
OpenDHT: A Public DHT Service and Its Uses

Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu

UC Berkeley and Intel Research
opendht@opendht.org

ABSTRACT
Large-scale distributed systems are hard to deploy, and distributed
hash tables (DHTs) are no exception. To lower the barriers fac-
ing DHT-based applications, we have created a public DHT service
called OpenDHT. Designing a DHT that can be widely shared, both
among mutually untrusting clients and among a variety of applica-
tions, poses two distinct challenges. First, there must be adequate
control over storage allocation so that greedy or malicious clients
do not use more than their fair share. Second, the interface to the
DHT should make it easy to write simple clients, yet be sufficiently
general to meet a broad spectrum of application requirements. In
this paper we describe our solutions to these design challenges. We
also report our early deployment experience with OpenDHT and
describe the variety of applications already using the system.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Distributed Systems

General Terms
Algorithms, Design, Experimentation, Performance, Reliability

Keywords
Peer-to-peer, distributed hash table, resource allocation

1. MOTIVATION
Large-scale distributed systems are notoriously difficult to de-

sign, implement, and debug. Consequently, there is a long history
of research that aims to ease the construction of such systems by
providing simple primitives on which more sophisticated function-
ality can be built. One such primitive is provided by distributed
hash tables, or DHTs, which support a traditional hash table’s sim-
ple put/get interface, but offer increased capacity and availability
by partitioning the key space across a set of cooperating peers and
replicating stored data.

While the DHT field is far from mature, we have learned a tremen-
dous amount about how to design and build them over the past few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05,August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

OpenDHTClient

Client

Client

Puts/Gets

RPC

Client

Application

Figure 1: OpenDHT Architecture.

years, and several well-debugged DHT implementations [1–3] are
now readily available. Furthermore, several fully deployed DHT
applications are now in daily use [15,20,26], and dozens more have
been proposed and/or prototyped.

Maintaining a running DHT requires non-trivial operational ef-
fort. As DHT-based applications proliferate, a natural question to
ask is whether every such application needs its own DHT deploy-
ment, or whether a shared deployment could amortize this opera-
tional effort across many different applications. While some appli-
cations do in fact make extremely sophisticated use of DHTs, many
more access them through such a narrow interface that it is reason-
able to expect they might benefit from a shared infrastructure.

In this paper, we report on our efforts to design and build
OpenDHT (formerly named OpenHash [19]), a shared DHT de-
ployment. Specifically, our goal is to provide a free, public DHT
service that runs on PlanetLab [5]today. Longer-term, as we con-
sider later in this paper, we envision that this free service could
evolve into a competitive commercial market in DHT service.

Figure 1 shows the high-level architecture of OpenDHT. Infras-
tructure nodes run the OpenDHT server code. Clients are nodes
outsidethe set of infrastructure nodes; they run application code
that invokes the OpenDHT service using RPC. Besides participat-
ing in the DHT’s routing and storage, each OpenDHT node also
acts as agatewaythrough which it accepts RPCs from clients.

Because OpenDHT operates on a set of infrastructure nodes, no
application need concern itself with DHT deployment, but neither
can it run application-specific code on these infrastructure nodes.
This is quite different than most other uses of DHTs, in which the
DHT code is invoked as a library on each of the nodes running the
application. The library approach is very flexible, as one can put
application-specific functionality on each of the DHT nodes, but
each application must deploy its own DHT. The service approach
adopted by OpenDHT offers the opposite tradeoff: less flexibility
in return for less deployment burden. OpenDHT provides a home
for applications more suited to this compromise.

The service approach not only offers a different tradeoff; it also
poses different design challenges. Because of its shared nature,
building OpenDHT is not the same as merely deploying an existing

DHT implementation on PlanetLab. OpenDHT is shared in two dif-
ferent senses: there is sharing both among applications and among
clients, and each raises a new design problem.

First, for OpenDHT to be shared effectively by many different
applications, its interface must balance the conflicting goals of gen-
erality and ease-of-use. Generality is necessary to meet the needs
of a broad spectrum of applications, but the interface should also be
easy for simple clients to use. Ease-of-use argues for a fairly sim-
ple primitive, while generality (in the extreme) suggests giving raw
access to the operating system (as is done in PlanetLab).1 It is hard
to quantify both ease-of-use and generality, so we rely on our early
experience with OpenDHT applications to evaluate our design de-
cisions. Not knowing what applications are likely to emerge, we
can only conjecture about the required degree of generality.

Second, for OpenDHT to be shared by many mutually untrust-
ing clients without their unduly interfering with each other, system
resources must be allocated with care. While ample prior work has
investigated bandwidth and CPU allocation in shared settings, stor-
age allocation has been studied less thoroughly. In particular, there
is a delicate tradeoff between fairness and flexibility: the system
shouldn’t unnecessarily restrict the behavior of clients by imposing
arbitrary and strict quotas, but it should also ensure that all clients
have access to their fair share of service. Here we can evaluate
prospective designs more quantitatively, and we do so with exten-
sive simulations.

We summarize our solutions to these two design problems
in Section 2. We then address in significantly more detail the
OpenDHT interface (Section 3) and storage allocation algorithm
(Section 4). Section 5 describes our early deployment experience,
both in terms of raw performance and availability numbers, and the
variety of applications currently using the system. Section 6 con-
cludes with a discussion of various economic concerns that may
affect the design and deployment of services like OpenDHT.

2. OVERVIEW OF DESIGN
Before delving into the details of OpenDHT in subsequent sec-

tions, we first describe the fundamental rationale for the designs we
chose for the system’s interface and storage allocation mechanism.

2.1 Interface
In designing OpenDHT, we have the conflicting goals of gener-

ality and ease-of-use (which we also refer to as simplicity). There
are three broad classes of interfaces in the DHT literature, and they
each occupy very different places on the generality/simplicity spec-
trum (a slightly different taxonomy is described in [11]). Given a
key, these interfaces provide three very different capabilities:

routing Provides general access to the DHT node responsible for
the input key, and to each node along the DHT routing path.

lookup Provides general access to the DHT node responsible for
the input key.

storage Directly supports the put(key, value) and get(key) opera-
tions by routing them to the DHT node responsible for the
input key, but exposes no other interface.

The routing model is the most general interface of the three; a
client is allowed to invoke arbitrary code at the endpoint and at ev-
ery node along the DHT path towards that endpoint (either through
1One might argue that PlanetLab solves the problems we are posing
by providing extreme resource control and a general interface. But
PlanetLab is hard for simple clients to use, in that every application
must install software on each host and ensure its continued opera-
tion. For many of the simple applications we describe in Section
5.3, this effort would be inappropriately burdensome.

upcalls or iterative routing). This interface has been useful in im-
plementing DHT-based multicast [7] and anycast [34].

The lookupmodel is somewhat less general, only allowing code
invocation on the endpoint. This has been used for query process-
ing [17], file systems [9,23], and packet forwarding [31].

The true power of the routing and lookup interfaces lies in the
application-specific code running on the DHT nodes. While the
DHT provides routing to the appropriate nodes, it is the application-
specific code that does the real work, either at each hop en route
(routing) or only at the destination (lookup). For example, such
code can handle forwarding of packets (e.g., multicast andi3 [31])
or data processing (e.g., query processing).

Thestoragemodel is by far the least flexible, allowing no access
to application-specific code and only providing the put/get primi-
tives. This lack of flexibility greatly limits the spectrum of applica-
tions it can support, but in return this interface has two advantages:
it is simple for the service to support, in that the DHT infrastructure
need not deal with the vagaries of application-specific code running
on each of its nodes, and it is also simple for application developers
and deployers to use, freeing them from the burden of operating a
DHT when all they want is a simple put/get interface.

In the design of OpenDHT, we place a high premium on sim-
plicity. We want an infrastructure that is simple to operate, and a
service that simple clients can use. Thus the storage model, with
its simple put/get interface, seems most appropriate. To get around
its limited functionality, we use a novel client library, Recursive
Distributed Rendezvous (ReDiR), which we describe in detail in
Section 3.2. ReDiR, in conjunction with OpenDHT, provides the
equivalent of a lookup interface for any arbitrary set of machines
(inside or outside OpenDHT itself). Thus clients using ReDiR
achieve the flexibility of the lookup interface, albeit with a small
loss of efficiency (which we describe later).

