Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

Fixing the Embarrassing Slowness of OpenDHT on PlanetLab

Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker
University of California, Berkeley
opendht@opendht.org

1 Introduction While PlanetLab’s performance is clearly worsened by the

fact thatitis heavily shared, the current trend towards uti

The distributed hash table, or DHT, is a distributed systqﬂ) computing indicates that such sharing may be common
that provides a traditional hash table’s simple put/get if; future service infrastructures.

terfac.e' using a peer-to-pee.r ov_erlay network. To e_C.hO'thqt also seems unlikely that one could “cherry pick” a
prevailing hype, DHTs deliver incremental scalability i@g; of yyell-performing hosts for OpenDHT. The MapRe-
the number of nodes, extremely high availability of datg,ce gesigners, for example, found that a machine could

low latency, and high throughput. suddenly become a straggler for a number of reasons, in-

_Over the past 16 months, we have run a public DHT S@§yging cluster scheduling conflicts, a partially failedda
vice called OpenDHT [14] on PlanetLab [2], allowing anyjisk or a botched automatic software upgrade. Also, as
networked host to perform puts and gets over an RPC |l show in Section 2, the set of slow nodes isn't con-
terface. We built OpenDHT on Bamboo [13] and shamggant on PlanetLab or RON. For example, while the 90%
lessly adopted other techniques from the literatureqs the time it takes under 10 ms to read a random 1 kB
including recursive routing, proximity neighbor seleetio gy piock on PlanetLab, over a period only 50 hours, 235
and server selection—in attempt to deliver good perfQft 559 hosts will take over 500 ms to do so at least once.
mance. Still, our most persistent complaint from actu@lniie one can find a set of fast nodes for a short experi-

and potential users remained, “It's just not fast enough'ment it is nearly impossible to find such a set on which to
Specifically, while the long-term median latency of gefsyst 4 long-running service.

in OpenDHT was just under 200 ms—matching the bestyye thus adopt the position that the best solution to

performance reported for DHASH [5] on PlanetLab—thge nroblem of slow nodes is to modify our algorithms
99th percentile was measured in seconds, and evenigount for them automatically. Using a combination
median rose above half a second for short periods. ot qelay-aware routing and a moderate amount of redun-
Unsurprisingly, the long tail of this distribution wasyancy, ‘our best technique reduces the median latency of
cgused by a few arbitrarily slow nodes. We have qbserv operations to 51 ms and the 99th percentile to 387 ms,
disk reads that take tens of seconds, computations Higlemendous improvement over our original algorithm.
take hundreds of_ times Iong_er to perform at some times, the next section we guantify the problem of slow
than others, and internode ping times well over a secopdyes on both PlanetLab and RON. Then, in Sections 3
We were thus tempted to blame our performance woes gy 4 we describe several algorithms for mitigating the
PlanetLab (g popular pastime in dlstn_buted systems thesRcts of slow nodes on end-to-end get latency and show
days), but this excuse was problematic for two reasons,qir effectiveness in an OpenDHT deployment of approx-

First, peer-to-peer systems are supposed to capitaljggely 300 PlanetLab nodes. We conclude in Section 5.
on existing resources not necessarily dedicated to the sys-

tem, and do so without extensive management by trained

operators. In contrast to managed, cluster-based serviges The Problem of Slow Nodes

supported by extensive advertising revenue, peer-to-peer

systems were supposed to bring power to the people, elretthis section, we study the problem of slow nodes in

those with flaky machines. PlanetLab as compared to a cluster of machines in our lab.
Second, it is not clear that the problem of slow nod&ur PlanetLab experiments ran on all the nodes we were

is limited to PlanetLab. For example, the best DHASHbIe to log into at any given time, using a slice dedicated

performance on the RON testbed, which is smaller atwthe experiment.

