = H(hn−1, d) is a digest summarizing the history, and
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Figure 2: State maintained at each replica.

ND is a set of values for non-deterministic application vari-
ables (time in file systems, locks in databases, etc.) required
for execution.

Additional Pedantic Details: The primary only takes the
above actions if t > tc where tc is the highest timestamp
previously received from c.

3. Replica receives ordered request, speculatively ex-
ecutes it, and responds to the client.

Upon receipt of a message 〈〈order-req, v, n, hn, d,

ND〉σp , m〉 from the primary p, replica i accepts the or-
dered request if m is a well-formed request message, d

is a correct digest of m, n = maxn + 1 where maxn is the
largest sequence number in i’s history, and hn = H(hn−1, d).
Upon accepting the message, i appends the ordered request
to its history, executes the request using the current appli-
cation state to produce a reply r, and sends to c a message
〈〈spec-response, v, n, hn, H(r), c, t〉σi

, i, r, OR〉 where
OR =〈order-req, v, n, hn, d, ND〉σp .

Additional Pedantic Details: A replica may only accept
and speculatively execute requests in sequence-number or-
der, but message loss or a faulty primary can introduce holes
in the sequence number space. Replica i discards the order-

req message if n ≤ maxn. If n > maxn +1, then i discards
the message, sends a message 〈fill-hole, v, maxn + 1, n,

i〉σi
to the primary, and starts a timer. Upon receipt of a

message 〈fill-hole, v, k, n, i〉σi
from replica i, the primary

p sends a 〈〈order-req, v, n′, hn′ , d, ND〉σp , m′〉 to i for
each request m′ that p ordered in k ≤ n′ ≤ n during the cur-
rent view; the primary ignores fill-hole requests from other
views. If i receives the valid order-req messages needed
to fill the holes, it cancels the timer. Otherwise the replica
broadcasts the fill-hole message to all other replicas and
initiates a view change when the timer fires. Any replica j

that receives a fill-hole message from i sends the corre-
sponding order-req message, if it has received one. If, in
the process of filling in holes in the replica sequence, replica
i receives conflicting order-req messages then the conflict-
ing messages form a proof of misbehavior as described in
protocol step 4d.

4. Client gathers speculative responses.

The client receives messages 〈〈spec-response, v, n, hn,

H(r), c, t〉σi
, i, r, OR〉, where i identifies the replica issuing

the response, from the replicas. spec-response messages
from distinct replicas match if they have identical v, n, hn,
H(r), c, t, and r fields. There are four cases to consider.
The first three handle varying numbers of matching spec-
ulative replies without considering the OR field, while the
last considers only the OR field.

4a. Client receives 3f + 1 matching responses and
completes the request.

In the absence of faults, the client receives matching spec-

response messages from all 3f +1 replicas. The client then
considers the request and its history to be complete and
delivers the reply r to the application. Zyzzyva guarantees
that even if there is a view change, all correct replicas will
always execute this request at this point in their history to
produce this response. Notice that although the client has a
proof that the request’s place in history is irrevocably set, no
server has such a proof. Indeed, a server at this point cannot
determine whether a request has completed in its final order
or a roll-back of the server’s state will be necessary because
a faulty primary ordered the request inconsistently across
replicas.

4b. Client receives between 2f + 1 and 3f match-
ing responses, assembles a commit certificate, and
transmits the commit certificate to the replicas.

If the network, primary, or some replicas are faulty, the
client c may never receive responses from all 3f + 1 repli-
cas. The client therefore sets a timer when it first issues a
request: when this timer expires, if c has received matching
speculative responses from between 2f + 1 and 3f replicas,
then c sends a message 〈commit, c, CC〉σc where CC is
a commit certificate consisting of a list of 2f + 1 replicas,
the replica-signed portions of the 2f + 1 matching spec-

response messages from those replicas, and the correspond-
ing 2f + 1 replica signatures.

Additional Pedantic Details: CC contains 2f + 1 signa-
tures on the spec-response message and a list of 2f + 1
nodes, but, since all the responses received by c from repli-
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cas are identical, c only needs to include one replica-signed
portion of the spec-response message. Also note that, for
efficiency, CC does not include the body r of the reply but
only the hash H(r).

4b.1. Replica receives a commit message from a
client containing a commit certificate and acknowl-
edges with a local-commit message.

When a replica i receives a message 〈commit, c, CC〉σc

containing a valid commit certificate CC proving that a re-
quest should be executed with a specified sequence number
and history in the current view, the replica first ensures
that its local history is consistent with the one certified by
CC. If so, replica i (1) updates its max commit certificate
state if this certificate’s sequence number is higher than the
stored certificate’s sequence number and (2) sends a message
〈local-commit, v, d, h, i, c〉σi

to c.
Additional Pedantic Details: If the local history simply

has holes encompassed by CC’s history, then i fills them as
described in 3. If, however, the two histories contain differ-
ent requests for the same sequence number, then i initiates
the view change protocol.

4b.2. Client receives a local-commit messages
from 2f + 1 replicas and completes the request.

The client resends the commit message until it receives
corresponding local-commit messages from 2f +1 distinct
replicas. The client then considers the request and its his-
tory to be complete and delivers the reply r to the appli-
cation. The system guarantees that even if there is a view
change, all correct replicas will always execute this request
at this point in their history to produce this response.