Our design choice reflects our priorities, but one can certainly
imagine other choices. For instance, one could run a shared DHT
on PlanetLab, with the DHT providing the routing service and Plan-
etLab allowing developers to run application-specific code on indi-
vidual nodes. This would relieve these developers of operating the
DHT, and still provide them with all the flexibility of the routing in-
terface, but require careful management of the application-specific
code introduced on the various PlanetLab nodes. We hope others
explore this portion of the design space, but we are primarily inter-
ested in facilitating simple clients with a simple infrastructure, and
so we chose a different design.

While there are no cut-and-dried metrics for simplicity and gen-
erality, early evidence suggests we have navigated the tradeoff be-
tween the two well. As we describe in greater detail in Section 5.1,
OpenDHT is highly robust, and we firmly believe that the relative
simplicity of the system has been essential to achieving such ro-
bustness. While generality is similarly difficult to assess, in Table 4
we offer a catalog of the diverse applications built on OpenDHT as
evidence of the system’s broad utility.

2.2 Storage Allocation
OpenDHT is essentially a public storage facility. As observed in

[6,30], if such a system offers the persistent storage semantics typi-
cal of traditional file systems, the system will eventually fill up with
orphaned data. Garbage collection of this unwanted data seems dif-
ficult to do efficiently. To frame the discussion, we consider the so-
lution to this problem proposed as part of the Palimpsest shared
public storage system [30]. Palimpsest uses a novel revolving-
door technique in which, when the disk is full, new stores push
out the old. To keep their data in the system, clients re-put fre-
quently enough so that it is never flushed; the required re-put rate

depends on the total offered load on that storage node. Palimpsest
uses per-put charging, which in this model becomes an elegantly
simple form of congestion pricing to provide fairness between users
(those willing to pay more get more).

While we agree with the basic premise that public storage fa-
cilities should not provide unboundedly persistent storage, we are
reluctant to require clients to monitor the current offered load in
order to know how often to re-put their data. This adaptive moni-
toring is complicated and requires that clients run continuously. In
addition, Palimpsest relies on charging to enforce some degree of
fairness; since OpenDHT is currently deployed in an environment
where such charging is both impractical and impolitic, we wanted
a way to achieve fairness without an explicit economic incentive.

Our goals for the OpenDHT storage allocation algorithm are as
follows. First, to simplify life for its clients, OpenDHT should offer
storage with a definite time-to-live (TTL). A client should know
exactly when it must re-store its puts in order to keep them stored,
so rather than adapting (as in Palimpsest), the client can merely
set simple timers or forget its data altogether (if, for instance, the
application’s need for the data will expire before the data itself).

Second, the allocation of storage across clients should be “fair”
without invoking explicit charging. By fair we mean that, upon
overload, each client has “equal” access to storage.2 Moreover,
we also mean fair in the work-conserving sense; OpenDHT should
allow for full utilization of the storage available (thereby preclud-
ing quota-like policies), and should restrict clientsonly when it is
overloaded.

Finally, OpenDHT should preventstarvationby ensuring a min-
imal rate at which puts can be accepted at all times. Without such
a requirement, the system could allocate all its storage (fairly) for
an arbitrarily long TTL, and then reject all storage requests for the
duration of that TTL. Such “bursty” availability of storage would
present an undue burden on OpenDHT clients.

In Section 4 we present an algorithm that meets the above goals.
The preceding was an overview of our design. We next consider

the details of the OpenDHT client interface, and thereafter, the de-
tails of storage allocation in OpenDHT.

3. INTERFACE
One challenge to providing a shared DHT infrastructure is de-

signing an interface that satisfies the needs of a sufficient variety
of applications to justify the shared deployment. OpenDHT ad-
dresses this challenge two ways. First, a put/get interface makes
writing simple applications easy yet still supports a broad range
of storage applications. Second, the use of a client-side library
called ReDiR allows more sophisticated interfaces to be built atop
the base put/get interface. In this section we discuss the design of
these interfaces. Section 5 presents their performance and use.

3.1 The put/get API
The OpenDHT put/get interface supports a range of application

needs, from storage in the style of the Cooperative File System
(CFS) [9] to naming and rendezvous in the style of the Host Identity
Protocol (HIP) [21] and instant messaging.

The design goals behind the put/get interface are as follows.
First, simple OpenDHT applications should be simple to write.
The value of a shared DHT rests in large part on how easy it is to
use. OpenDHT can be accessed using either Sun RPC over TCP or

2As in fair queuing, we can of course impose weighted fairness,
where some clients receive a larger share of storage than others, for
policy or contractual reasons. We do not pursue this idea here, but
it would require only minor changes to our allocation mechanism.

Procedure Functionality
put(k,v,H(s), t) Write (k,v) for TTL t

can be removed with secrets
get(k) returns{(v,H(s), t)} Read allv stored underk

returned value(s) unauthenticated
remove(k,H(v),s, t) Remove(k,v) put with secrets

t > than TTL remaining for put

put-immut(k,v, t) Write (k,v) for TTL t
immutable(k = H(v))

get-immut(k) returns(v, t) Readv stored underk
returned value immutable

put-auth(k,v,n, t,KP,σ) Write (k,v), expires att
public keyKP; private keyKS
can be removed using noncen
σ = {H(k,v,n, t)}KS

get-auth(k,H(KP)) returns{(v,n, t,σ)} Readv stored under(k,H(KP))
returned value authenticated

remove-auth(k,H(v),n, t,KP,σ) Remove(k,v) with noncen
parameters as forput-auth

Table 1: The put/get interface.H(x) is the SHA-1 hash ofx.

XML RPC over HTTP; as such it easy to use from most program-
ming languages and works from behind most firewalls and NATs.
A Python program that reads a key and value from the console and
puts them into the DHT is only nine lines long; the complementary
get program is only eleven.

Second, OpenDHT should not restrict key choice. Previous
schemes for authentication of values stored in a DHT require a par-
ticular relationship between the value and the key under which it
is stored (e.g., [9, 14]). Already we know of applications that have
key choice requirements that are incompatible with such restric-
tions; the prefix hash tree (PHT) [25] is one example. It would be
unwise to impose similar restrictions on future applications.

Third, OpenDHT should provide authentication for clients that
need it. A client may wish to verify that an authorized entity wrote
a value under a particular key or to protect its own values from
overwriting by other clients. As we describe below, certain attacks
cannot be prevented without support for authentication in the DHT.
Of course, our simplicity goal demands that authentication be only
an option, not a requirement.

The current OpenDHT deployment meets the first two of these
design goals (simplicity and key choice) and has some support for
the third (authentication). In what follows, we describe the current
interface in detail, then describe two planned interfaces that better
support authentication. Table 1 summarizes all three interfaces.
Throughout, we refer to OpenDHT keys byk; these are 160-bit
values, often the output of the SHA-1 hash function (denoted by
H), though applications may assign keys in whatever fashion they
choose. Values, denotedv, are variable-length, up to a maximum of
1 kB in size. All values are stored for a bounded time period only;
a client specifies this period either as a TTL or an expiration time,
depending on the interface.

Finally, we note that under all three interfaces, OpenDHT pro-
vides only eventual consistency. In the case of network partitions
or excessive churn, the system may fail to return values that have
been put or continue to return values that have been removed. Im-
perfect clock synchronization in the DHT may also cause values
to expire at some replicas before others, leaving small windows
where replicas return different results. While such temporary in-
consistencies in theory limit the set of applications that can be built
on OpenDHT, they have not been a problem to date.

3.1.1 The Current Interface
A put in OpenDHT is uniquely identified by the triple of a key,

a value, and the SHA-1 hash of a client-chosen random secret up
to 40 bytes in length. If multiple puts have the same key and/or
value, all are stored by the DHT. A put with the same key, value,
and secret hash as an existing put refreshes its TTL. A get takes a
key and returns all values stored under that key, along with their
associated secret hashes and remaining TTLs. An iterator interface
is provided in case there are many such values.

To remove a value, a client reveals the secret whose hash was
provided in the put. A put with an empty secret hash cannot be
removed. OpenDHT stores removes like puts, but a DHT node dis-
cards a put(k,v,H(s)) for which it has a corresponding remove. To
prevent the DHT’s replication algorithms from recovering this put
when the remove’s TTL expires, clients must ensure that the TTL
on a remove is longer than the TTL remaining on the correspond-
ing put. Once revealed in a remove, a secret should not be reused
in subsequent puts. To allow other clients to remove a put, a client
may include the encrypted secret as part of the put’s value.