less loaded than PlanetLab, still shows a 99th percentileOur cluster consists of 38 IBM xSeries 330 1U rack-

get latency of over a second [5]. Furthermore, it is wethount PCs, each with two 1.0 GHz Pentium 11l CPUs,

known that even in a managed cluster the distribution b5 GB ECC PC133 SDRAM, and two 36 GB IBM Ul-

individual machines’ performance is long-tailed. The petraStar 36LZX hard drives. The machines use a single

formance of Google's MapReduce system, for exampletel PRO/1000 XF gigabit Ethernet adaptor to connect to

was improved by 31% when it was modified to account farPacket Engines PowerRail gigabit switch. The operating

a few slow machines its designers called “stragglers” [&lystem on each node is Debian GNU/Linux 3.0 (woody),

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

1

2 2
5 01k 5 01kb
8 8
a 0.01 F a 0.01 |
g g
B 0.001 | B 0.001
g g
:-:) 0.0001 - 3 0.0001 F
-
- le-05 1e-05 . . . i
5 0.01 0.1 1 10 100 1000 10000
Latency (ms) Latency (ms)

Figure 1: Time to compute a 128-bit RSA key pair on our clusteFigure 3: Time to read a random 1 kB disk block on our cluster.

2 2z

g 0.1 F % 0.1 ¢r

s 5

a 0.01 a 0.01

Qo Q

= =

k] 0.001 & 0.001

g g

(3 0.0001 5 0.0001 ¢ Y 3

ht i

1e-05 : & : - 1e-05 | | k—\‘ 1 i o 44 j
1 10 100 1000 10000 001 0.1 1 10 100 1000 10000 100000

Latency (ms) Latency (ms)

Figure 2: Time to compute a 128-bit RSA key pair on PlanetLapigure 4: Time to read a random 1 kB disk block on PlanetLab.

running the Linux 2.4.18 SMP kernel. The two disks rugount performance variations between machines and the
in software RAID 0 (striping) using md raidtools-0.90time-varying performance of individual machines. The
During our experiments the cluster is otherwise unusedviapReduce experience seems to confirm this expectation.

We study slowness with respect to computation time, Turning to the PlanetLab numbers, the main difference
network round-trip latency, and disk read latency. F@fthat the scheduling latencies inherent in a shared wstbe
each test, we wrote a simple C program to measure theifgrease the unpredictability of individual machines’-per
tency of the resource under test. Our computation bengbrmance by several orders of magnitude. This trend is
mark measures the latency to compute a new 128-bit Riyst evident in the computation latencies. On the cluster,
key pair, our network benchmark measures the round-tidst machines showed the same, reasonably tight distri-
time (RTT) of sending a 1 kB request and receiving a 1 Kiition of computation times; on PlanetLab, in contrast,
response, and our disk benchmark measures the latency @bmputation that never takes more than 18 ms on one
reading a random 1 kB block out of a 1 GB file. machine takes as long as @®onds on another.

Figures 1-4 present the results of the computation andJnfortunately, very few nodes in PlanetLab are always
disk read tests; each line in these figures represents q¥gt, as shown in Figure 7. To produce this figure, we ran
100,000 data points taken on a single machine. Figuresé disk read test on 259 PlanetLab nodes for 50 hours,
and 6 show the results of the network test; here each liggusing five seconds between reads. The figure shows the
represents over 10,000 data points taken between a singignber of nodes that took over 100 ms, over 500 ms, over
pair of machines. 1's, or over 10 s to read a block since the start of measure-

Looking first at the cluster results, we note that opement. In only 6 hours, 184 nodes take over 500 ms at least
ations we expect to be quick are occasionally quite slognce; in 50 hours, 235 do so.

