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Concurrent Separation Logic (CSL) was originally advanced in papers of the authors published in The-
oretical Computer Science for John Reynolds’s 70th Birthday Festschrift (2007). Preliminary versions ap-
peared as invited papers in the CONCUR’04 conference proceedings. Foundational work leading to these
papers began in 2002. Since then there have been significant developments stemming from CSL, both in
theoretical and practical research. In this retrospective paper we describe the main ideas that underpin
CSL, placing these ideas into historical context by summarizing the prevailing tendencies in concurrency
verification and programming language semantics when the logic was being invented in 2002-2003. We end
with a snapshot of the state-of-the-art as of 2016. Along the way we describe some of the main developments
in the intervening period, and we attempt to classify the work that has been done, along broad lines. While
we do not intend an exhaustive survey, we do hope to provide some general perspective on what has been
achieved in the field, what remains to be done, and directions for future work.

1. CONTEXT, CIRCA 2002-2003
1.1. Verification of Concurrent Programs

For the last thirty years experts have regarded pointer manipulation as
an unsolved challenge for program verification and shared-memory concur-
rency as an even greater challenge. 2016 Godel Prize citation1

As of 2002-2003, there had already been significant foundational work on the verifi-
cation of concurrent programs, beginning with the classical work of Owicki and Gries
[Owicki and Gries 1976a], who adapted ideas from Hoare’s logic for sequential pro-
grams to a concurrent setting. Further important developments were made by Pnueli
[Pnueli 1981], bringing temporal logic to concurrency, and by Jones [Jones 1983], who
advanced the rely-guarantee proof method for compositional reasoning. There was also
a large school (more accurately, separate schools) of work that had built up around pro-
cess algebras such as CCS, CSP and the pi-calculus.

However, it is fair to say that at that time few realistic concurrent programs had
been subjected to proof, and this was especially true for mechanized proof. Yet, around
2002-2003, the field of mechanized program verification was going through a renais-
sance, spurred by verification-oriented abstract interpreters such as SLAM and AS-
TREE, and advances in proof assistants such as Coq, Isabelle and HOL. The hitch was

1http://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
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that most of this work was for sequential programs. Model checking had been used to
verify certain finite-state concurrent programs used to describe hardware, with notable
success, but much less had been achieved by then for concurrent software.

Around the same time, the separation logic for sequential programs had recently
been advanced by O’Hearn, Reynolds and others as a way to provide efficient reason-
ing about pointer manipulation [Reynolds 2000; Ishtiaq and O’Hearn 2001; O’Hearn
et al. 2001; Reynolds 2002]. Separation logic was a significant advance over prior for-
malisms for reasoning about pointers (see [Bornat 2000] and its references for the
state of the art as of 1999), providing inference rules to localize reasoning about heap
chunks. Pointer mutation was also one of the key blockers in applying the founda-
tional approaches provided by the Owicki-Gries, temporal logic and rely-guarantee
methodology to real-world concurrent programs. Programs in C, Java and many cur-
rent languages often make non-trivial use of pointer manipulation, to great effect, but
reasoning about the correctness of such code is difficult even when the code is sequen-
tial, because of issues such as aliasing. Pressing these classic works into service for
proving correctness of code using pointers requires treating the memory as a global
array, and this leads to global proofs which are complicated and rather remote from
programming intuition. Often, programmers think of portions of memory a little bit at
a time, and employ localized reasoning that does not mention the whole memory; to
force programmers to think in terms of global state flies in the face of such intuition. It
therefore made sense to attempt to update one of these classical approaches to reason-
ing about concurrent programs by putting it together with separation logic, in which
localized reasoning is very natural.

O’Hearn considered all three of these prior foundational works as possibilities for
such an update, but gravitated to an even earlier work, Hoare’s 1972 paper “Towards
a Theory of Parallel Programming” (TTPP, [Hoare 1972]). Hoare’s paper might be con-
sidered to have been superceded by its successor works, because there were many pro-
grams which could not be expressed in TTPP because of syntactic restrictions used to
rule out race conditions and other forms of interference. But when it worked it allowed
for delightfully simple proofs.

A useful perspective is brought by noting, and contrasting, the existence of not one
but two Owicki-Gries logics. One [Owicki and Gries 1976b], which we will refer to as
race-free Owicki-Gries, extends TTPP by slightly relaxing syntactic restrictions in a
way that allows auxiliary variables to be used more freely in proofs, but still main-
taining control over interference. The other [Owicki and Gries 1976a], which we will
refer to as interference-allowing Owicki-Gries, allows interference between threads but
uses a novel means of checking that a thread does not inferfere with a proof of an-
other thread (note the concept of non-interference with proof, not with thread). The
interference-allowing form of Owicki-Gries is often referred to (without qualification)
as the “Owicki-Gries method”, and it attracted more attention than race-free Owicki-
Gries in work between the mid 1970s and 2002-2003, likely because it was applicable
to more programs. But Owicki and Gries also state that “the proof process becomes
much longer” in the less restrictive, interference-allowing Owicki-Gries system.