To change a value in the DHT, a client simply removes the old
value and puts a new one. In the case where multiple clients
perform this operation concurrently, several new values may end
up stored in the DHT. In such cases, any client may apply an
application-specific conflict resolution procedure to decide which
of the new values to remove. So long as this procedure is a total or-
dering of the possible input values, it does not matter which client
performs the removes (or even if they all do); the DHT will store
the same value in the end in all cases. This approach is similar to
that used by Bayou [24] to achieve eventual consistency.

Since OpenDHT stores all values put under a single key, puts
are robust againstsquatting, in that there is no race to put first
under a valuable key (e.g., H(“coca-cola.com”)). To allow oth-
ers to authenticate their puts, clients may digitally sign the values
they put into the DHT. In the current OpenDHT interface, however,
such values remain vulnerable to a denial-of-service attack we term
drowning: a malicious client may put a vast number of values under
a key, all of which will be stored, and thereby force other clients to
retrieve a vast number of such chaff values in the process of retriev-
ing legitimate ones.

3.1.2 Planned Interfaces
Although the current put/get interface suffices for the applica-

tions built on OpenDHT today, we expect that as the system gains
popularity developers will value protection against the drowning
attack. Since this attack relies on forcing legitimate clients to sort
through chaff values put into the DHT by malicious ones, it can
only be thwarted if the DHT can recognize and reject such chaff.
The two interfaces below present two different ways for the DHT
to perform such access control.

Immutable puts: One authenticated interface we plan to add to
OpenDHT is the immutable put/get interface used in CFS [9] and
Pond [28], for which the DHT only allows puts wherek = H(v).
Clearly, such puts are robust against squatting and drowning. Im-
mutable puts will not be removable; they will only expire. The main
limitation of this model is that it restricts an application’s ability to
choose keys.

Signed puts: The second authenticated interface we plan to add
to OpenDHT is one where values put are certified by a particular
public key, as used for root blocks in CFS. In these puts, a client
employs a public/private key pair, denotedKP andKS, respectively.
We callH(KP) theauthenticator.

Procedure Functionality
join(host, id, namespace) adds (host, id) to the list of hosts

providing functionality ofnamespace
lookup(key, namespace) returns (host, id) in namespace

whoseid most immediately followskey

Table 2: The lookup interface provided using ReDiR.

In addition to a key and value, each put includes: a noncen
that can be used to remove the value later; an expiration timet in
seconds since the epoch;KP itself; andσ = {H(k,v,n, t)}KS, where
{X}KS denotes the digital signing ofX with KS. OpenDHT checks
that the digital signature verifies usingKP; if not, the put is rejected.
This invariant ensures that the client that sent a put knowsKS.

A get for an authenticated put specifiesboth kandH(KP), and
returns only those values stored that match bothk and H(KP).
In other words, OpenDHT only returns values signed by the pri-
vate key matching the public key whose hash is in the get request.
Clients may thus protect themselves against the drowning attack by
telling the DHT to return only values signed by an entity they trust.

To remove an authenticated put with(k,v,n), a client issues a
remove request with(k,H(v),n). As with the current interface,
clients must take care that a remove expires after the corresponding
put. To re-put a value, a client may use a new noncen′ 6= n.

We use expiration times rather than TTLs to prevent expired puts
from being replayed by malicious clients. As with the current inter-
face, puts with the same key and authenticator but different values
will all be stored by the DHT, and a new put with the same key, au-
thenticator, value, and nonce as an existing put refreshes its TTL.

Authenticated puts in OpenDHT are similar to those used for
public-key blocks in CFS [9], forsfrtagsin SFR [33], forfileIds in
PAST [14], and for AGUIDs in Pond [28]. Like SFR and PAST,
OpenDHT allows multiple data items to be stored using the same
public key. Unlike CFS, SFR, and PAST, OpenDHT gives applica-
tions total freedom over key choice (a particular requirement in a
generic DHT service).

3.2 ReDiR
While the put/get interface is simple and useful, it cannot meet

the needs of all applications. Another popular DHT interface
is lookup, which is summarized in Table 2. In this interface,
nodes that wish to provide some service—packet forwarding, for
example—join a DHT dedicated to that service. In joining, each
node is associated with an identifierid chosen from akey space,
generally[0 : 2160). To find a service node, a client performs a
lookup, which takes a key chosen from the identifier space and re-
turns the node whose identifier most immediately follows the key;
lookup is thus said to implement the successor relation.

For example, ini3 [31], service nodes provide a packet forward-
ing functionality to clients. Clients create (key, destination) pairs
called triggers, where the destination is either another key or an IP
address and port. A trigger(k,d) is stored on the service node re-
turned bylookup(k), and this service node forwards all packets it
receives for keyk to d. Assuming, for example, that the nodesA
throughF in Figure 2 arei3 forwarding nodes, a trigger with key
B≤ k < C would be managed by service nodeC.

The difficulty with lookup for a DHT service is the functional-
ity implemented by those nodes returned by the lookup function.
Rather than install application-specific functionality into the ser-
vice, thereby certainly increasing its complexity and possibly re-
ducing its robustness, we prefer that such functionality be sup-
ported outside the DHT, while leveraging the DHT itself to per-

E

Level 0

Level 1

Level 2

Level 3

Client keys

Client addresses A B D F

B

C

C F

C E F

C D E

A B

A

D E

Figure 2: An example ReDiR tree with branching factor b = 2.
Each tree node is shown as a contiguous line representing the
node’s interval of the keyspace, and the two intervals associated
with each node are separated by a tick. The names of registered
application hosts (A through F) are shown above the tree nodes
at which they would be stored.

form lookups. OpenDHT accomplishes this separation through the
use of a client-side library called ReDiR. (An alternative approach,
where application-specific code may only be placed on subsets of
nodeswithin the DHT, is described in [18].) By using the ReDiR
library, clients can use OpenDHT to route by key among these
application-specific nodes. However, because ReDiR interacts with
OpenDHT only through the put/get API, the OpenDHT server-side
implementation retains the simplicity of the put/get interface.

A DHT supporting multiple separate applications must distin-
guish them somehow; ReDiR identifies each application by an
arbitrary identifier, called itsnamespace. Client nodes provid-
ing application-specific functionality join a namespace, and other
clients performing lookups do so within a namespace. A ReDiR
lookup on identifierk in namespacen returns the node that has
joinedn whose identifier most immediately followsk.

A simple implementation of lookup could be achieved by storing
the IP addresses and ports of all nodes that have joined a namespace
n under keyn; lookups could then be performed by getting all the
nodes under keyn and searching for the successor to the key looked
up. This implementation, however, scales linearly in the number
of nodes that join. To implement lookup more efficiently, ReDiR
builds a two-dimensional quad-tree of the nodes that have joined
and embeds it in OpenDHT using the put/get interface.3 Using
this tree, ReDiR performs lookup in a logarithmic number of get
operations with high probability, and by estimating the tree’s height
based on past lookups, it reduces the average lookup to a constant
number of gets, assuming uniform-random client IDs.

The details are as follows: each tree node is list of (IP, port)
pairs for a subset of the clients that have joined the namespace.
An example embedding is shown in Figure 2. Each node in the
tree has alevel, where the root is at level 0, its immediate chil-
dren are at level 1,etc. Given a branching factor ofb, there are
thus at mostbi nodes at leveli. We label the nodes at any level
from left to right, such that a pair(i, j) uniquely identifies thejth
node from the left at leveli, and 0≤ j < bi . This tree is then
embedded in OpenDHT node by node, by putting the value(s) of
node(i, j) at keyH(ns, i, j). The root of the tree for thei3 appli-
cation, for example, is stored atH(“i3” ,0,0). Finally, we associate
with each node(i, j) in the treeb intervals of the DHT keyspace
[

2160b−i(j + b′
b), 2160b−i(j + b′+1

b)
)

for 0≤ b′ < b.

We sketch the registration process here. DefineI(`,k) to be the
(unique) interval at level̀ that encloses keyk. Starting at some
level `start that we define later, a client with identifiervi does an
OpenDHT get to obtain the contents of the node associated with

3The implementation of ReDiR we describe here is an improve-
ment on our previous algorithm [19], which used a fixed tree height.