Additional Pedantic Details: When the client first sends
the commit message to the replicas it starts a timer. If
this timer expires before the client receives 2f + 1 local-

commit messages then the client moves on to protocol step
4c described below.

4c. Client receives fewer than 2f +1 matching spec-

response messages and resends its request to all
replicas, which forward the request to the primary in
order to ensure the request is assigned a sequence
number and eventually executed.

Client. If the network or primary is faulty, the client c

may never receive matching spec-response messages from
2f+1 replicas. The client therefore sets a second timer when
it first issues a request and resends the request message to
all replicas when the second timer expires. It then resets its
timers and continues gathering speculative responses.

Replica. When non-primary replica i receives a message
〈request, o, t, c〉σc from client c there are two possible ac-
tions for i to take. If the request matches or has a lower
client-supplied timestamp than the currently cached request
for client c, then i resends the cached response to c. If in-
stead the request has a higher timestamp than the currently
cached response, then i sends a message 〈confirm-req, v,

m, i〉σi
where m = 〈request, o, t, c〉σc to the primary p and

starts a timer. If the replica accepts an order-req message
for this request before the timeout, it processes the order-

req message as described above. If the timer fires before
the primary orders the request, the replica initiates a view
change.

Primary. Upon receiving the confirm request message
〈confirm-req, v, m, i〉σi

from replica i, the primary p checks
the client’s timestamp for the request. If the request is new,
p sends a new order-req message using the next sequence
number to order as described in step 2; otherwise, p sends to
i the cached order-req message for the most recent request
from c.

Additional Pedantic Details: If replica i has received a
commit certificate or stable checkpoint for a subsequent re-
quest, then the replica sends a local-commit to the client
even if the client has not received a commit certificate for the
retransmitted request. Additionally, if replica i does not re-
ceive the order-req message from the primary, the replica
sends the confirm-req message to all other replicas. Upon
receipt of a confirm-req message from another replica j,
replica i sends the order-req message it received from the
primary to j; if i did not receive the request from the client,
i acts as if the request came from the client itself.

4d. Client receives responses indicating inconsistent
ordering by the primary and sends a proof of misbe-
havior to the replicas, which initiate a view change to
oust the faulty primary.

If client c receives a pair of spec-response messages con-
taining valid messages OR =〈order-req, v, n, hn, d, ND〉σj

for the same request (d = H(m)) in the same view v with
differing sequence number n or history hn, then the pair
of order-req messages constitutes a proof of misbehav-
ior (POM) against the primary. Upon receipt of a POM ,
c sends a message 〈pom, v, POM〉σc to all replicas. Upon
receipt of a valid pom message, a replica initiates a view
change and forwards the pom message to all other replicas.

Note that cases 4b and 4c are not exclusive of 4d; a client
may receive messages sufficient to complete a request or form
a commit certificate and also a proof of misbehavior against
the primary.

3.3 View Changes
Fast agreement and speculative execution have profound

effects on Zyzzyva’s view change sub-protocol. In this sec-
tion we highlight the differences between the Zyzzyva view
change sub-protocol and that of previous systems. For com-
pleteness we include the full view change sub-protocol in the
appendix.

The view change sub-protocol must elect a new primary
and guarantee that it will not introduce any changes in a
history that has already completed at a correct client. To
maintain this safety property, traditional view change sub-
protocols [9, 10, 18, 33, 41] require a correct replica that
commits to a view change to stop accepting messages other
than checkpoint, view-change, and new-view messages.
Also, to prevent faulty replicas from disrupting the system, a
view change sub-protocol should never remove a primary un-
less at least one correct replica commits to the view change.
Hence, a correct replica traditionally commits to a view
change if either (a) it observes the primary to be faulty or
(b) it has a proof that f + 1 replicas have committed to
a view change. On committing to a view change a correct
replica sends a signed view-change message that includes
the new view, the sequence number of the replica’s latest
stable checkpoint (together with a proof of its stability),
and the set of prepare certificates—the equivalent of com-
mit certificates in Zyzzyva—collected by the replica.
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The traditional view change completes when the new pri-
mary, using 2f + 1 view-change messages from distinct
replicas, computes the history of requests that all correct
replicas must adopt to enter the new view. The new pri-
mary includes this history, with a proof of validity, in a
signed new-view message that it broadcasts to all replicas.

Zyzzyva maintains the overall structure of the traditional
protocol, but it departs in two significant ways that together
allow clients to accept a response before any replicas know
that the request has been committed and allow the replicas
to commit to a response after two phases instead of the
traditional three.

1. First, to ensure liveness, Zyzzyva strengthens the con-
dition under which a correct replica commits to a view
change by adding a new “I hate the primary” phase to
the view change sub-protocol. We explain the need for
and details of this addition below by considering The
Case of the Missing Phase.

2. Second, to guarantee safety, Zyzzyva weakens the con-
dition under which a request appears in the history
included in the new-view message. We explain the
need for and details of this change below by consider-
ing The Case of the Uncommitted Request.