The design of Hoare’s TTPP approach (and also race-free Owicki-Gries) was based
almost completely, albeit implicitly, on intuitions of separation, so it just made sense
to try to recast these intuitions explicitly by making use of the more recent formalism
of separation logic.

1.2. Semantics of Concurrent Programs
At the same time that O’Hearn was considering ways to blend separation logic with
Hoare-style concurrency logics, the state-of-the-art in programming language seman-
tics of concurrency stood on foundations laid by David Park in the 1970s. Traditional
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approaches, whether denotational or operational, relied on traces of some kind. In
Park’s seminal work [Park 1979] a trace is a sequence of steps, each step representing
the effect of an atomic action performed on the global state by the program, assumed
to be running in an environment of concurrent processes. To achieve a compositional
account the trace set of a program includes traces with “gaps” allowing for the envi-
ronment to make changes to the global state. Concurrent processes are assumed to be
executed in a sequentially consistent manner, with the atomic actions of all processes
being interleaved. In later work Brookes used traces in which the steps represent the
effect of a finite sequence of atomic actions, a simple variation that led to a fully ab-
stract semantics [Brookes 1996].

These semantic models were only applicable to shared-memory programs without
data structures that could be mutated through pointer manipulation, a class of pro-
grams dubbed “simple” shared-memory by John Reynolds. For many years it had been
widely regarded as a difficult task just to find a tractable denotational model for simple
shared-memory, let alone develop a semantics that could deal with the combination of
shared-memory concurrency and mutable data structures. These traditional semantic
models were all based on global states and typically assumed that assignment to a
variable was an atomic action, ignoring the potential for race conditions, even though
it was known that when one process writes to a shared variable being read or writ-
ten by another there is a danger of unpredictability. Instead one of the rôles of logics
such as race-free Owicki-Gries [Owicki and Gries 1976b] and TTPP was to shift the
burden of race-detection from semantics to logic: an assertion {P}C{Q} approvable in
race-free Owicki-Gries logic comes with the guarantee that when C is executed from a
global state satisfying P there are no race conditions and upon termination the global
state satisfies Q. This logic-based methodology only works for races involving program
variables, which are statically detectable: they get dealt with in Owicki-Gries by im-
posing static constraints on variable usage in programs. This idea fails for programs
using pointers, because aliasing of pointers is not statically determinable.

In summary, in 2002-2003 there was not yet any suitable semantic foundation for
exploring the behaviour of concurrent programs that make non-trivial use of pointers.
And the currently existing program logics that worked well enough for pointer-free
concurrent programs relied on syntactic constraints to rule out race conditions, which
prevents their use in richer settings where the existence of a potential race cannot
merely be deduced from program syntax.

2. THE BIRTH OF CONCURRENT SEPARATION LOGIC
2.1. Logic
The most important proof rule of Concurrent Separation Logic is the

PARALLEL COMPOSITION RULE

{P1}C1 {Q1} · · · {Pn}Cn {Qn}

{P1 ⇤ · · · ⇤ Pn}C1 k · · · k Cn {Q1 ⇤ · · · ⇤Qn}

Here, the separating conjunction P1⇤· · ·⇤Pn in the precondition of the parallel composi-
tion is true of a state that can be partitioned into substates making the conjuncts true,
and similarly for the post-condition. So the rule says: To prove a parallel composition
we give each process a separate piece of state, and separately combine the postcon-
ditions for each process.2 The rule supports completely independent reasoning about

2In the earliest versions of CSL these rules were accompanied by side conditions governing variables (but
not the heap), such as: no variable free in Pi or Qi is changed in Cj when j 6= i. This was an historical pre-
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processes. And, it is unsound if ⇤ is replace by ^ because mutations in one process
would invalidate the reasoning about common state in another process.

In this expository paper we will show “proof outlines” rather than logical proofs, and
without even formally defining the logic in full; we hope that the spirit of the proof
methodology can be gleaned from the assertions placed at program points.

An example use of the parallel composition proof rule is given by a proof of parallel
mergesort. In the key step

{array(a, i,m) ⇤ array(a,m+ 1, j)}
{array(a, i,m)} {array(a,m+ 1, j)}
ms(a, i,m) k ms(a,m+ 1, j)
{sorted(a, i,m)} {sorted(a,m+ 1, j)}

{sorted(a, i,m) ⇤ sorted(a,m+ 1, j)}

we first reason independently about two independent recursive calls which operate on
disjoint subarrays, and then reason about merging the sorted subarrays.