I(`start,vi). If after addingvi to the list of (IP, port) pairs,vi is
now the numerically lowest or highest among the keys stored in
that node, the client continues up the tree towards the root, getting
the contents and performing an OpenDHT put in the nodes associ-
ated with each intervalI(`start−1,vi), I(`start−2,vi), . . ., until it
reaches either the root (level 0) or a level at whichvi is not the low-
est or highest in the interval. It also walks down the tree through
the tree nodes associated with the intervalsI(`start,vi), I(`start+
1,vi), . . ., at each step getting the current contents, and putting its
address ifvi is the lowest or highest in the interval. The downward
walk ends when it reaches a level in which it is the only client in
the interval. Finally, since all state is soft (with TTLs of 60 seconds
in our tests), the entire registration process is repeated periodically
until the client leaves the system.

A lookup (ns,k) is similar. We again start at some level` =
`start. At each step we get the current intervalI(`,k) and determine
where to look next as follows:

1. If there is no successor ofvi stored in the tree node associated
with I(`,k), then its successor must occur in a larger range of
the keyspace, so we set`← `−1 and repeat, or fail if̀ = 0.

2. If k is sandwiched between two client entries inI(`,k), then
the successor must lie somewhere inI(`,k). We set̀ ← `+1
and repeat.

3. Otherwise, there is a clients stored in the node associated
with I(`,k) whose identifiervs succeedsk, and there are no
clients with IDs betweenk andvs. Thus,vs must be the suc-
cessor ofk, and the lookup is done.

A key point in our design is the choice of starting level`start.
Initially `startis set to a hard-coded constant (2 in our implementa-
tion). Thereafter, for registrations, clients take`startto be the low-
est level at which registration last completed. For lookups, clients
record the levels at which the last 16 lookups completed and take
`start to be the mode of those depths. This technique allows us to
adapt to any number of client nodes while usually hitting the cor-
rect depth (Case 3 above) on the first try.

We present a performance analysis of ReDiR on PlanetLab in
Section 5.2.

4. STORAGE ALLOCATION
In Section 2.2, we presented our design goals for the OpenDHT

storage allocation algorithm: that it provide storage with a defi-
nite time-to-live (TTL), that it allocate that storage fairly between
clients and with high utilization, and that it avoid long periods in
which no space is available for new storage requests. In this sec-
tion we describe an algorithm, Fair Space-Time (FST), that meets
these design goals. Before doing so, though, we first consider two
choices we made while defining the storage allocation problem.

First, in this initial incarnation of OpenDHT, we equate “client”
with an IP address (spoofing is prevented by TCP’s three-way hand-
shake). This technique is clearly imperfect: clients behind the same
NAT or firewall compete with each other for storage, mobile clients
can acquire more storage than others, and some clients (e.g., those
that own class A address spaces) can acquire virtually unlimited
storage. To remedy this situation, we could clearly use a more so-
phisticated notion of client (person, organization,etc.) and require
each put to be authenticated at the gateway. However, to be com-
pletely secure against the Sybil attack [13], this change would re-
quire formal identity allocation policies and mechanisms. In order
to make early use of OpenDHT as easy as possible, and to pre-
vent administrative hassles for ourselves, we chose to start with the
much more primitive per-IP-address allocation model, and we hope

minmin

now

C

0

sum

put
potential

(a) (b)

future puts
(slope=r

potential
put

sum

now

C

0

future puts

now+max_ttl time now+max_ttl time

space space

))(slope=r

Figure 3: Preventing starvation.

to improve on it in the future. More generally, we discuss in Sec-
tion 6 how our current free service could transition to a competitive
commercial market in DHT service.

Second, OpenDHT is a large distributed system, and at first one
might think that a fair allocation mechanism should consider the
global behavior of every client (i.e., all of their puts). While track-
ing global behavior in this way presents a daunting problem, it is
also the case that the capacity constraints of OpenDHT are per-
node, in the form of finite disk capacities, so the situation is even
more complicated.4

We note that OpenDHT cannot avoid providing some notion of
per-disk fairness in allocation. For example, a common use of the
system is for rendezvous, where a group of cooperating clients dis-
cover each other by putting their identities under a common key,
k. With a strictly global model of fairness, a malicious client could
disrupt this rendezvous by filling the disk onto whichk is mapped,
so long as it remained below its globally fair allocation. A per-disk
model of fairness, in contrast, promises each client a fair allocation
of every disk in the system, preventing such attacks.

Furthermore, the per-disk model rewards socially responsible be-
havior on the part of clients. Applications that are flexible in their
key choice—the PAST storage system [14], for example—can tar-
get their puts towards otherwise underutilized nodes, thereby bal-
ancing the load on the DHT while acquiring more storage for them-
selves. By protecting applications that cannot choose their keys
while rewarding those that can, the per-disk model reduces the need
for later load balancing by the DHT itself.

For the above reasons, we have implemented per-disk fairness in
OpenDHT, and we leave the study of global fairness to future work.
Still, per-disk fairness is not as easy to implement as it sounds. Our
storage interface involves both an amount of data (the size of the
put in bytes) and a duration (the TTL). As we will see in Section 4,
we can use an approach inspired by fair queuing [12] to allocate
storage, but the two-dimensional nature of our storage requires sub-
stantial extensions beyond the original fair queuing model.

We now turn to describing the algorithmic components of FST.
First we describe how to achieve high utilization for storage re-
quests of varied sizes and TTLs while preventing starvation. Next,
we introduce the mechanism by which we fairly divide storage be-
tween clients. Finally, we present an evaluation of the FST algo-
rithm in simulation.

4.1 Preventing Starvation
An OpenDHT node prevents starvation by ensuring a minimal

rate at which puts can be accepted at all times. Without such a

4We assume that DHT load-balancing algorithms operate on longer
time scales than bursty storage overloads, so their operation is or-
thogonal to the concerns we discuss here. Thus, in the ensuing
discussion we assume that the key-to-node mapping in the DHT is
constant during the allocation process.

requirement, OpenDHT could allocate all its storage (fairly) for
an arbitrarily large TTL, and then reject all storage requests for
the duration of that TTL. To avoid such situations, we first limit
all TTLs to be less thanT seconds and all puts to be no larger
thanB bytes. We then require that each OpenDHT node be able to
accept at the ratermin = C/T, whereC is the capacity of the disk.
We could choose a less aggressive starvation criterion, one with a
smallerrmin, but we are presenting the most challenging case here.
(It is also possible to imagine a reserved rate for future puts that
is not constant over time—e.g.,we could reserve a higher rate for
the near future to accommodate bursts in usage—but as this change
would significantly complicate our implementation, we leave it for
future work.)

When considering a new put, FST must determine if accepting
it will interfere with the node’s ability to accept sufficiently many
later puts. We illustrate this point with the example in Figure 3,
which plots committed disk space versus time. The ratermin re-
served for future puts is represented by the dashed line (which has
slopermin). Consider two submitted puts, a large one (in terms of
the number of bytes) with a short TTL in Figure 3(a) and a small
one with a long TTL in Figure 3(b). The requirement that these
puts not endanger the reserved minimum rate (rmin) for future puts
is graphically equivalent to checking whether the sum of the line
y = rminx and the top edge of the puts does not exceed the stor-
age capacityC at any future time. We can see that the large-but-
short proposed put violates the condition, whereas the small-but-
long proposed put does not.

Given this graphical intuition, we derive a formal admission con-
trol test for our allocation scheme. LetB(t) be the number of bytes
stored in the system at timet, and letD(t1, t2) be the number of
bytes that free up in the interval[t1, t2) due to expiring TTLs. For
any point in time, call ittnow, we can compute as follows the total
number of bytes,f (τ), stored in the system at timetnow+ τ assum-
ing that new puts continue to be stored at a minimum ratermin:

f (τ) = B(tnow)−D(tnow, tnow+ τ)+ rmin× τ

The first two terms represent the currently committed storage that
will still be on disk at timetnow+ τ. The third term is the minimal
amount of storage that we want to ensure can be accepted between
tnow andtnow+ τ.

Consider a new put with sizex and TTL ` that arrives at time
tnow. The put can be accepted if and only if the following condition
holds for all 0≤ τ≤ `:

f (τ)+x≤C. (1)

If the put is accepted, the functionf (τ) is updated. Although we
omit the details here due to space concerns, this update can be done
in time logarithmic in the number of puts accepted by tracking the
inflection points off (τ) using a balanced tree.

4.2 Fair Allocation
The admission control test only prevents starvation. We now

address the problem of fair allocation of storage among competing
clients. There are two questions we must answer in this regard:
how do we measure the resources consumed by a client, and what
is the fair allocation granularity?