3.3.1 The Case of the Missing Phase
As Figure 1 shows, Zyzzyva’s agreement protocol guaran-

tees that every request that completes within a view does so
after at most two phases. This property may appear surpris-
ing to the reader familiar with PBFT. If we view a correct
client that executes step 4b of Zyzzyva as implementing a
broadcast channel between replicas, then Zyzzyva’s commu-
nication pattern maps to only two of PBFT’s three phases,
one where communication is primary-to-replicas (pre-prepare)
and the second involving all-to-all exchanges (either prepare
or commit). Where did the third phase go? And why is it
there in the first place?

The answer to the second question lies in the subtle de-
pendencies between the agreement and view change sub-
protocols. No replicated service that uses the traditional
view change protocol can be live without an agreement pro-
tocol that includes both the prepare and commit full ex-
changes.3 To see how this constraint applies to Zyzzyva,
consider a scenario with f faulty replicas, one of them the
primary, and suppose the faulty primary causes f correct
replicas to commit to a view change and stop sending mes-
sages in the view. In this situation, a client request may only
receive f + 1 responses from the remaining correct replicas,
not enough for the request to complete in either the first
or second phase—and, because fewer than f + 1 replicas
demand a view change, there is no opportunity to regain
liveness by electing a new primary.

The third phase of traditional BFT agreement breaks this
stalemate: by exchanging what they know, the remaining
f+1 correct replicas can either gather the evidence necessary
to complete the request after receiving only f + 1 matching
responses or determine that a view change is necessary.

Back to the first question: How does Zyzzyva avoid the
third phase in the agreement sub-protocol? The insight is
that what compromises liveness in the previous scenario is

3Unless a client can unilaterally initiate a view change. This
option is unattractive when clients can be Byzantine.

that the traditional view change protocol lets correct replicas
commit to a view change and become silent in a view without
any guarantee that their action will lead to the view change.
Instead, in Zyzzyva, a correct replica does not abandon view
v unless it is guaranteed that every other correct replica will
do the same, forcing a new view and a new primary.

To ensure this property, the Zyzzyva view change sub-
protocol adds an additional phase to strengthen the condi-
tions under which a replica stops participating in the current
view. In particular, a correct replica i that suspects the pri-
mary of view v continues to participate in the view, but
expresses its vote of no-confidence in the primary by multi-
casting to all replicas a message 〈i-hate-the-primary, v〉σi

.
If i receives f +1 votes of no confidence in v’s primary, then
it commits to a view change: it becomes silent, and multi-
casts to all replicas a view-change message that contains a
proof that f + 1 replicas have no confidence in the primary
for view v. A correct replica that receives a valid view-

change message joins in the mutiny and commits to the
view change. As a result, Zyzzyva’s view change protocol
ensures that if a correct replica commits to a view change
in view v, eventually all correct replicas will. In effect, Zyz-
zyva shifts the costs needed to deal with a faulty primary
from the critical path (the agreement protocol) to the view
change sub-protocol, which is run only when the primary is
faulty.

3.3.2 The Case of the Uncommitted Request
Zyzzyva replicas may never learn the outcome of the agree-

ment protocol: only clients may know when a request has
completed. How do Zyzzyva replicas identify a safe history
prefix for a new view?

There are two ways in which a request r and its his-
tory may complete in Zyzzyva. Let us first consider the
least problematic from the perspective of a view change: it
occurs when r completes because a client receives 2f + 1
local-commit messages, implying that at least f + 1 cor-
rect replicas have stored a commit certificate for r. Tradi-
tional view change protocols already handle this case: the
standard view-change message sent by a correct replica
includes all commit certificates known to the replica since
the latest stable checkpoint. The new primary includes in
the new-view message all commit certificates that appear
in any set of 2f + 1 view-change messages it receives: at
least one of those view-change messages must contain a
commit certificate for r.

The other case is more challenging: if r completes because
the client receives 3f + 1 matching speculative responses,
then no correct replica will have a commit certificate for
r. We handle this case by modifying the view change sub-
protocol in two ways. First, correct replicas add to the infor-
mation included in their view-change message all order-

req messages (without the corresponding client request) re-
ceived since the latest stable checkpoint or commit certifi-
cate. Second, a correct new primary extends the history to
be adopted in the new view to include all requests with an
order-req message containing a sequence number higher
than the largest sequence number in any commit certificate
that appears in at least f + 1 of the 2f + 1 view-change

messages the new primary collects.
This change weakens the conditions under which a request

ordered in one view can appear in a new view: we no longer
require a commit certificate but also allow a sufficient num-
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ber of order-req messages to support a request’s ordering.
This change ensures that the protocol continues to honor
ordering commitments for any request that completes when
a client gathers 3f + 1 matching speculative responses.

Notice that this change may have the side effect of assign-
ing an order to a request that has not yet completed in the
previous view. In particular, a curiosity of the protocol is
that, depending on which set of 2f + 1 view-change mes-
sages the primary uses, it may, for a given sequence number,
find different requests with f +1 order-req messages. This
curiosity, however, is benign and cannot cause the system to
violate safety. In particular, there can be two such candi-
date requests for the same sequence number only if at least
one correct replica supports each of the candidates. In such
a case, neither of the candidates could have completed by
having a client receive 3f + 1 matching responses, and the
system can safely assign either (or neither) request to that
sequence number.

3.4 Correctness
This section sketches the proof that Zyzzyva maintains

properties saf and liv defined above. Full proofs are avail-
able in the extended technical report [17].