This method of reasoning about parallel mergesort is simple, straightforward, al-
most trivial. And that is the point. In the previous formalisms (interference-allowing
Owicki-Gries, Rely-Guarantee, Temporal logic) parallel mergesort would require a
complicated proof which had to explicitly describe, and then rule out, the possibility of
interference. On the other hand, in TTPP and race-free Owicki-Gries parallel merge-
sort is not even syntactically well-formed, because assignments to components of an
array in separate threads are viewed logically as assignments to the same variable;
although these systems are intuitively about separation, their syntactic constraints
are coarser than separation-expressed-with-logic. The CSL proof, in contrast, follows
the informal reasoning directly. Although this simple reasoning pattern naturally has
its limitations, it illustrates a principle which should be central in the subject of logics
of programs: that is, simple proofs for simple programs. It is all too easy to get caught
up in completeness and related issues for formal systems that turn out to be too com-
plicated when humans try to apply them; it is more important first to get a sense for
the extent to which simple reasoning is or is not supported.

Still, if CSL had only been able to reason about “disjoint concurrency”, where there
is no inter-process interaction, then it would have rightly been considered rather re-
strictive. A proof rule for conditional critical regions (a forerunner of monitors) allows
reasoning about such interaction.

CRITICAL REGION RULE

{(P ⇤RIr) ^B}C {Q ⇤RIr}

{P} with r when B do C {Q}

This rule assumes given an association of a “resource invariant” RIr, to each “resource”
r appearing in the program. A resource is like a monitor lock: it provides mutual exclu-
sion for different occurrences of critical regions for r in a program. The rule supports
modular reasoning by using the separating conjunction to control the visibility of the
state described by the invariant, as well as the invariant itself.

An important early example done with CSL was the pointer-transferring buffer. In
this example one thread allocates a pointer and puts it into a buffer, while the other
thread reads it out and disposes (frees) it. The important thing about this code is that

sentational choice to do with keeping consistent with earlier Hoare logics; more recently, logics are given in
which ⇤ handles all noninterference (“variables as resource”, [Parkinson et al. 2006]) or where local variable
mutation is restricted to be thread-local.
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not only is the pointer deemed to transfer from one process to another, but the “knowl-
edge that it is allocated” or the “right to dereference it”, or more simply “ownership” of
the pointer, transfers with the proof. From the point of view of the buffer clients the
proof of ownership transfer looks like this

{emp ⇤ emp}
{emp} {emp}
x := cons(a, b); k get(y);
{x 7! –, –} {y 7! –, –}
put(x); use(y);
{emp} {y 7! –, –}

dispose(y);
{emp}

{emp ⇤ emp}
{emp}

where the buffer code itself is

put(x)
Δ
= with buf when¬full do

c := x; full := true;

get(y)
Δ
= with buf when full do

y := c; full := false;

To reason about the buffer code using the critical region rule we supply a resource
invariant

RIbuf : (full ^ c 7! –, –) _ (¬full ^ emp)

saying that the buffer owns the binary cons cell associated with c when full is true,
and otherwise it owns no heap cells. The entire program begins with an initialization
full := false that establishes the invariant.

Then we can provide a proof outline for the body of the with command in put(x).

{(RIbuf ⇤ x 7! –, –) ^ ¬full}
{(¬full ^ emp) ⇤ x 7! –, –}
{x 7! –, –}
c := x; full := true

{full ^ c 7! –, –}
{RIbuf}
{RIbuf ⇤ emp}

The rule for with commands then gives us

{x 7! –, –}put(x){emp}.

The postcondition indicates that the sending process gives up ownership of pointer x
when it is placed into the buffer, even though the value of x is still held by the sender.
A crucial point in the proof of the body is the penultimate step which passes from

full ^ c 7! –, –

to RIbuf, reflecting the idea that the knowledge “x points to something” flows out of the
user program and into the buffer resource. Some inverse manipulations give us the
spec

{emp}get(y){y 7! –, –}.
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for getting an element out of the buffer, where the knowledge that y points to some-
thing materializes in the postcondition.

The ownership transfer idea illustrated by this buffer example made it clear that
quite a few concurrent programs would have much simpler and more intuitive proofs
than before, and that a wider class of programs would be susceptible to formal analysis.
Modular proofs were provided of semaphore programs, of a toy memory manager, and
programs with interacting resources. Generally speaking, ownership transfer allows
modular reasoning about ‘daring concurrency’, where where a piece of state is accessed
even outside of groupings of mutual exclusion. It seemed as if the logic could explain
the way that synchronisation had been used in the fundamental works on concurrent
programming by Dijkstra, Hoare and Brinch Hansen. For example, in the paper that
essentially founded concurrent programming, Dijkstra (Co-operating Sequential Pro-
cesses, [Dijkstra 1968]) had explained that the point of synchronisation was to enable
programmers to avoid minute considerations of timing, in order to simplify reasoning.
Brinch Hansen had emphasized the importance of speed independence and resource
separation for simplifying thinking about concurrent processes when O’Hearn was his
colleague at Syracuse in the 1990s, and what he said seemed to be mirrored in the
proofs in this early concurrent separation logic.