To answer the first question, we note that a put in OpenDHT has
both a size and a TTL;i.e., it consumes not just storage itself, but
storage over a given time period. The resource consumed by a put
is then naturally measured by the product of its size (in bytes) and
its TTL. In other words, for the purposes of fairness in OpenDHT,
a put of 1 byte with a TTL of 100 seconds is equivalent to a put of

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6 7 8 9 10T
ot

al
 B

yt
es

*S
ec

on
ds

 (
M

B
*h

ou
rs

)

Time (hours)

Client 1
Client 2
Client 3
Client 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 S

to
ra

ge
 (

M
B

)

Time (hours)

Client 1
Client 2
Client 3
Client 4

Figure 4: Non-starvation. In this experiment, all clients put above their fair rates, but begin putting at different times.

100 bytes with a TTL of 1 second. We call the product of the put’s
size and its TTL itscommitment.

A straightforward strawman algorithm to achieve fairness would
be to track the total commitments made to each client so far, and
accept puts from clients with the smallest total commitments. Un-
fortunately, this policy can lead to per-client starvation. To illus-
trate this point, assume that clientA fills the disk in an otherwise
quiescent system. Once the disk is full, clientB begins putting its
own data.B will not starve, as the admission control test guaran-
tees that the node can still accept data at a rate of at leastrmin, but
A will starve because this strawman algorithm favors clientB until
it reaches the same level of total commitments granted to clientA.
This period of starvation could be as long as the maximum TTL,T.

To prevent such per-client starvation, we aim to equalize therate
of commitments (instead of the total commitments) of clients that
contend for storage. Thus, the service that a client receives depends
only on the competing clients at that instant of time, and not on how
many commitments it was granted in the past. This strategy emu-
lates the well knownfair queuingalgorithm that aims to provide
instantaneous fairness,i.e., allocate a link capacity equally among
competing flows at every instant of time.

In fact, our FST algorithm borrows substantially from the start-
time fair queuing (SFQ) algorithm [16]. FST maintains a system
virtual timev(t) that roughly represents the total commitments that
a continuously active client would receive by timet. By “contin-
uously active client” we mean a client that contends for storage at
every point in time. Letpi

c denote thei-th put of clientc. Then,
like SFQ, FST associates with each putpi

c a start timeS(pi
c) and a

finish timeF(pi
c). The start time ofpi

c is

S(pi
c) = max(v(A(pi

c))−α,F(pi−1
c),0). (2)

A(pi
c) is the arrival time ofpi

c, andα is a non-negative constant
described below. The finish time ofpi

c is

F(pi
c) = S(pi

c)+size(pi
c)× ttl(pi

c).

As with the design of any fair queuing algorithm, the key deci-
sion in FST is how to compute the system virtual time,v(t). With
SFQ the system virtual time is computed as the start time of the
packet currently being transmitted (served). Unfortunately, in the
case of FST the equivalent concept oftheput currently being served
is not well-defined since there are typically many puts stored in the
system at any timet. To avoid this problem, FST computes the sys-
tem virtual timev(t) as the maximum start time of all puts accepted
before timet.

We now briefly describe how the fairness algorithm works in
conjunction with the admission control test. Each node maintains
a bounded-size queue for each client with puts currently pending.
When a new put arrives, if the client’s queue is full, the put is re-
jected. Otherwise, the node computes its start time and enqueues it.
Then the node selects the put with the lowest start time, breaking

ties arbitrarily. Using the admission control test (Eqn. 1) the node
checks whether it can accept this put right away. If so, the node ac-
cepts it and the process is repeated for the put with the next-lowest
start time. Otherwise, the node sleeps until it can accept the pend-
ing put.

If another put arrives, the node awakes and repeats this computa-
tion. If the new put has the smallest start time of all queued puts it
will preempt puts that arrived before it. This preemption is partic-
ularly important for clients that only put rarely—well below their
fair rate. In such cases, the max function in Equation 2 is dom-
inated by the first argument, and theα term allows the client to
preempt puts from clients that are at or above their fair rate. This
technique is commonly used in fair queuing to provide low latency
to low-bandwidth flows [12].

FST can suffer from occasional loss of utilization because of
head-of-line blocking in the put queue. However, this blocking
can only be of durationx/rmin, wherex is the maximal put size,
so the loss of utilization is quite small. In particular, in all of our
simulations FST achieved full utilization of the disk.

4.3 Evaluation
We evaluate FST according to four metrics: (1)non-starvation,

(2) fairness, (3) utilization, and (4)queuing latency. We use differ-
ent maximum TTL valuesT in our tests, butrmin is always 1000
bytes per second. The maximum put sizeB is 1 kB. The maximum
queue size andα are both set toBT.

For ease of evaluation and to avoid needlessly stressing Plan-
etLab, we simulate our algorithm using an event-driven simulator
run on a local machine. This simulator tracks relevant features of
an OpenDHT node’s storage layer, but does not model any net-
work latency or bandwidth. The interval between two puts for each
client follows a Gaussian distribution with a standard deviation of
0.1 times the mean. Clients do not retry rejected puts.

Our first experiment shows that FST prevents starvation when
clients start putting at different times. In this experiment, the maxi-
mum TTL is three hours, giving a disk size of 10.3 MB (3×3600×
1000 bytes). Each client submits 1000-byte, maximum-TTL puts
at a rate ofrmin. The first client starts putting at time zero, and the
subsequent clients start putting two hours apart each. The results of
the experiment are shown in Figure 4. The left-hand graph shows
the cumulative commitments granted to each client, and the right-
hand graph shows the storage allocated to each client over time.

Early in the experiment, Client 1 is the only active client, and it
quickly acquires new storage. When Client 2 joins two hours later,
the two share the available put rate. After three hours, Client 1 con-
tinues to have puts accepted (at 0.5rmin), but its existing puts begin
to expire, and its on-disk storage decreases. The important point to
note here is that Client 1 is not penalized for its past commitments;
its puts are still accepted at the same rate as the puts of the Client 2.
While Client 1 has to eventually relinquish some of its storage, the

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 1

Clients 1-10

Clients 11-15

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 2

Clients 1-5

Clients 6-10

Clients 11-15

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 3

Clients 1-5

Clients 6-10

Clients 11-15

Figure 5: Fair allocation despite varying put sizes and TTLs. See text for description.

Test 1 Test 2 Test 3
Client Size TTL Bid 50th 90th Avg Bid 50th 90th Avg Bid 50th 90th Avg

1 1000 60 1.0 0 974 176 2.0 5222 10851 5126 3.0 6605 12949 6482
2 1000 30 1.0 0 0 9 2.0 7248 11554 6467 3.0 7840 13561 7364
3 1000 12 1.0 0 0 9 2.0 8404 12061 7363 3.0 8612 14173 8070
4 500 60 1.0 0 409 56 2.0 7267 11551 6490 3.0 7750 13413 7368
5 200 60 1.0 0 0 13 2.0 8371 12081 7349 3.0 8566 14125 8035
6 1000 60 1.0 0 861 163 1.0 396 1494 628 1.0 446 2088 933
7 1000 30 1.0 0 0 12 1.0 237 1097 561 1.0 281 1641 872
8 1000 12 1.0 0 0 9 1.0 221 1259 604 1.0 249 1557 940
9 500 60 1.0 0 409 63 1.0 123 926 467 1.0 187 1162 770

10 200 60 1.0 0 0 14 1.0 0 828 394 1.0 6 1822 804
11 1000 60 0.5 0 768 160 0.5 398 1182 475 0.5 444 1285 531
12 1000 30 0.5 0 0 6 0.5 234 931 320 0.5 261 899 328
13 1000 12 0.5 0 0 5 0.5 214 938 306 0.5 235 891 311
14 500 60 0.5 0 288 37 0.5 137 771 226 0.5 171 825 249
15 200 60 0.5 0 0 7 0.5 0 554 103 0.5 0 715 131

Table 3: Queuing times in milliseconds for each of the clients in the multiple size and TTL tests. Sizes are in bytes; TTLs are in minutes.
A “bid” of 1.0 indicates that a client is putting often enough to fill 1/15th of the disk in an otherwise idle system.

non-starvation property of the algorithm allows it to intelligently
choose which data to let expire and which to renew.

As new clients arrive, the put rate is further subdivided. One
maximum TTL after clients stop arriving, each client is allocated
its fair share of the storage available on disk.

Our second experiment demonstrates fairness and high utiliza-
tion when clients issue puts with various sizes and TTLs. In ad-
dition, it also shows that clients putting at or below their fair rate
experience only slight queuing delays. The maximum TTL in this
experiment is one hour, giving a disk capacity of 3.4 MB (3600×
1000 bytes).