3.4.1 Safety
We first show that our agreement sub-protocol is safe

within a single view and then show that the agreement and
view change protocols together ensure safety across views.

Within a View.
The proof proceeds in two parts. First we show that no

two requests complete with the same sequence number n.
Second we show that hn is a prefix of hn′ for n < n′ and
completed requests r and r′.

Part 1: A request completes when the client receives 3f+1
matching spec-response messages in phase 1 or 2f + 1
matching local-commit messages in phase 2. If a request
completes in phase 1 with sequence number n, then no other
request can complete with sequence number n because cor-
rect replicas (a) send only one speculative response for a
given sequence number and (b) send a local-commit mes-
sage only after seeing 2f +1 matching spec-response mes-
sages. Similarly, if a request completes with sequence num-
ber n in phase 2, no other request can complete since correct
replicas only send one local-commit message for sequence
number n.

Part 2: For any two requests r and r′ that complete with
sequence numbers n and n′ and histories hn and hn′ respec-
tively, there are at least 2f + 1 replicas that ordered each
request. Because there are only 3f + 1 replicas in total, at
least one correct replica ordered both r and r′. If n < n′, it
follows that hn is a prefix of hn′ .

Across Views.
We show that any request that completes based on re-

sponses sent in view v < v′ is contained in the history spec-
ified by the new-view message for view v′. Recall that re-
quests complete either when a correct client receives 3f + 1
matching speculative responses or 2f + 1 matching local-
commits.

If a request r completes with 2f+1 matching local-commits,
then at least f + 1 correct replicas have received a com-
mit certificate for r (or for a subsequent request) and will
send that commit certificate to the new primary in their

view-change message. Because there are 3f + 1 replicas
in the system and 2f +1 view-change messages in a new-

view message, that commit certificate will necessarily be
included in the new-view message and r will be included
in the history. Consider instead a request r that completes
with 3f +1 matching spec-response messages and does not
complete with 2f + 1 matching local-commit messages.
Every correct replica will include the order-req for r in
its view-change message, ensuring that the request will be
supported by at least f + 1 replicas in the set of 2f + 1
view-change messages collected by the primary of view v′

and therefore be part of the new-view message.

3.4.2 Liveness
Zyzzyva guarantees liveness only during periods of syn-

chrony. To show that a request issued by a correct client
eventually completes, we first show that if the primary is
correct when a correct client issues the request, then the
request completes. We then show that if a request from a
correct client does not complete during the current view,
then a view change occurs.

Part 1: If the client and primary are correct, then proto-
col steps 1 through 3 ensure that the client receives spec-

response messages from all correct replicas. If the client
receives 3f + 1 matching spec-response messages, the re-
quest completes—and so does our proof. A client that in-
stead receives fewer than 3f + 1 such messages will receive
at least 2f +1 of them, since there are 3f +1 replicas and at
most f of which are faulty. This client then sends a commit

message to all replicas (protocol step 4b). All correct repli-
cas send a local-commit message to the client (protocol
step 4b.1), and, because there are at least 2f + 1 correct
replicas, the client’s request completes in protocol step 4b.2.

Part 2: Assume the request from correct client c does not
complete. By protocol step 4c, c resends the request mes-
sage to all replicas when the request has not completed for
a sufficiently long time. A correct replica, upon receiving
the retransmitted request from c, contacts the primary for
the corresponding order-req message. Any correct replica
that does not receive the order-req message from the pri-
mary initiates the view change by sending an i-hate-the-

primary message to all other replicas. Either at least one
correct replica receives at least f + 1 i-hate-the-primary

messages, or no correct replica receives at least f + 1 i-

hate-the-primary messages. In the first case, the replicas
commit to a view change—QED. In the second case, all cor-
rect replicas that did not receive the order-req message
from the primary receive it from another replica. After re-
ceiving an order-req message, a correct replica sends a
spec-response to c. Because all correct replicas send a
spec-response message to c, c is guaranteed to receive at
least 2f + 1 such messages. Note that c must receive fewer
than 2f + 1 matching spec-response messages: otherwise,
c would be able to form a commit and complete the request,
contradicting our initial assumption. If however, c does not
receive 2f + 1 matching spec-response messages, then c is
able to form a pom message: c relays this message to the
replicas which in turn initiate and commit to a view change,
completing the proof.

4. IMPLEMENTATION OPTIMIZATIONS
Our implementation includes several optimizations to im-

prove performance and reduce system cost.
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Replacing Signatures with MACs.
Like previous work [3, 9, 10, 18, 33, 41], we replace most

signatures in Zyzzyva with MACs and authenticators in or-
der to reduce the computational overhead of cryptographic
operations. The only signatures that are not replaced with
MACs are client request retransmissions and the messages
of the view change protocol. The technical changes to each
sub-protocol required by replacing signatures with authenti-
cators are described in [17]. The most noticeable difference
in the agreement sub-protocol is the way Zyzzyva addresses
the scenario in which replica i is unable to authenticate a
client request; i cannot distinguish whether the fault lies
with the primary or the client. Our procedure in this case
is similar to a view change and results in correct replicas
agreeing to accept the request or replace it with a no-op in
the sequence. The checkpoint sub- protocol adds a third
phase to ensure that stable checkpoints are consistent with
requests that complete through speculative execution. Fi-
nally, the view change sub-protocol includes an additional
phase for gathering checkpoint and commit certificate proofs
as is done in PBFT [9].