In summary, the most important contributions of the logic are as follows.

— it provides a modular way of reasoning about concurrent programs by separating the
state that different threads access,

— while achieving this in the presence of pointer access and mutation,
— and it supports modular reasoning about process interaction, even in the presence

of ‘daring concurrency’ where common state is safely accessed by different processes
outside of critical regions or other mutual exclusion constructs (as in a memory man-
ager or the pointer-transferring buffer).

But, soundness was challenging.

2.2. Semantics
It was the very feature that gave rise to the unexpected power in the logic, the own-
ership or knowledge transfer, that made soundness non-obvious. O’Hearn was able to
state principles intended to give some justification for the logic, such as the following.

Ownership Hypothesis. A code fragment can access only those portions of
state that it owns.

Separation Property. At any time, the state can be partitioned into that
owned by each process and each grouping of mutual exclusion.

But these principles were stated only informally. O’Hearn worked hard on the sound-
ness problem for several months in the second half of 2001 and early in 2002, and got
nowhere near a formal soundness theorem. During 2002 he asked Brookes, an expert
in the semantics of concurrency, for help.

To establish soundness of CSL we needed a semantic model capable of dealing both
with concurrency and pointer maipulation, suitable for formalizing and supporting
accurate reasoning about ownership and separation. Although these notions seem in-
tuitive, it was not at all obvious at the time how to design a suitably comprehensive
denotational semantics, and how to make rigorous the idea behind ownership transfer
and the notion that (provable) processes mind their own business. A key design choice
was to take a more localized view of states, so that a global state could be seen as a
combination of separate pieces of state deemed to belong to processes and resources.
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While it may appear fairly straightforward to extend Park-style global traces to han-
dle pointers and mutable state, this leads again to a semantics based on global states
and it was unclear how to build in a more localized view of state. Instead we had
the idea of abstracting away from state and using traces built from “actions” , ini-
tially uninterpreted and only characterized abstractly, which can later be interpreted
as having an effect on state. In this two-stage approach, we would be free to instantiate
the notion of state in whatever way we needed, either as global or as local. We would
be able to analyze program behavior, independently of the logic, using global states;
and to formalize ownership transfer and separation properties by taking a local view
of traces. Another advantage, which emerged later, is that the same action trace se-
mantics would turn out to be usable in validating a number of later program logics
inspired by CSL, such as logics of permissions, merely by interpreting actions over an
alternative notion of state, such as permissive states.

To deal with race-detection we introduced a form of interleaving operator for traces
that detects race conditions and treats them as catastrophic. This is the right choice
to obtain a semantics capable of establishing when a program is race-free. The new
semantic model, which we refer to as action traces, is strongly influenced by Dijkstra’s
Principle [Dijkstra 1968]:

. . . processes should be loosely connected; by this we mean that apart from
the (rare) moments of explicit intercommunication, the individual processes
are to be regarded as completely independent of each other.

In other words, concurrent processes do not interfere except through explicit syn-
chronization. Action trace semantics reflects this idea through the interplay between
traces, which describe interleaved behaviors of processes, and a “local enabling” re-
lation that implements the “no interference from outside” notion. This interplay is
crucial in permitting a formalization of O’Hearn’s intuitive concept of “processes that
mind their own business”. To our knowledge, this was the first semantics in which such
a formalization is possible.

The key novel features of this semantics:

— a compositional action-trace semantics built from “uninterpreted” actions, capable of
incorporating both concurrency and pointers;

— a race-detecting interpretation of parallel composition;
— a global-state interpretation of actions and traces, consistent with a standard opera-

tional notion of execution;
— a local-state interpretation of actions and traces (“local enabling”), suitable for for-

malizing ownership transfer and the separation principle

Local enabling formalizes the notion of a process executing in an environment that
respects resources (obeys the separation principle) and “minds its own business” by
following the ownership transfer discipline embodied by the resource invariants. A key
ingredient in the soundness proof is a Parallel Decomposition Lemma; in simplified
form, this says that when c1kc2 is a race-free program, every interleaved computation
of c1kc2 can be decomposed into “local” computations of the constituent processes c1
and c2 which are interference-free except for interactions with protected resources.