For example, the maximum ping time is 4.8 ms and theFurthermore, this property does not seem to be unique
maximum disk read time is 2.5 seconds, a factor of 26 @y PlanetLab. Figure 8 shows a similar graph produced
54,300 larger than the median time in each case. from a trace of round-trip times between 15 nodes on

Furthermore, there is significant variance between nRON [1], another shared testbed. We compute for each
chines or pairs of machines (in the case of network RTTapde the median RTT to each of the other fourteen, and
For example, the fraction of disk reads served in undeink nodes by these values. The lower lines show the val-
1 ms (presumably out of the cache) varies between 47 for the eighth largest and second largest values over
and 89% across machines. Also, one pair of machin@ae, and the upper line shows the size of the set of nodes
never sees an RTT longer than 0.28 ms, while another it have ever had the largest or second largest value. In
sees a maximum RTT of 4.8 ms. only 90 hours, 10 of 15 nodes have been in this set. This

Based on these data, we expect that even an isolagegph shows that while the aggregate performance of the
cluster will benefit from algorithms that take into aci5 nodes is relatively stable, the ordering (in terms of per-

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

250

= S T -
% 0.1F 200 r
8 g
a 0.01 @ 150 /
g B
£ 0.001 L \] 5 100 | Union size (>=100ms)
E, i Union size (>=500ms) -~
i 50 Union size (>=1s) 1

3 00001 F L“m—‘ 3 Union size (>=10s)
ks 0 :

1le-05 * 0 10 20 30 40 50

1 10 Time difference (hours)
Latency (ms)

Figure 5:Time to send and receive a 1 kB message on our cluster. Figure 7: Slow disk reads on PlanetLab over time.

[
o

0.25

Union size

2 9 F Rank 14 RTT - o2 =
e 0.1 ¢ 8 Rank 8 RTT - . Q)
8 8 10 [g
o N
o 0.01 t @ 015 g
o S 6 o
£ oo} 5 54 o Ho1 %
=] ’ i A Al e’ ik B) ¥ @
2 W g T—gp—- g
3 00001 . sl
“ ;
1e:05 ‘ ‘ ‘ 00 10t 2 0 10 20 30 40 50 60 70 80 900
0.1 1 10 100 1000 10000 100000 et
Latency (ms) Time difference (hours)

Figure 6: Time to send and receive a 1 kB message on PlanetLab. Figure 8: Slow round-trip times on RON over time.

formance) among them changes greatly. Messages between OpenDHT nodes are sent over UDP
In summary, with respect to network RTT and disknd individually acknowledged by their recipients. A

reads, both the relative performance of individual ma&ongestion-control layer provides TCP-friendliness and
chines and the performance of a single machine over tinedries dropped messages, which are detected by a failure
can show significant variation even on an isolated clustter.receive an acknowledgment within an expected time.
On a shared testbed like PlanetLab or RON, this variatidhis layer also exports to higher layers an exponentially
is even more pronounced, and the performance of compighted average round-trip time to each neighbor.
tational tasks shows significant variation as well. To put a key-value paifk, V), a client sends a put RPC

to an OpenDHT node of its choice; we call this node the

gateway for this request. The gateway then routes a put
3 Algorithmic Solutions message greedily through the network until it reaches the

root for k, which forwards it to the rest dR(k). When
Before presenting the techniques we have used to imprewe members of this set have acknowledged it, the root
get latency in OpenDHT, we give a brief overview of howends an acknowledgment back to the gateway, and the

gets were performed before. RPC completes. Waiting for only 6 of 8 acknowledg-
ments prevents a put from being delayed by one or two
3.1 TheBasic Algor ithm slow nodes in the replica set. These delays, churn, and In-

ternet routing inconsistencies may all cause some replicas
The key space in Bamboo is the integers modulgf.2 in the set to have values that others do not. To reconcile
Each node in the system is assigned an identifier fréhese differences, the nodes in each replica set periodi-
this space uniformly at random. For fault-tolerance aally synchronize with each other [12].
availability, each key-value paifk,v) is stored on the As shown in Figure 9, to perform a get for kkythe
four nodes that immediately precede and follgwve call gatewayG routes a get request message greedily through
these eight nodes theplica set for k, denotedR(k). The the key space until it reaches some ndjle R(k). R
node numerically closest tois called itsroot. replies with any values it has with kdy the setR(k),