Separating Agreement from Execution.
We separate agreement from execution [41] by requiring

only 2f + 1 replicas to be execution replicas. The remain-
ing replicas serve as witness replicas [23], aiding in the pro-
cess of ordering requests but not replicating the application.
Clients accept a history based on the agreement protocol
described in the previous section with a slight modification:
a pair of responses are considered to match even if the re-
sponse r and response hash H(r) fields are not identical. A
client acts on a reply only after receiving the appropriate
number of matching responses and f + 1 matching appli-
cation replies from execution replicas. One consequence of
this optimization is that a client may have to wait until it
has received more than 2f + 1 responses before it can act
in the second phase. We gain further benefit by biasing the
primary selection criteria so that witness replicas are cho-
sen as the primary more frequently than execution replicas.
This favoritism reduces processor contention at the primary
and allows requests to be ordered and processed faster.

Request Batching.
We batch concurrent requests to reduce cryptographic and

communication overheads like other agreement-based repli-
cated services [9, 18, 33, 41, 37]. Batching requests amor-
tizes the cost of replica operations across multiple requests
and reduces the total number of operations per request. One
key step in batching requests is having replicas compute
a single history digest corresponding to the entries in the
batch. This batch history is used in responses to all re-
quests included in the batch. If the second phase completes
for any request in the batch, the second phase is considered
complete for all requests in the batch and replicas respond
to the retransmission of any requests in the batch with local-
commit messages.

Caching Out of Order Requests.
The protocol described in section 3.2 dictates that repli-

cas discard order request messages that are received out of
order. We improve performance when the network delivers
messages out of order by caching these requests until the ap-

propriate sequence number is reached. Similarly, the view
change sub-protocol can order additional requests that are
not supported by f + 1 speculative responses.

Read-Only Optimization.
Like PBFT [9], we improve the performance of read- only

requests that do not modify the system state. A client sends
read-only requests directly to the replicas which execute the
requests immediately, without recording the request in the
request history. As in PBFT, clients wait for 2f+1 matching
replies in order to complete read-only operations. In order
for this optimization to function, we augment replies to read
requests with a replica’s maxn and maxCC . A client that
receives 2f +1 matching responses, including the maxn and
maxCC fields, such that maxn = maxCC can accept the
reply to the read. Furthermore, a client that receives 3f +1
matching replies, even if the maxCC and maxn values are
not consistent, can accept the reply to the read.

Single Execution Response.
The client specifies a single execution replica to respond

with a full response while the other execution replicas send
only a digest of the response. This optimization is intro-
duced in PBFT [9] and saves network bandwidth propor-
tional to the size of responses.

Preferred Quorums.
Q/U [3] and HQ [10] leverage preferred quorums to re-

duce the size of authenticators by optimistically including
MACs for a subset of replicas rather than all replicas. We
implement preferred quorums for the second phase; repli-
cas authenticate speculative response messages for the client
and a subset of 2f other replicas. Additionally, on the ini-
tial transmission, we allow the client to specify that repli-
cas should authenticate speculative response messages to the
client only. This optimization reduces the number of cryp-
tographic operations performed by backup replicas to three
while existing BFT systems [9, 18, 3, 10, 33, 41] require a
linear number of cryptographic operations at each replica.

4.1 Making the Faulty Case Fast
We introduce a second protocol, Zyzzyva5, that uses 2f

additional witness replicas (the number of execution replicas
is unchanged at 2f +1) for a total of 5f +1 replicas. Increas-
ing the number of replicas lets clients receive responses in
three message delays even when f replicas are faulty [11, 21,
25]. Zyzzyva5 trades the number of replicas in the deployed
system against performance in the presence of faults. Zyz-
zyva5 is identical to Zyzzyva with a simple modification—
nodes wait for an additional f messages, i.e. if a node bases
a decision on a set of 2f + 1 messages in Zyzzyva, the cor-
responding decision in Zyzzyva5 is based on a set of 3f + 1
messages. The exceptions to this rule are the “I hate the
primary” phase of the view change protocol and the fill-hole
and confirm-request sub-protocols that serve to prove that
another correct replica has taken an action—these phases
still require only f + 1 responses.

5. EVALUATION
This section examines the performance characteristics of

Zyzzyva and compares it with existing approaches. We run
our experiments on 3.0 GHz Pentium-4 machines with the
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Figure 3: Realized throughput for the 0/0 bench-
mark as the number of client varies for systems con-
figured to tolerate f = 1 faults.

Linux 2.6 kernel. We use MD5 for MACs and AdHash [7]
for incremental hashing. MD5 is known to be vulnerable,
but we use it to make our results comparable with those in
the literature. Since Zyzzyva uses fewer MACs per request
than any of the competing algorithms, our advantages over
other algorithms would be increased if we were to use the
more secure, but more expensive, SHA-256.

For comparison, we run Castro et al.’s implementation of
PBFT [9] and Cowling et al.’s implementation of HQ [10]; we
scale up measured throughput for the small request/response
benchmark by 9% [1] to account for their use of SHA-1 rather
than MD5. We include published throughput measurements
for Q/U [3]; we scale reported performance up by 7.5% to
account for our use of 3.0 GHz rather than 2.8GHz machines.
We also compare against measurements of an unreplicated
server.