Our soundness proof assumes that each resource invariant is precise, so that every
time a program acquires or releases a resource there is a uniquely determined por-
tion of the heap whose ownership can be deemed to transfer. This does not seem to
be a major limitation, since all of O’Hearn’s examples involve precise invariants, and
a methodology based on precision seems very natural [O’Hearn 2007]. Moreover this
limitation is sufficient to ensure soundness, and it suffices to avoid a counterexample
discovered by John Reynolds showing unsoundness when resource invariants are al-
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lowed to be arbitrary separation logic formulas and the usual Hoare logic proof rule for
conjoining postconditions is allowed. During the evolution of the semantic foundations
John Reynolds played an important guiding rôle, and it is entirely appropriate that
the two CSL papers bear dedication to him.
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Fig. 1. CSL Family Tree (courtesy of Ilya Sergey)

3. DEVELOPMENTS IN THEORY
3.1. Logic
There have been many logics that extend or build on the ideas in CSL; Figure 1 gives
an indication. The motivation for several of these logics has simply been to treat varied
programming primitives that are used when writing concurrent programs. For exam-
ple:

— Storable locks. The original CSL used statically allocated locks, whereas real pro-
grams often use dynamically-allocated locks that can themselves be stored [Gotsman
et al. 2011];

— Re-entrant locks. CSL’s critical sections cannot be nested, and similarly if you hold a
semaphore and attempt to grab it again you will deadlock. On the other hand, Java’s
locks are such that a thread that holds a lock can acquire it again [Haack et al. 2008];

— Fork/join. CSL is formulated using structured parbegin/parend or parallel composi-
tion k to describe concurrent threads, which has been extended to fork/join concur-
rency constructs [Haack and Hurlin 2008; Dodds et al. 2009];

— Message Passing. [Villard et al. 2009; Bell et al. 2010; Lei et al. 2014];
— Relaxed memory. [Vafeiadis and Narayan 2013].

A very unexpected development has been the demonstration that the most basic
principles of concurrent separation logic, particularly independent reasoning about
threads using the separating conjunction, cover a much broader range of situations
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than we ever expected. There have been proofs of fine-grained locking and non-blocking
concurrency, and cases that involve interference and general graph structures, what
might have been thought of originally as cases that don’t fit well with the ideas of
separation logic.

Interestingly, the unexpected power of this is based on what you might call “non-
standard models” of separation logic; we mean this by analogy with the usual situa-
tion in logic, where a theory (e.g. reals, or integers) has an intended model, but also
additional non-standard models of the same axioms. The proof theory may then ac-
complish unexpected things when applied to the non-standard models. The standard
model of separation logic is the original model based on splitting portions of the heap,
or heaplets. There are many other models stemming from the “resource semantics” of
bunched logic invented by David Pym [Pym et al. 2004]; the preconditions and post-
conditions in separation logic and an instance of bunched logic [Ishtiaq and O’Hearn
2001]. Indeed, “abstract separation logic” [Calcagno et al. 2007a] defines a version of
CSL starting from an arbitrary partial commutative monoid of program states, in place
of the standard partial monoid of heaplets and disjoint union. A partial commutative
monoid (M, •, e) induces an ordered total commutative monoid on the powerset P(M),
and this is used as the semantics of P ⇤ Q. In fact, even more generally we could go
beyond powerset models and define an abstract separation logic where a model is an
ordered total commutative monoid; this gives enough structure to formulate the proof
rule for parallel composition and the rule of consequence. More structure can be added
(such as meets and joins) to interpret other logical connectives, depending on what is
needed in an application.

The surprise is that some of these nonstandard models involve composing highly
intertwined structures and interfering processes, what might have been considered
bad cases for the ideas behind separation logic. Gardner coined the phrase “fiction of
separation” to describe this phenomenon in the nonstandard models. Here are some
representative works.

— Permissions. These are models where heap locations have additional information at-
tached, which sometimes affects heap composition. An insightful paper of Boyland
[Boyland 2003] influenced CSL work where fractional and counting permission mod-
els were given to account for concurrent reads and for the classic readers-and-writers
problem[Bornat et al. 2005], and since then a wide variety of permission models have
been invented and applied.

— Abstraction and Fictions of Separation. The logic of Concurrent Abstract Predicates
(CAP) of [Dinsdale-Young et al. 2010a] provides a powerful means of disjoint reason-
ing about processes accessing an abstract module, when the concrete implementa-
tions are in fact not disjoint. This aspect, which builds on observations about the ”fic-
tion of disjointness” from work in sequential separation logic [Dinsdale-Young et al.
2010b], significantly expands the possibilities for applying CSL-style reasoning to
fine-grained concurrent algorithms. CAP provides means of connecting an abstract
module to a concrete implementation in a way that allows more apparent separation
on the abstract level. Extensions of CAP have been used to do impressive verifica-
tions of libraries of synchronization primitives (e.g., [Svendsen et al. 2013; Dodds
et al. 2016]). CAP has influenced many follow-on logics, as can be seen in Figure 1.