We consider three tests, each consisting of 15 clients divided
into three groups, as shown in Table 3. All the clients in a group
have the same total demand, but have different put frequencies, put
sizes, and TTLs;e.g., a client submitting puts with maximum size
and half the maximum TTL puts twice as often as a client in the
same group submitting puts with the maximum size and TTL.

The clients in Groups 2 and 3 put at the same rate in each test.
The clients in Group 3 are light users. Each of these users demands
only 1/30th of the available storage. For example, Client 11 sub-
mits on average a 1000-byte, maximum-TTL put every 30 seconds.
As the fair share of each client is 1/15th of the disk, the puts of
the clients from Group 3 should be always accepted. The clients in
Group 2 are moderate users, putting at exactly their fair share. For
example, Client 6 submits on average one 1000-byte, maximum-
TTL put every 15 seconds.

The clients in Group 1 put at a different rate in each test. In Test
1, they put as the same rate as the clients in Group 2. Since clients
in Groups 1 and 2 put at their fair share while the clients in Group 3
put below their fair share, the system is underutilized in this test.

In Tests 2 and 3, the clients of Group 1 put at twice and three times
their fair rate, respectively. Thus, in both these tests the system is
overutilized.

Figure 5 and Table 3 summarize the results for this experiment.
Figure 5 shows the storage allocated to each client versus time.
As expected, in the long term, every client receives its fair share of
storage. Moreover, clients that submit puts with short TTLs acquire
storage more quickly than other clients when the disk is not full yet.
This effect is illustrated by the steep slopes of the lines representing
the allocations of some clients at the beginning of each test. This
behavior demonstrates the benefit of using the admission control
test to rate-limit new put requests: looking back at Figure 3, one
can see that many puts with short TTLs can be accepted in a mostly-
empty disk without pushing the value off (τ) overC.

Table 3 shows the queuing delays experienced by each client.
This delay is the time a put waits from the moment it arrives at the
node until it is accepted. There are three points worth noting. First,
as long as the system is underutilized every client experiences very
low queuing delays. This point is illustrated by Test 1.

Second, even when the system is overutilized, the clients that is-
sue puts at below or at their fair rate experience low queuing delays.
For example, the clients in Group 3 (i.e., Clients 11-15) which issue
puts below their fair rate experience average queuing delays of at
most 531 ms, while the clients in Group 2 (i.e., Clients 6-10) which
issue puts at their fair rate experience average queuing delays no
larger than 1 second. One reason clients in Group 3 experience
lower queuing delays than clients in Group 2 is the use of param-
eterα in the computation of the start times (Eqn. 2). Since clients
in Group 3 have fewer puts stored than those in Group 2, there are
simply more cases when the start times of puts of clients in Group 3

 0.1

 1

 10

 100

 1000

09/28 10/12 10/26 11/09 11/23 12/07 12/21 01/04 01/18 02/01

G
et

 L
at

en
cy

 (
s)

 o
r

F
ai

lu
re

 C
ou

nt

PlanetLab
V3 Rollout

Median Latency
95th Percentile Latency

Failures

Figure 6: Long-running performance and availability of OpenDHT . See text for description.

are computed based on the system virtual time (i.e., v(·)−α) rather
than on the finish times of the previous puts.

Third, clients that are above the fair rate must wait their turn
more often, and thus experience higher, but not unreasonable, queu-
ing delays.

5. DEPLOYMENT AND EVALUATION
In this section we evaluate both the performance and the usability

of OpenDHT.
Much of OpenDHT’s routing and storage layers builds on prior

efforts. We use the Bamboo DHT implementation for our routing
layer [29] and implement a soft-state storage layer atop it simi-
lar to that described in Cates’ thesis [8]. As such, in evaluating
OpenDHT’s performance in Section 5.1, we do not focus on the
detailed behavior of the underlying DHT routing or storage algo-
rithms, both of which have been evaluated over short periods else-
where [8, 10, 29]. Rather, we focus on thelong-runningperfor-
mance of OpenDHT in terms of data durability and put/get latency.
Although DHTs are theoretically capable of achieving high dura-
bility, we are aware of no previous long term studies of real (not
simulated) deployments that have demonstrated this capability in
practice.

As discussed in Section 3.2, the ReDiR library presents appli-
cations with a lookup interface. Since each ReDiR lookup is im-
plemented using at least one get operation, a lookup in ReDiR can
be no faster than a get in the underlying DHT. We quantify the
performance of ReDiR lookups on PlanetLab in Section 5.2. This
in situ performance evaluation is both novel (no implementation
of ReDiR was offered or evaluated in [19]) and essential, as the
validity of our claim that OpenDHT can efficiently support oper-
ations beyond put/get rests largely on the performance penalty of
ReDiRvs.standard lookup and routing interfaces.

Finally, OpenDHT’s usability is best demonstrated by the spec-
trum of applications it supports, and we describe our early experi-
ence with these in Section 5.3.

5.1 Long-Running Put/Get Performance
In this section we report on the latency of OpenDHT gets and the

durability of data stored in OpenDHT.

Measurement Setup OpenDHT has been deployed on PlanetLab
since April 2004, on between 170 and 250 hosts. From August
2004 until February 2005 we continuously assessed the availabil-
ity of data in OpenDHT using a synthetic put/get workload.5 In
this workload, a client puts one value into the DHT each second.

5During the PlanetLab Version 3 rollout a kernel bug was intro-
duced that caused a large number of hosts to behave erratically until
it was fixed. We were unable to run OpenDHT during this period.

Value sizes are drawn randomly from{32, 64, 128, 256, 512, 1024}
bytes, and TTLs are drawn randomly from{1 hour, 1 day, 1 week}.
The same client randomly retrieves these previously put data to as-
sess their availability; each second it randomly selects one value
that should not yet have expired and gets it. If the value cannot be
retrieved within an hour, a failure is recorded. If the gateway to
which the client is connected crashes, it switches to another, resub-
mitting any operations that were in flight at the time of the crash.

Results Figure 6 shows measurements taken over 3.5 months of
running the above workload. We plot the median and 95th per-
centile latency of get operations on they axis. The black impulses
on the graph indicate failures. Overall, OpenDHT maintains very
high durability of data; over the 3.5 months shown, the put/get test
performed over 9 million puts and gets each, and it detected only
28 lost values. Get latency is good, although there is some room for
improvement. Some of our high latency is due to bugs; on Febru-
ary 4 we fixed a bug that was a major source of the latency “ramps”
shown in the graph. On April 22 (not shown) we fixed another and
have not seen such “ramps” since. Other high latencies are caused
by Internet connectivity failures; the three points where the 95th
percentile latency exceeds 200 seconds are due to the gateway be-
ing partially partitioned from the Internet. For example, on January
28, the PlanetLab all-pairs-pings database [32] shows that the num-
ber of nodes that could reach the gateway dropped from 316 to 147
for 20–40 minutes. The frequency of such failures indicates that
they pose a challenge DHT designers should be working to solve.

5.2 ReDiR Performance
We consider three metrics in evaluating ReDiR performance:

(1) latency of lookups, (2) ReDiR’s bandwidth consumption, and
(3) consistency of lookups when the registered nodes external to
OpenDHT churn. The first two quantify the overhead due to build-
ing ReDiR over a put/get interface, while consistency measures
ReDiR’s ability to maintain correctness despite its additional level
of indirection relative to DHTs such as Chord or Bamboo.

Measurement Setup To evaluate ReDiR we had 4 PlanetLab
nodes each runn/4 ReDiR clients for variousn, with a fifth Planet-
Lab node performing ReDiR lookups of random keys. We selected
an OpenDHT gateway for each set of clients running on a particular
PlanetLab node by picking 10 random gateways from a list of all
OpenDHT gateways, pinging those ten, and connecting to the one
with lowest average RTT. We used a branching factor ofb = 10
in all of our experiments, with client registration occurring every
30 seconds, and with a TTL of 60 seconds on a client’s(IP, port)
entries in the tree. Each trial lasted 15 minutes.

Results Our first experiment measured performance with a stable
set of n clients, forn ∈ {16,32,64,128,256}. Figure 7 shows a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
um

ul
at

iv
e

fr
ac

tio
n

Latency (seconds)

OpenDHT gets
ReDiR lookups

Figure 7: Latency of ReDiR lookups and OpenDHT gets.