Unless noted otherwise, in our experiments we use all of
the optimizations other than preferred quorums for Zyzzyva
as described in §4. PBFT [9] does not implement preferred
quorum optimization. We run with preferred quorum opti-
mization for HQ [10]. We do not use the read-only optimiza-
tion for Zyzzyva and PBFT unless we state so explicitly.

5.1 Throughput
To stress-test Zyzzyva we use the micro-benchmarks de-

vised by Castro et al. [9]. In the 0/0 benchmark, a client
sends a null request and receives a null reply. In the 4/0
benchmark, a client sends a 4KB request and receives a null
reply. In the 0/4 benchmark, a client sends a null request
and receives a 4KB reply.

Figure 3 shows the throughput achieved for the 0/0 bench-
mark by Zyzzyva, Zyzzyva5, PBFT, and HQ (scaled as noted
above). For reference, we also show the peak throughput re-
ported for Q/U [3] in the f = 1 configuration, scaled to
our environment as described above. As the number of
clients increases, Zyzzyva and Zyzzyva5 scale better than
PBFT with and without batching. Without batching, Zyz-
zyva achieves a peak throughput that is 2.7 times higher
than PBFT due to PBFT’s higher cryptographic overhead
(PBFT performs about 2.2 times more crypto operations
than Zyzzyva) and message overhead (PBFT sends and re-
ceives about 3.7 times more messages than Zyzzyva). When
the batch size is increased to 10, Zyzzyva’s and Zyzzyva5’s
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Figure 4: Latency for 0/0, 0/4, and 4/0 benchmarks
for systems configured to tolerate f = 1 faults.

peak throughputs increase to 86K ops/sec suggesting that
the protocol overhead at the primary is 12µs per batched re-
quest. With batching, PBFT’s throughput increases to 59K
ops/sec. The 45% difference between Zyzzyva and PBFT’s
peak throughput are largely accounted for PBFT’s higher
cryptographic overhead (about 30%) and message overhead
(about 30%) compared to Zyzzyva. Zyzzyva provides over 3
times the reported peak throughput of Q/U and over 9 times
the measured throughput of HQ. This difference stems from
three sources. First, Zyzzyva requires fewer cryptographic
operations per request compared to HQ and Q/U. Second,
neither Q/U nor HQ is able to use batching to reduce cryp-
tographic and message overheads. Third, Q/U and HQ do
not take advantage of the Ethernet broadcast channel to
speed up the one-to-all communication steps.

Overall, the peak throughput achieved by Zyzzyva is within
35% of that of an unreplicated server that simply replies to
client request over an authenticated channel. Note that as
application-level request processing increases, the protocol
overhead will fall.

5.2 Latency
Figure 4 shows the latencies of Zyzzyva, Zyzzyva5, Q/U,

and PBFT for the 0/0, 0/4, and 4/0 microbenchmarks. For
Q/U, which can complete in fewer message delays than Zyz-
zyva during contention-free periods, we use a simple best-
case implementation of Q/U with preferred quorums in which
a client simply generates and sends 4f + 1 MACs with a re-
quest, each replica verifies 4f + 1 MACs (1 to authenticate
the client and 4f +1 to validate the OHS state), each replica
generates and sends 4f +1 MACs (1 to authenticate the re-
ply to the client and 4f to authenticate OHS state) with a
reply to the client, and the client verifies 4f + 1 MACs. We
examine both the default read/write requests that use the
full protocol and read-only requests that exploit the read-
only optimization.

Zyzzyva uses fast agreement to drive its latency near the
optimal for an agreement protocol—3 one-way message de-
lays [11, 21, 25]. The experimental results in Figure 4 show
that Zyzzyva and Zyzzyva5 achieve significantly lower la-
tency than the other agreement-based protocols, PBFT and
HQ. As expected, Q/U’s avoidance of serialization gives it
even better latency in low-contention workloads such as the
one examined here, though Zyzzyva and PBFT can match
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 0

 20

 40

 60

 80

 100

f=3f=2f=1

M
ax

 th
ro

ug
hp

ut
 (K

op
s/

se
c)

Zy
zz

yv
a

Zy
zz

yv
a 

(B
=1

0)
   

P
B

FT
P

B
FT

 (B
=1

0)
Q

/U
 (s

ca
le

d 
fro

m
 [3

])
H

Q

Zy
zz

yv
a

Zy
zz

yv
a 

(B
=1

0)
   

P
B

FT
P

B
FT

 (B
=1

0)
Q

/U
 (s

ca
le

d 
fro

m
 [3

])
H

Q

Zy
zz

yv
a

Zy
zz

yv
a 

(B
=1

0)
   

P
B

FT
P

B
FT

 (B
=1

0)
Q

/U
 (s

ca
le

d 
fro

m
 [3

])
H

Q

Figure 6: Fault scalability: Peak throughputs

Q/U for read-only requests where all of these protocols can
complete in two message delays.

Figure 5 shows latency and throughput as we vary offered
load. As the figure illustrates, batching in Zyzzyva, Zyz-
zyva5, and PBFT increases latency but also increases peak
throughput. Adaptively setting the batch size in response
to workload characteristics is an avenue for future work.