— Views. Dinsdale-Young, Parkinson and colleagues show that a simple abstract version
of concurrent separation logic can embed many other techniques for reasoning about
concurrency including type systems and even the classic rely-guarantee method,
which was invented for the purpose of reasoning about interference [Dinsdale-Young
et al. 2013]. Earlier work had sought combinations of separation logic and rely-
guarantee [Feng et al. 2007; Vafeiadis and Parkinson 2007], but this work and [Dodds
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et al. 2009] demonstrated that by picking a suitable monoid that expresses interfer-
ence rely-guarantee could be expressed with a separation logic, constituting a valu-
able synthesis. Views also provides logical or fictional separation. It is a framework
that can be instantiated to many logics, and so does this in a considerably more gen-
eral way than CAP, while partly taking inspiration from it.
The logic of Views is similar to that of Abstract Separation Logic, but the seman-
tics is different, and this is what opened up the possibility of a broader variety of
instantiations of the framework: we say more on this in the next section.

— Modular reasoning about history. It is very natural to use temporal reasoning when
reasoning about concurrent algorithms. For example, there are cases when wants to
talk about the value of a piece of state sometime in the past, or between two time-
points. [Fu et al. 2010] and [Sergey et al. 2015] define logics that support modular
ways for reasoning about both space and time, based on ways to compose histories,
and they illustrate the power of this form of reasoning by proving optimistic and fine-
grained locking concurrent algorithms. The previously-mentioned logics for message
passing [Villard et al. 2009; Bell et al. 2010; Lei et al. 2014] also include support for
reasoning about history.

Before moving on it will be instructive to consider an example of a non-standard
model from the Views work [Dinsdale-Young et al. 2013]. Assume a partial commu-
tative monoid (M, •, e) (e.g, the monoid where M = L *f V is heaps and • is union
of disjoint heaps). An interference relation is a subset R ✓ M ⇥ M satisfying certain
conditions. Then we can define a total commutative monoid (Stab, ⇤, {e}) where the set
Stab = {p ✓ M | Rp ✓ p} consists of those sets (predicates) that are stable under
the interference relation. ⇤ is a lifting of •, where p ⇤ q = {hp • hq | hp 2 P and hq 2
q and hp • hq #}. The (unstated, here) conditions on R ensure that {e} and p ⇤ q are
stable.

The notion of stability under interference is one of the hallmarks of rely-guarantee
reasoning. Models based on monoids like (Stab, ⇤, {e}) provide one of the ways that
separation logics can be used to reason modularly about interfering processes.

Even with the tremendous progress that has occurred, techniques for modular rea-
soning in the presence of fine-grained interference continue to evolve, with several
substantial works appearing just in the past year or so; e.g. [Raad et al. 2015; Jung
et al. 2015; da Rocha Pinto et al. 2016; Liang and Feng 2016].

3.2. Semantics
The action traces semantics of Brookes was denotational by choice: a denotational se-
mantic description lends itself naturally to compositional reasoning, and this can be
an advantage because most of the inference rules of CSL are syntax-directed, like the
semantic clauses. (The exceptions are rules such as the Frame Rule, and the Conjunc-
tion Rule, in which the premiss and conclusion involve the same program and such
rules typically express some general semantic or behavioral property applicable to all
programs.)

Nevertheless, much of the notation used by Brookes in the soundness paper was
deliberately chosen to emphasize intuitive similarities with operational style. For ex-
ample, the notation for local enabling and global enabling resembles the labelled tran-
sition relations common in operational semantics. These remarks reflect the view that
denotational and operational semantics should be seen as complementary styles of
language description, not mutually exclusive.

As we have seen, CSL led to a proliferation of successor logics. Some of these can
claim common philosophical links with the original logic, in that they are based on
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analogous to the Separation Principle and Ownership Transfer, while departing in
ways from the original, while others use proofs that do not depend on these principles.

— [Brookes 2006]: Brookes extends his semantics to cover permission-based variants of
CSL, such as fractional and counting permissions [Bornat et al. 2005] and variables
as resource [Parkinson et al. 2006].

— [Calcagno et al. 2007a]: the soundness result for Abstract Separation Logic is given
by a generalization of the approach in Brookes’s semantics, from the particular model
of heaps to work for arbitrary (cancellative) partial commutative monoids, assuming
that primitive operations satisfy a locality conditions ensuring that they “mind their
own business”.