 92

 94

 96

 98

 100

 1 2 4 8 16 32
 0

 200

 400

 600

 800

P
er

ce
nt

 C
on

si
st

en
t

B
yt

es
Median session time (min)

Lookup consistency
Bytes per lookup
Bytes/sec/client

Figure 8: Percentage of ReDiR lookups that are consistent, bytes
transferred per lookup, and bytes/sec per registration process.

CDF of ReDiR lookup latency, based on 5 trials for eachn. We
compare to the latency of the OpenDHT gets performed in the pro-
cess of ReDiR lookups. The average lookup uses≈ 1.3 gets, indi-
cating that our tree depth estimation heuristic is effective. We have
verified this result in a simple simulator for up to 32,768 clients, the
results of which match our PlanetLab results closely within their
common range ofn. Bandwidth use is quite low; even at the high-
est churn rate we tested, the average client registration process uses
≈ 64 bytes per second and a single lookup uses≈ 800 bytes.

We next measured consistency as the rate of client churn varies.
We used 128 clients with exponentially distributed lifetimes. When-
ever one client died, a new client joined. We use Rheaet al.’s
definition of consistency [29]: ten lookups were performed simul-
taneously on the same key, the majority result (if any) is considered
consistent, and all others are inconsistent.

Figure 8 plots consistency as a function of median client life-
time. We show the mean and 95% confidence intervals based on 15
trials. Despite its layer of indirection, ReDiR is competitive with
the implementation of Chord evaluated in [29], although Bamboo
performs better at high churn rates (note, however, that the exper-
iments of [29] were performed on ModelNet, whereas ours were
performed on PlanetLab).

In summary, these results show that lookup can be implemented
using a DHT service with a small increase in latency, with consis-
tency comparable to other DHTs, and with very low bandwidth.

5.3 Applications
We cannot directly quantify the utility of OpenDHT’s interface,

so in this section we instead report on our experience with build-
ing applications over OpenDHT. We first give an overview of the
various OpenDHT-based applications built by us and by others. We
then describe one application—FreeDB Over OpenDHT (FOOD)—
in greater detail. FOOD is a DHT-based implementation of FreeDB,
the widely deployed public audio-CD indexing service. As FreeDB
is currently supported by a set of replicated servers, studying FOOD
allows us to compare the performance of the same application built

in two very different ways. We end this section with a brief discus-
sion of common feature requests from application-builders; such
requests provide one way to identify which aspects of OpenDHT
matter most during development of real applications.

5.3.1 Generality: Overview of Applications
OpenDHT was opened up for experimentation to “friends and

family” in March 2004, and to the general public in December
2004. Despite its relative infancy, OpenDHT has already been
adopted by a fair number of application developers. To gain ex-
perience ourselves, we also developed four different OpenDHT ap-
plications. Table 4 lists the known OpenDHT applications. We
make a number of observations:

OpenDHT put/get usage: Table 4 shows that the majority of
these applications use only OpenDHT’s put/get interface. We found
that many of these (e.g., DOA, FOOD, instant messaging, HIP)
make quite trivial use of the DHT—primarily straightforward in-
dexing. Such applications are a perfect example of the benefit of a
shared DHT; their relatively simple needs are trivially met by the
put/get interface, but none of the applications in themselves warrant
the deployment of an independent DHT.

ReDiR usage: We have four example applications that use
ReDiR—two built by us and two by others.i3 is an indirection-
based routing infrastructure built over a DHT lookup interface. To
validate that ReDiR can be easily used to support applications tra-
ditionally built over a lookup interface, we ported thei3 code to
run over OpenDHT. Doing so was extremely easy, requiring only
a simple wrapper that emulatedi3’s Chord implementation and re-
quiringnochange to howi3 itself is engineered.

As described in Section 4, existing DHT-based multicast sys-
tems [7, 27, 35] typically use a routing interface. To explore the
feasibility of supporting such applications, we implemented and
evaluated Multicast Over OpenDHT (MOOD), using a ReDiR-like
hierarchy as suggested in [19]. (The QStream project has inde-
pendently produced another multicast implementation based on a
ReDiR-like hierarchy.) MOOD is not a simple port of an existing
implementation, but a wholesale redesign. We conjecture based on
this experience that one can often redesign routing-based applica-
tions to be lookup-based atop a DHT service. We believe this is an
area ripe for further research, both in practice and theory.

Finally, the Place Lab project makes novel use of ReDiR. In
Place Lab, a collection of independently operated servers processes
data samples submitted by a large number of wireless client de-
vices. Place Lab uses ReDiR to “route” an input data sample to the
unique server responsible for processing that sample.

In summary, in the few months since being available to the pub-
lic, OpenDHT has already been used by a healthy number of very
different applications. Of course, the true test of OpenDHT’s value
will lie in the successful, long-term deployment of such applica-
tions; we merely offer our early experience as an encouraging indi-
cation of OpenDHT’s generality and utility.

5.3.2 FOOD: FreeDB Over OpenDHT
FreeDB is a networked database of audio CD metadata used by

many CD-player applications. The service indexes over a million
CDs, and as of September 2004 was serving over four million read
requests per week across ten widely dispersed mirrors.

A traditional FreeDB query proceeds in two stages over HTTP.
First, the client computes a hash value for a CD—called itsdiscid—
and asks the server for a list of CDs with this discid. If only one CD
is returned, the client retrieves the metadata for that CD from the
server and the query completes. According to our measurements,

Application Organization Uses OpenDHT for . . . put/get or ReDiR Comments
Croquet Media Messenger Croquet replica location put/get http://opencroquet.org/

Delegation Oriented Arch. (DOA) MIT, UCB indexing put/get http://nms.lcs.mit.edu/doa/
Host Identity Protocol (HIP) IETF WG name resolution put/get alternative to DNS-based resolution

Instant Messaging Class Project MIT rendezvous put/get MIT 6.824, Spring 2004
Tetherless Computing Waterloo host mobility put/get http://mindstream.watsmore.net/

Photoshare Jordan Middle School HTTP redirection put/get http://ezshare.org/
Place Lab 802.11 Location System IRS location-based redirection ReDiR http://placelab.org/

and range queries
QStream: Video Streaming UBC multicast tree construction ReDiR http://qstream.org/
RSSDHT: RSS Aggregation SFSU multicast tree construction ReDiR http://sourceforge.net/projects/rssdht/

FOOD: FreeDB Over OpenDHT OpenDHT storage put/get 78 semicolons Perl
Instant Messaging Over OpenDHT OpenDHT rendezvous put/get 123 semicolons C++

i3 Over OpenDHT OpenDHT redirection ReDiR 201 semicolons Java glue between
i3 and ReDiR, passesi3 regr. tests,

http://i3.cs.berkeley.edu/
MOOD: Multicast Over OpenDHT OpenDHT multicast tree construction ReDiR 474 semicolons Java

Table 4: Applications built or under development on OpenDHT.

this situation occurs 91% of the time. In the remaining cases, the
client retrieves the metadata for each CD in the list serially until it
finds an appropriate match.

A single FOOD client puts each CD’s data under its discid. To
query FOOD, other clients simply get all values under a discid. A
proxy that translates legacy FreeDB queries to FOOD queries is
only 78 semicolons of Perl.

Measurement Setup We stored a May 1, 2004 snapshot of
the FreeDB database containing a total of 1.3 million discids in
OpenDHT. To compare the availability of data and the latency of
queries in FreeDB and FOOD, we queried both systems for a ran-
dom CD every 5 seconds. Our FreeDB measurements span October
2–13, 2004, and our FOOD measurements span October 5–13.

Results During the measurement interval, FOOD offered avail-
ability superior to that of FreeDB. Only one request out of 27,255
requests to FOOD failed, where each request was tried exactly
once, with a one-hour timeout. This fraction represents a 99.99%
success rate, as compared with a 99.9% success rate for the most
reliable FreeDB mirror, and 98.8% for the least reliable one.

In our experiment, we measured both the total latency of FreeDB
queries and the latency of only thefirst HTTP request within each
FreeDB query. We present this last measure as the response time
FreeDB might achieve via a more optimized protocol. We consider
FreeDB latencies only for the most proximal server, the USA mir-
ror. Comparing the full legacy version of FreeDB against FOOD,
we observe that over 70% of queries complete with lower latency
on FOOD than on FreeDB, and that for the next longest 8% of
queries, FOOD and FreeDB offer comparable response time. For
the next 20% of queries, FOOD has less than a factor of two longer-
latency than FreeDB. Only for the slowest 2% of queries does
FOOD offer significantly greater latency than FreeDB. We attribute
this longer tail to the number of request/response pairs in a FOOD
transactionvs.in a FreeDB transaction. Even for the idealized ver-
sion of FreeDB, in which queries complete in a single HTTP GET,
we observe that roughly 38% of queries complete with lower la-
tency on FOOD than on the idealized FreeDB, and that the median
330 ms required for FOOD to retrieve all CDs’ data for a discid is
only moderately longer than the median 248 ms required to com-
plete only the first step of a FreeDB lookup.