Each node in the system knows the eight nodes that iamd the set of nodeS(k) with which it has synchronized
mediately precede and follow it in the key space. Alsonkrecently.G pretends it has received responses flRm
for each (base 2) prefix of a node’s identifier, it has omad the nodes i§(k); if these total five or more, it sends
neighbor that shares that prefix but differs in the next bit.response to the client. Otherwise, it sends the request
This latter group is chosen for network proximity; of thoseirectly to the remaining nodes R(k) one at a time until
nodes that differ from it in the first bit, for example, a nodit has at least five responses (direct or assumed due to syn-
chooses the closest from roughly half the network. chronization). FinallyG compiles a combined response

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

1O Gateway
10 R(K 3
' @ Other Nodes

o Gateway
0 RK ;
: @ Other Nodes

t(k)\G k, {v}, (K

g R(K), S(K) %()

= {v} = v

Client Client

Figure 9:A basic get request. Figure 10:An iterative get request.
and returns it to the client. to choose the neighbearwith maximumh(¢,,d,) at each
By combining responses from at least five replicas, i®p, wheréeh is as follows:

ensure that even after the failure of two nodes, there is at pyrely greedy: h(¢n,dn) = dn
least one node in common between the nodes that receive pyrely delay-based: h(¢y,dn) = 1//n
a put and those whose responses are used for a get. Linearly scaled: h(4n,dn) = dn/fn

Nonlinearly scaled: h(¢y,dn) =dn/f(¢n)

where f (¢,) = 1+ el?n—100/17232 This function makes
We have explored three techniques to improve the lateracygmooth transition fof,, around 100 ms, the approxi-
of gets: delay-aware routing, parallelization of lookupsjate median round-trip time in the network. For round-

3.2 Enhancements

and the use of multiple gateways for each get. trip times below 100 ms, the nonlinear mode thus routes
_ greedily through the key space, and above this value it
321 Delay-Aware Routing routes to minimize the per-hop delay.

In the basic algorithm, we route greedily through the k% lter ative Routin
space. Because each node selects its neighbors acc %12 erativeRouting

ing to their response times to application-level pings,masur basic algorithm performs get requestsursively;
hops are to nearby, responsive nodes. Nonetheless, a bdifing each request through the network to the appro-
in load may render a once-responsive neighbor suddephate replica set. In contrast, gets can also be performed
slow. Bamboo’s neighbor maintenance algorithms are Ggxratively, where the gateway contacts each node along
signed for stability of the network, and so adapt to sughe route path directly, as shown in Figure 10. While it-
changes gradually. The round-trip times exported by tBgative requests involve more one-way network messages
congestion-control layer are updated after each messggg recursive ones, they remain attractive because they
acknowledgment, however, and we can use them to selget easy to parallelize. As first proposed in Kademlia [9],
among neighbors more adaptively. a gateway can maintain several outstanding RPCs concur-
The literature contains several variations on using sughhtly, reducing the harm done by a single slow peer.
delay-aware routing to improve get latency. Gummadi etTo perform a get on kel iteratively, the gateway node
al. demonstrated that routing along the lowest-latency h@intains up top outstanding requests at any time, and
that makes progress in the key space can reduce endgiprequests are timed out after five seconds. Each request
end latency, although their results were based on simW@gntainsk and the Vivaldi [4] network coordinates of the
tions where the per-hop processing cost was ignored [ghteway. When a node ¢ R(k) receives a get request, it
DHASH, in contrast, uses a hybrid algorithm, choosingses Vivaldi to computé, relative to the gateway for each
each hop to minimize the expected overall latency of jts neighborsn, and returns the three with the largest
get, using the expected latency to a neighbor and the gxnjes ofh(dh, £) to the gateway.
pected number of hops remaining in the query to scale th&ynhen a noden ¢ R(K) receives a get request, it returns
progress each neighbor makes in the key space [5]. the same response as in recursive gets: the set of values
We have explored several variations on this theme. k@pred undek and the setR(k) andS(k). Once a gate-
each neighbon, we compute’y, the expected round-trip\yay has received a response of this form, it proceeds as in
time to the neighbor, and,, the progress made in theecyrsive routing, collecting at least five responses leefor
key space by hopping to, and we modified OpenDHT compiling a combined result to send to the client.