5.3 Fault Scalability
In this section we examine performance of these protocols

as f , the number of tolerated faults, increases.
Figure 6 shows the peak throughputs of Zyzzyva, PBFT,

HQ, and Q/U (reported throughput) with increasing num-
ber of tolerated faults for batch sizes of 1 and 10. Zyzzyva
is robust to increasing f and continues to provide signifi-
cantly higher throughput than other systems for the same
reasons as explained in the throughput section. Addition-
ally, as expected for the case with no batching, the overhead
of Zyzzyva increases more slowly than PBFT with increasing
f because Zyzzyva requires 2+(3f +1) cryptographic oper-
ations compared to 2 + (10f + 1) cryptographic operations
for PBFT.

Figures 7 shows the number of cryptographic operations
per request and the number of messages sent and received
per request at the bottleneck server (the primary in Zyzzyva,
Zyzzyva5, PBFT, and any server in Q/U and HQ). We be-
lieve that for these metrics, the most interesting regions are
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Figure 8: Realized throughput for the 0/0 bench-
mark as the number of client varies when f non-
primary replicas fail to respond to requests.

when f is small and when batching is enabled. Not coin-
cidentally, Zyzzyva performs well in these situations, domi-
nating all of the approaches with respect to load at the bot-
tleneck server. Also, when f is small, Zyzzyva and Zyzzyva5
also have low message counts at the primary.

As f increases, when batching is used, Zyzzyva and Zyz-
zyva5 are likely to remain attractive. One point worth not-
ing is that message counts at the primary for Zyzzyva, Zyz-
zyva5, and PBFT increase as f increases, while server mes-
sage counts are constant with f for Q/U and HQ. In this
figure, message counts do not include the multicast opti-
mization we exploited in our experiments. Multicast reduces
the number of client messages for all protocols by allowing
clients to transmit their requests to all servers in one send.
Multicast also reduces the number of server messages for
Zyzzyva, Zyzzyva5, PBFT, and HQ (but not Q/U) when
the primary or other servers communicate with their peers.
In particular, with multicast the primary sends or receives
one message per batch of operations plus an additional two
messages per request regardless of f .

The extended technical report [17] examines other metrics
such as client load and finds, for example, that Zyzzyva im-
proves upon all of the protocols except PBFT by this metric.
These graphs are omitted due to space constraints.

5.4 Performance During Failures
Zyzzyva guarantees correct execution with any number

of faulty clients and up to f faulty replicas. However, its
performance is optimized for the expected case of failure-
free operation. In particular a single faulty replica can force
Zyzzyva to execute the slower 2 phase protocol. Zyzzyva’s
protocol, however, remains relatively efficient in such sce-
narios. In particular, Zyzzyva’s cryptographic overhead in-
creases from 2+ 3f+1

b
to 3+ 5f+1

b
operations per batch. Zyz-

zyva5’s increased fault tolerance ensures that its overheads
do not increase in such scenarios, remaining at 2+ 5f+1

b
per

batch. For comparison, PBFT uses 2 + 10f+1

b
operations in

both this scenario and fault-free.
Figure 8 compares throughput with increasing numbers

of clients for Zyzzyva, Zyzzyva5, PBFT, and HQ in the
presence of f backup server failures. For the case when
f = 1, with one failure and no batching (b = 1), Zyzzyva and
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Figure 7: Fault scalability using analytical model

Zyzzyva5 provide 1.8 and 2.6 times higher throughput than
PBFT, respectively, because of additional cryptographic and
message overheads as described above. However, with the
batch size of 10, PBFT performs 15% better than Zyzzyva
as the cryptographic overhead of Zyzzyva is 16% higher than
PBFT. As expected, Zyzzyva5 achieves the peak throughput
that is same as the peak throughput for the fault-free case
and continues to outperform PBFT by 43% with batching.
For the same reasons as described in the throughput section,
Zyzzyva, Zyzzyva5, and PBFT outperform HQ. We do not
include a discussion of Q/U in this section as the throughput
numbers of Q/U with failures are not reported [3].

A limitation Zyzzyva and Zyzzyva5 share with PBFT (and
HQ during periods of contention) is that a faulty primary
can significantly prevent progress. These protocols replace
the primary to ensure progress. Although Q/U avoids hav-
ing a primary, it shares a corresponding vulnerability: a
faulty client that fails to adhere to the back-off protocol can
impede progress indefinitely.

6. RELATED WORK
Starting with PBFT [9, 33] several systems [3, 10, 18,

41] have explored how to make Byzantine services practical.

We have discussed throughout the paper how Zyzzyva builds
upon these systems and how it departs from them. As its
predecessors, Zyzzyva leverages ideas inspired by Paxos [20]
and by work on Byzantine quorum systems [24]. In particu-
lar, Zyzzyva fast agreement protocol is based on recent work
on fast Paxos [11, 21, 25].