In summary, FOOD offers improved availability, with minimal
development or deployment effort, and reduced latency for the ma-
jority of queriesvs.legacy FreeDB.

5.3.3 Common Feature Requests
We now briefly report experience we have gleaned in interac-

tions with users of OpenDHT. In particular, user feature requests
are one way of identifying which aspects of the design of a shared
DHT service matter most during development of real applications.
Requests from our users included:

XML RPC We were surprised at the number of users who re-
quested that OpenDHT gateways accept requests over XML RPC
(rather than our initial offering, Sun RPC). This request in a sense
relates to generality; simple client applications are often written in
scripting languages that manipulate text more conveniently than bi-
nary data structures,e.g., as is the case in Perl or Python. We have
since added an XML RPC interface to OpenDHT.

Remove function After XML RPC, the ability to remove values
before their TTLs expire was the most commonly requested fea-
ture in our early deployment. It was for this reason that we added
remove to the current OpenDHT interface.

Authentication While OpenDHT does not currently support the
immutable or signed puts we proposed in Section 3.1, we have had
essentially no requests for such authentication from users. How-
ever, we believe this apparent lack of concern for security is most
likely due to these applications being themselves in the relatively
early stages of deployment.

Read-modify-write As discussed in Section 3.1, OpenDHT cur-
rently provides only eventual consistency. While it is possible to
change values in OpenDHT by removing the old value and putting
a new one, such operations can lead to periods of inconsistency.
In particular, when two clients change a value simultaneously,
OpenDHT may end up storing both new values. Although this sit-
uation can be fixed after the fact using application-specific conflict
resolution as in Bayou [24], an alternate approach would be to add a
read-modify-write primitive to OpenDHT. There has recently been
some work in adding such primitives to DHTs using consensus al-
gorithms [22], and we are currently investigating other primitives
for improving the consistency provided by OpenDHT.

Larger maximum value size Purely as a matter of convenience,
several users have requested that OpenDHT support values larger
than 1 kB. OpenDHT’s current 1 kB limit on values exists only due
to Bamboo’s use of UDP as a transport. In the near future, we plan
to implement fragmentation and reassembly of data blocks in order
to raise the maximum value size substantially.

6. DISCUSSION
OpenDHT is currently a single infrastructure that provides stor-

age for free. While this is appropriate for a demonstration project,
it is clearly not viable for a large-scale and long-term service on
which applications critically rely. Thus, we expect that any success
trajectory would involve the DHT service becoming a commercial
enterprise. This entails two significant changes. First, storage can
no longer be free. The direct compensation may not be monetary
(e.g., gmail’s business model), but the service must somehow be-
come self-sustaining. We don’t speculate about the form this charg-
ing might take but only note that it will presumably involve authen-
ticating the OpenDHT user. This could be done at the OpenDHT
gateways using traditional techniques.

Second, a cooperating but competitive market must emerge, in
which various competing DHT service providers (DSPs) peer to-
gether to provide a uniform DHT service, a DHT “dialtone,” much
as IP is a universal dialtone. Applications and clients should be
able to access their DSPs (the ones to whom they’ve paid money or
otherwise entered into a contractual relationship) and access data
stored by other applications or clients who have different DSPs. We
don’t discuss this in detail, but a technically feasible and economi-
cally plausible peering arrangement is described by Balakrishnanet
al. [4]. Each DSP would have incentive to share puts and gets with
other DSPs, and there are a variety of ways to keep the resulting
load manageable. DHT service might be bundled with traditional
ISP service (like DNS), so ISPs and DSPs would be identical, but
a separate market could evolve.

If such a market emerges, then DHT service might become a
natural part of the computational infrastructure on which applica-
tions could rely. This may not significantly change the landscape
for large-scale, high-demand applications, which could have easily
erected a DHT for their own use, but it will foster the development
of smaller-scale applications for which the demand is much less
certain. Our early experience suggests there are many such appli-
cations, but only time will tell.

7. SUMMARY
In this paper we have described the design and early deployment

of OpenDHT, a public DHT service. Its put/get interface is easy
for simple clients to use, and the ReDiR library expands the func-
tionality of this interface so that OpenDHT can support more de-
manding applications. Storage is allocated fairly according to our
per-IP-address and per-disk definition of fairness. The deployment
experience with OpenDHT has been favorable; the system is cur-
rently supporting a variety of applications, and is slowly building
a user community. The latency and availability it provides is ade-
quate and will only get better as basic DHT technology improves.

8. ACKNOWLEDGMENTS
We are grateful to Yatin Chawathe, Michael Walfish, and the

anonymous reviewers for their excellent feedback, which greatly
improved this paper. This work was supported in part under NSF
Cooperative Agreement ANI-0225660. Sean Rhea is supported by
an IBM Fellowship. Brighten Godfrey is supported by a National
Science Foundation Graduate Research Fellowship.

9. REFERENCES
[1] Bamboo.http://bamboo-dht.org/ .
[2] Chord.http://www.pdos.lcs.mit.edu/chord/ .
[3] Pastry.http://freepastry.rice.edu/ .
[4] H. Balakrishnan, S. Shenker, and M. Walfish. Peering peer-to-peer providers. In

IPTPS, Feb. 2005.
[5] A. Bavier et al. Operating system support for planetary-scale network services.

In NSDI, Mar. 2004.
[6] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to globally

scalable programmable networking. InFDNA, 2003.
[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh. SplitStream: High-bandwidth multicast in a cooperative environment.
In SOSP, 2003.

[8] J. Cates. Robust and efficient data management for a distributed hash table.
Master’s thesis, MIT, May 2003.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. InSOSP, Oct. 2001.

[10] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing
a DHT for low latency and high throughput. InNSDI, 2004.

[11] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a
common API for structured P2P overlays. InIPTPS, 2003.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queuing algorithm. InSIGCOMM, 1989.

[13] J. Douceur. The Sybil attack. InIPTPS, 2002.
[14] P. Druschel and A. Rowstron. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. InSOSP, 2001.
[15] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content

publication with Coral. InNSDI, Mar. 2004.
[16] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing: A schedulingalgorithm

for integrated services packet switching networks. InSIGCOMM, Aug. 1996.
[17] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. InVLDB, 2003.
[18] D. R. Karger and M. Ruhl. Diminished Chord: A protocol for heterogeneous

subgroup formation in peer-to-peer networks. InIPTPS, 2004.
[19] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring adoption of DHTs

with OpenHash, a public DHT service. InIPTPS, 2004.
[20] A. Mislove et al. POST: a secure, resilient, cooperative messaging system.In

HotOS, 2003.
[21] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host identity protocol

(work in progress). IETF Internet Draft, 2004.
[22] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A fault-tolerant algorithm

for atomic mutable DHT data. Technical Report MIT-LCS-TR-993, MIT-LCS,
June 2005.

[23] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write
peer-to-peer file system. InOSDI, 2002.

[24] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible
update propagation for weakly consistent replication. InSOSP, 1997.

[25] S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker. Brief
announcement: Prefix hash tree (extended abstract). InPODC, 2004.

[26] V. Ramasubramanian and E. G. Sirer. The design and implementation of a next
generation name service for the Internet. InSIGCOMM, Aug. 2004.

[27] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level
multicast using content-addressable networks.Lecture Notes in Computer
Science, 2233:14–29, 2001.

[28] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz.
Pond: the OceanStore prototype. InUSENIX FAST, Mar. 2003.

[29] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.In
USENIX Annual Tech. Conf., June 2004.

[30] T. Roscoe and S. Hand. Palimpsest: Soft-capacity storage for planetary-scale
services. InHotOS, May 2003.

[31] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection
infrastructure. InSIGCOMM, Aug. 2002.

[32] J. Stribling. Planetlab all-pairs ping.http:
//www.pdos.lcs.mit.edu/˜strib/pl_app/APP_README.txt .

[33] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS.
In NSDI, Mar. 2004.

[34] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment.
IEEE JSAC, 22(1):41–53, Jan. 2004.

[35] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination. InNOSSDAV, 2001.