4

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

323 M uItipIe Gateways Parameters Latency (ms) Cost per Get

o Row GW I/R p Mode | Avyg 50th 90th 99th| Msgs Bytes

Unlike iterative gets, recursive gets are not easy to paral;- [1 Orig /(*3'9- . [‘2‘2‘2‘ 182 430 81;3 not meas‘:};e;
. 1 R 1 reedy 14 407 4409 55 1

Iellze_. Alsp, in both iterative and recursive gets, th_e gates | 1 R 1 pProx | 298 101 343 5194 87 2625

way itself is sometimes the slowest node involved inare4 | 1 R 1 Linear| 201 99 275 3219 6.8 2210

i with/ I R 1 Nonlin.| 185 104 263 1830 6.0 1987

guegt. For these reasons we have also experlmgnted I3 Greety[157 116 215 784 146 3534

issuing each get request simultaneously to multiple gater | 1 | 3 Prox. | 477 335 1016 2377 331 6971

ways. This technique adds parallelism to both types of | 1 | 3 Lnear| 210 175 422 807 188 4560

Ith h th h fth | 9.1 1 I 3 Nonlin.| 230 175 455 1103 18.3 4458

get, although the paths of the get requests may OVerlapg$—1 r 1 Nonin.| 185 104 263 1830 60 1987

they near the replica set. It also hides the effects of slowi | 2 R 1 Nonlin.| 174 99 267 1609 6.0 1987

12| 1-2 R 1 Nonlin.| 107 71 171 609 119 3973

gateways. 13 1 I 3 Greedy| 157 116 315 788 14.6 3834

14 2 I 3 Greedy| 147 110 294 731 146 3834

15| 1-2 | 3 Greedy| 88 70 195 321 29.3 7668

i 16|12 1 1 Greedy| 141 96 289 638 13.9 4194

4 Exper I mental ReSJItS 17| 1-2 | 2 Greedy| 97 78 217 375 225 6181

i 18| 1-3 R 1 Nonlin.| 90 57 157 440 16.8 5332

Itis well known that as a shared testbed, PlanetLab cannoé | 1-4 R 1 Nonin.| 81 51 142 387 224 7110

be used to gather exactly reproducible results. In fact, t 1:2 : g g:zggg 182 sg 532 ;‘gg gg-é gggi

performance of OpenDHT varies on a hourly basis. 22/1-3 | 2 Greedy| 86 62 196 332 30.3 8028

Despite this limitation, we were able to perform a
meaningful quantitative comparison between our varioligble 1: Performance on PlanetLab. GW is the gateway, 1-4
techniques as follows. We modified the OpenDHT infer planetlab(1415/16/13).millennium.berkeley.edul/R is for
plementation such that each of the modes can be seledgsgtive or recursive. The costs of the single gateway modes are
on a per-get basis, and we ran a private deploymentégtimated as half the costs of using both.
OpenDHT on a separate PlanetLab slice from the public

one. Using a client machine that was not a PlanetLab node))
(and hence does not suffer from the CPU and network dq@de; the scaled modes, in contrast, pay enough attention