— [Hayman and Winskel 2008]: a “true concurrency” denotational semantics based on
Petri nets. The intuitions expressed in the Separation Property and in Dijkstra’s
principle of loose connectedness are givien formal underpinnings using the concept
of independence from Petri nets. This explains the CSL phenomenon “the order of
certain interleavings doesn’t matter for provable programs” in terms of a well estab-
lished, prior notion of independence.

— [Hobor et al. 2008]: a Concurrent Separation Logic with first-class locks and threads,
with a soundness proof based on an operational semantics. The work is notable for
introducing two operational semantics, one a standard concurrent semantics and
the other an “oracular” semantics which is closer to the intuitions of CSL; the logic
is proven sound wrt the oracular semantics, and then the semantics is separately
connected to the standard concurrent model. This division mirrors Brookes’s use of
global and local enabling relations, but is done employing operational rather than
denotational semantics.

— [Vafeiadis 2011]: a soundness result formulated in an inductive manner that matches
the stepwise “small-step” operational style of semantics. In contrast to the aforemen-
tioned works, Vafeiadis does not employ an additional semantics (the oracle seman-
tics, or local enabling relation) which is more logical than a standard semantics; he
connects the logic directly to the semantics in one step, with a novel interpretation
of Hoare triples. This would be no win if the connection was more complex than the
composition of two semantics, but Vafeiadis’s proof is notable as well for being math-
ematically very elementary.
Vafeiadis is also able to show soundness of CSL without precise invariants and with-
out the conjunction rule, as well as of the original CSL.

— [Gotsman et al. 2011]: another operational approach, but where Vafeiadis uses a
structural operational semantics à la Plotkin, which involves program rewriting,
Gotsman et al use a fixed-program semantics that updates a program counter with-
out rewriting the program; this is the kind of semantics often used in the temporal
logic and model checking communities. With this form of semantics they are able
to give a very direct expression of the Separation Property, and also a mathemati-
cally elementary proof. And, again like Vafeiadis, they show soundness for versions
of separation logic with and without precise resource invariants.

There are extensions of relatives of CSL that are not conceptually based so directly
on the Ownership+Separation ideas, and then it is more difficult to employ a proof
technique that directly extends Brookes’s original approach. In particular, CAP and
its descendants and other related logics use the rule of parallel composition to reason
about interfering processes. A very general account of this kind of situation is provided
by the Views work [Dinsdale-Young et al. 2013]. As we mentioned above, the logic of
Views is a close relative of Abstract Separation Logic, but its semantics is entirely
different.
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— Views considers a model of a separation logic assertion as an abstract interpretation
[Cousot and Cousot 1977] of a concrete semantics, not the concrete semantics itself.
There is a concretization function b·c taking an abstract state p to a set of concrete
states bpc. Furthermore, ⇤ is required to exist in the abstract semantics, but not in
the concrete.

— A non-standard interpretation of Hoare triples is given that “bakes in” the frame
rule of separation logic for every step of the execution of C: {p}C{q} is true of views
(abstract states) p and q iff for each trace a of C, there exists an s such that the triple
{bsi ⇤ rc}ai{bsi+1 ⇤ rc} is true in the usual interpretation of triples in the concrete
semantics for all r, and s0 = p, and if a is finite then its last state is q.

— The soundness property is stated with respect to a standard concrete operational se-
mantics, without employing an additional, more abstract operational or denotational
semantics.

Considering separation logic states as abstract states, or views of concrete states,
makes great sense. Even in the original heap splitting model, a finite “heaplet”
h : L *f V would rightly be considered as a portion of many actual machine states,
not a machine state on its own; it was convenient and simple at the time not to for-
malize the fact that the heaplets were abstractions of many states; we can easily draw
these portions of heap, without talking about all the enclosing global heaps. But as
the states in the models become more intricate, the punning of separation logic models
as “like” real states starts to break down. In a fractional permission model a heaplet
[10 7! 47, 1/2] says that location 10 holds value 47 and has “permission 1/2”. The opera-
tional sensibility of permission models is much easier to grasp when such a heaplet is
thought of as an abstract state rather than a concrete one on which programs execute.
And beyond making intuitive sense, the Views semantics provides a validation of the
rules of a version of CSL for models which allow for interference. The operative con-
cept for Views is that of context: every step of the program must preserve all possible
contexts (expressible by framing via ⇤r). The Ownership Hypothesis and Separation
Property together give a simple way to obtain contexts that are preserved, but Views
both formalizes and exploits a more general setup in which there are others.

We remark that the proof technique of [Vafeiadis 2011], discussed above, also takes
the tack of baking in the frame rule. It is similarly applicable to CAP and other logics
where the Separation Property and Ownership Hypothesis would not apply. Thus, we
see that the conceptual foundation of CSL-like logics has broadened over time, and
with that logics that exploit the broadening have appeared.