Numerous BFT agreement protocols [9, 10, 18, 25, 33,
41] have used tentative execution to reduce the latency ex-
perienced by clients. This optimization allows replicas to
execute a request tentatively as soon as they have collected
the Zyzzyva equivalent of a commit certificate for that re-
quest. This optimization may superficially appear similar
to Zyzzyva’s support for speculative executions—but there
are two fundamental differences. First, Zyzzyva’s specula-
tive execution allows requests to complete at a client after
a single phase, without the need to compute a commit cer-
tificate: this reduction in latency is not possible with tradi-
tional tentative executions. Second, and more importantly,
in traditional BFT systems a replica can execute a request
tentatively only after the replica’s “state reflects the execu-
tion of all requests with lower sequence number, and these
requests are all known to be committed” [8]. In Zyzzyva,
replicas continue to execute request speculatively, without
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waiting to know that requests with lower sequence numbers
have completed; this difference is what lets Zyzzyva leverage
speculation to achieve not just lower latency but also higher
throughput.

Q/U [3] provides high throughput assuming low concur-
rency in the system but requires higher number of repli-
cas than Zyzzyva. HQ [10] uses fewer replicas than Q/U
but uses multiple rounds to complete an operation. Both
HQ and Q/U fail to batch concurrent requests and incur
higher overhead in the presence of request contention; Singh
et al. [37] add a preserializer to HQ and Q/U to address
these issues.

BFT2F [22] explores how to gracefully weaken the consis-
tency guarantees provided by BFT state machine replication
when the number of faulty replicas exceeds one third (but
is no more than two thirds) of the total replicas.

Speculator [29] allows clients to speculatively complete
operations at the application level and perform client level
rollback. A similar approach could be used in conjunction
with Zyzzyva to support clients that want to act on a re-
ply optimistically, rather than waiting on the specified set
of responses.

7. CONCLUSION
By systematically exploiting speculation, Zyzzyva exhibits

significant performance improvements over existing BFT ser-
vices. The throughput and latency of Zyzzyva approach the
theoretical lower bounds for any BFT protocol.
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APPENDIX
The Zyzzyva view change sub-protocol is similar to tradi-
tional view change sub-protocols with two key exceptions.
First, while replicas in traditional view change protocols
commit to the view change as soon as they suspect the pri-
mary to be faulty, replicas in Zyzzyva only commit to a view
change when they know that all other correct replicas will
join them in electing a new primary. Second, Zyzzyva weak-
ens the condition under which a request appears in the new
view’s history. The protocol proceeds as follows.

VC1. Replica initiates the view change by sending an
accusation against the primary to all replicas.

Replica i initiates a view change by sending 〈i-hate-the-

primary, v〉σi
to all replicas, indicating that the replica is

dissatisfied with the behavior of the current primary. In pre-
vious protocols, this message would indicate that replica i

is no longer participating in the current view. In Zyzzyva,
this message is only a hint that i would like to change views.
Even after issuing the message, i continues to faithfully par-
ticipate in the current view.

VC2. Replica receives f + 1 accusations that the
primary is faulty and commits to the view change.

Replica i commits to a view change into view v+1 by send-
ing an indictment of the current primary, consisting of 〈i-
hate-the-primary, v〉σj

from f +1 distinct replicas j, and
the message 〈view-change, v+1, CC, O, i〉σi

to all replicas.
CC is either the most recent commit certificate for a request
since the last view change, f + 1 view-confirm messages if
no commit certificate is available, or a new-view message
if neither of the previous options are available. O is i’s or-
dered request history since the commit certificate indicated
by CC. At this point, a replica stops accepting messages
relevant to the current view and does not respond to the
client until a new view has started.

VC3. Replica receives 2f + 1 view change messages.

Primary. Upon receipt of 2f +1 view-change messages,
the new primary p constructs the message 〈new-view, v +
1, P 〉σp where P is a collection of 2f +1 view-change mes-
sages defining the initial state for view v + 1.

Replica. The replica starts a timer. If the replica does not
receive a valid new-view message from the new primary
before the timer expires, then the replica initiates a view
change into view v + 2.

Additional Pedantic Details: If a replica commits to change
to view v + 2 before receiving a new view message for view
v + 1, then the replica uses the set of ordered requests from
view v to form its view change message. The length of the
timer in the new view grows exponentially with the number
view changes that fail in succession.

VC4. Replica receives a valid new view message and
sends a view confirmation message to all other repli-
cas.

Replicas determine the state of the new view based on
the collection of 2f + 1 view-change messages included
in the new-view message. The most recent request with
a corresponding commit certificate (or old new view mes-
sage) is accepted as the last request in the base history.
The most recent request that is ordered subsequent to the
commit certificate by at least f + 1 view-change messages
is accepted. Replica i forms the message 〈view-confirm,

v + 1, n, h, i〉σi
based on the new-view message and sends

the view-confirm message to all other replicas.
Additional Pedantic Details: When evaluating the new-

view message, a commit certificate from the most recent
view takes priority over anything else, followed by f + 1
view-confirm messages, and finally a new-view message
with the highest view number.

VC5. Replica receives 2f + 1 matching view-

confirm messages and begins accepting requests in
the new view.

Upon receipt of 2f +1 matching view-confirm messages,
replica i begins the new view v.

Additional Pedantic Details: The exchange of view con-
firm messages is not strictly necessary for safety and can be
optimized out of the protocol, but including them simplifies
our safety proof by ensuring that if a correct replica begins
accepting messages in new view v, then no other correct
replica will accept messages in view v with a different base
history. This step allows replicas to consider a confirmed
view change to be functionally equivalent to a commit cer-
tificate for all requests in the base history of the new view.
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