lays shown in Figures 2 and 6), we put into OpenDHtP delays _to avoid the slowest nodes, but still make quick
five 20-byte values under each of 3,000 random keys, RE0gress in the key space.
putting them periodically so they would not expire. On We note that the median latencies achieved by all
this same client machine, we ran a script that picks a of@des other than greedy routing are lower than the me-
of the 3,000 keys at random and performs one get for edtidin network RTT between OpenDHT nodes, which is ap-
possible mode in a random order. The script starts edqghximately 137 ms. This seemingly surprising result is
get right after the previous one completes, or after a tinctually expected; with eight replicas per value, the DHT
out of 120 seconds. After trying each mode, the scrip&s the opportunity to find the closest of eight nodes on
picks a new key, a new random ordering of the modezach get. Using the distribution of RTTs between nodes in
and repeats. So that we could also measure the cosPeENDHT, we computed that an optimal DHT that magi-
each technique, we further modified the OpenDHT cogglly chose the closest replica and retrieved it in a single
to record the how many messages and bytes it sends orfbel would have a median get latency of 31 ms, a 90th
half of each type of get. We ran this script from July 2@ercentile of 76 ms, and a 99th percentile of 130 ms.
2005 until August 3, 2005, collecting 27,046 samples perRows 6—9 show the same four modes, but using itera-
mode to ensure that our results cover a significant ran@e routing with a parallelism factop, of 3. Note that
of conditions on PlanetLab. the non-greedy modes are not as effective here as for re-
Table 1 summarizes the results of our experiments. cursive routing. We believe there are three reasons for
The first row of the table shows that our original algahis effect. First, the per-hop cost in iterative routing is
rithm, which always routes all the way to the root, takdsgher than in recursive, as each hop involves a full round-
186 ms on median and over 8 s at the 99th percentile. trip, and on average the non-greedy modes take more hops
Rows 2-5 show the performance of the basic recursieg each get. Second, recursive routing uses fresh, di-
algorithm of Section 3.1, using only one gateway and eagdtt measurements of each neighbor’s latency, but the Vi-
of the four routing modes described in Section 3.2.1. Waldi algorithm used in iterative routing cannot adapt as
note that while routing with respect to delay alone imguickly to short bursts in latency due to load. Third, our
proves get latency some at the lower percentiles, the lindaraldi implementation does not yet include the kinds of
and nonlinear scaling modes greatly improve latency fdtering used by Pietzuch, Ledlie, and Seltzer to produce
the higher percentiles as well. The message counts shoare accurate coordinates on PlanetLab [10]; it is possi-
that routing only by delay takes the most hops, and wikte that their implementation would produce better coor-
each hop comes the possibility of landing on a newly sladinates with which to guide iterative routing decisions.

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS' 05)

Despite their inability to capitalize on delay-awarenesasware routing with nonlinear scaling, and we have en-
the extra parallelism of iterative gets provides enough mmuraged users of the system to use multiple gateways for
silience to far outperform recursive ones at the 99th péatency-sensitive gets. The response from the OpenDHT
centile. This speedup comes at the price of a factor of tweer base has been very positive.
in bandwidth used, however. Looking beyond our specific results, we note that there

Rows 10-12 show the benefits of using two gatewalpas been a lot of collective hand-wringing recently about
with recursive gets. We note that while both gateways dte value of PlanetLab as an experimental platform. The
equally slow individually, waiting for only the quickestoad is so high, it is said, that one can neither get high
of them to return for any particular get greatly reducgerformance from an experimental service nor learn in-
latency. In fact, for the same cost in bandwidth, they fégresting systems lessons applicable elsewhere.
outperform iterative gets at all percentiles. We have certainly cast some doubt on the first of

Rows 13-15 show that using two gateways also irfhese two claims. The latencies shown in Table 1 are
proves the performance of iterative gets, reducing the 9%aw enough to enable many applications that were once
percentile to an amazing 321 ms, but this performani®ught to be outside the capabilities of a “vanilla” DHT.
comes at a cost of roughly four times that of recursiedr example, Cox et al. [3] worried that Chord could not
gets with a single gateway. be used to replace DNS, and others argued that aggressive

Rows 16—17 show that we can reduce this cost by f&ching was required for DHTs to do so [11]. On the con-
ducing the parallelism factop, while still using two gate- trary, even our least expensive modes are as fast as DNS,
ways. Usingp = 1 gives longer latencies than recursivéhich has a median latency of around 100 ms and a 90th
gets with the same cost, but usipg= 2 provides close to percentile latency of around 500 ms [8].
the performance op = 3 at only three times the cost of As to the second claim, there is no doubt that PlanetLab
recursive gets with a single gateway. is a trying environment on which to test distributed sys-

Since iterative gets with two gateways apd= 3 use tems. That said, we suspect that the MapReduce design-
more bandwidth than any of the recursive modes, we r@f$ might say the same about their managed cluster. Their
a second experiment using up to four gateways per get'Wrk with stragglers certainly bears some resemblance to
quest. Rows 18—22 show the results. For the same c#¢ problems we have dealt with. While the question is
recursive gets are faster than iterative ones at both the N0 means settled, we suspect that PlanetLab may dif-
dian and 90th percentile, but slower at the 99th. fer from their environment mainly by degree, forcing us

These differences make sense as follows. As the gdfSolve problems at a scale of 300 nodes that we would
ways are co-located, we expect the paths of recursive g&gntually have to solve at a scale of tens of thousands
to converge to the same replica much of the time. In tRgnodes. _If this suspicion is correct, perhaps PlanetLab’s
common case, that replica is both fast and synchroniZ28Wness is not a bug, but a feature.
with its peers, and recursive gets are faster, as they have
more accurate information than iterative gets about whifRef er ences

neighbor is fastest at each hop. In contrast, iterative ge}}s http: /fnme. csai | . i t. eduf ron/ dat ey

with p > 1 actively explore several replicas in para”eh] A. Bavier et al. Operating system support for planetary-scale network ser-

and are thus faster when one discovered replica is slow g Vices. INNSDI, Mar. 2004, . . .
. . . . s §3] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a peer-to-
when the first replica is not synchronized with its peers,” peer lookup service. ItPTPS, 2002.
necess”a“ng that the gateway contact mul“ple repl|cas[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system. BGCOMM, 2004.
[5] F. Dabek et al. Designing a DHT for low latency and high throughput. In
NSDI, 2004.
. [6] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
5 Conclusions clusters. INOSDI, 2004.
[7] K.Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Sto
. . . . ica. The impact of DHT routing geometry on resilience and proximity. In
In this work we highlighted the problem of slow nodes in sccomm, Aug. 2003.
H 3] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the
OpenDHT, and we demonstrated_ t_hat their effect on ove[F_‘ effectivencss of caching, BGCOMM IMW, 2001,
all system performance can be mitigated through a comiét p. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
: _ H system based on the XOR metric.IRTPS 2002.
nation of delay awqre algonthms and a moderate amoﬂ'& P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordinates on
of redundancy. Using only delay-awareness, we reduced planetLab. INVORLDS, 2005.
i [Kd] V. Ramasubramanian and E. G. Sirer. The design and implementation of a
the, 99th percentlle get Iatency from _over 8 s to under 2]Sl next generation name service for the InternetSIBCOMM, 2004.
Using a factor of four more bandwidth, we can furth@f2] s.RheaOpenDHT: A public DHT service. PhD thesis, U.C. Berkeley, Aug.
i 2005.
redu_ce the 99th percentlle to under 400 ms and cut {Ilﬁg? S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churnin a DHT.
median by a factor of three. In USENIX Annual Tech. Conf., 2004.
P ; ; ifs 4] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
. Since performmg this StUdy’ we have mOdIer_d the DUB |. Stoica, , and H. Yu. OpenDHT: A public DHT service and its uses. In
lic OpenDHT deployment to perform all gets using delay- sGcomm, 2005.