Another trend in work on separation logic has been towards taking an axiomatic
perspective, where what counts as a model of ⇤ is subject to axioms rather than fixing
on a single model to work with. This trend can be seen in Abstract Separation Logic
and Views, as well as in other advanced logics such as Iris and HoCAP where the
programmer (or human verifier) gets to “pick a monoid”. The axiomatic perspective
has been taken further still in recent work on Concurrent Kleene Algebra [Hoare et al.
2011; Hoare et al. 2014]: they abstract not only from the semantics of logical assertions,
but even from the semantics of programs. In brief:

— A CKA is an ordered monoid (;, skip) and an ordered commutative monoid (k, skip),
linked by the exchange law

(p k r); (q k s) v (p; q) k (r; s).

(Variants on CKA can have more structure, such as involving meets or joins.)
— A concurrent separation logic can be derived from a CKA by making the definition

{p}c{q} = p; a v q.
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— An operational semantics related to Milner’s for CCS can be derived by making the
definition p

a
! q = p w c; q.

— The operational semantics and logic are automatically in unison; we don’t need to
prove a theorem connecting them.

— A number of concrete models (instances of the algebra) have been given, particularly
ones based on a true concurrency view of the world where ; is weak sequential com-
position and k is a form of composition of pomsets.

Concurrent Kleene Algebra is more abstract than most other work on CSL, in that
it does not depend on a particular semantics of programs. While abstract in this sense,
the operational semantics that it derives has not been shown to cover all the cases yet
that (say) the Views theory covers; see [O’Hearn et al. 2015] for further discussion. So
while CKA is more general that Views or Abstract Separation Logic on some dimen-
sions, it is not (known to be) on others. However, it is a beautifully simple theory which
is remarkable for the unification of logic and operational semantics it achieves when
it is applicable, and this can be taken as an inspiration or a starting point for further
work.

4. DEVELOPMENTS IN MECHANIZED VERIFICATION
Mostly-Automatic Verification. Smallfoot [Berdine et al. 2005], the first separation

logic verification tool, included support for CSL from the beginning. The user would
input resource invariants and other annotations such as procedure pre/post specs,
and then Smallfoot would attempt to construct a program proof. For the pointer-
transferring buffer, given the resource invariant and pre/post specs for the put and
get operations it can verify pointer safety and race freedom of the client code. Small-
foot used a decidable fragment of separation logic oriented to linked lists and simple
trees, and implemented a special theorem prover for this fragment.

Smallfoot is an example of a verifier where the programmer helps the tool along by
inserting (some) annotations, but then the verifier behaves automatically. There are a
number of other tools for mostly-automatic verification of this kind, which extend or
build on the reasoning in CSL.

— SmallfootRG [Calcagno et al. 2007b] is a verifier for a marriage of separation
logic and the classic rely/guarantee method for concurrent programs [Vafeiadis and
Parkinson 2007].

— Heap Hop [Villard et al. 2010] is another extension of Smallfoot. It implements the
copyless message passing logic of [Villard et al. 2009] and checks their protocols using
certain automata.

— Chalice [Müller and Summers 2016] uses an expressive permission system and also
targets reasoning about deadlock. It is based on a variant or relative of separation
called “implicit dynamic frames” [Parkinson and Summers 2012], and leverages an
embedding into first order logic, then utilizing an SMT solver rather than a custom
theorem prover like that used by Smallfoot.

— VeriFast [Jacobs et al. 2016] is an advanced mostly-automatic verifier. Where the
previously-mentioned tools work for toy, illustrative programming langauges, Veri-
Fast applies to C and Java programs. It has been used to produce proofs for programs
ranging from object-oriented patterns to highly concurrent algorithms to systems
programs. Examples of fine-grained concurrent programs proven include hand-over-
hand locking on linked lists and lock-free queues.

— Mezzo [Balabonski et al. 2014] and Asynchronous Liquid Separation Types [Kloos
et al. 2015] use novel type systems which incorporate ideas from CSL into a program-
ming language. The mode of usage is similar to the other mostly-automatic verifiers
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above, but the aim is to be less expressive (and less of a burden) and to weave the
specifications in with the types of a programming language. Related ideas can be
found earlier in Cyclone, and more recently in the ownership typing that happens
in the Rust language. It seems as if there is a lot of room for experimentation and
innovation in this space.

Interactive Verification. In interactive verification the human helps with the proof
effort, commonly in a proof assistant such as Coq, HOL or Isabelle. With interactive
verification it is possible to get closer to proofs of full functional correctness than it is
with automatic verifiers, but the cost is higher. There are a number of embeddings of
CSL and relatives in the Coq proof assistant, and more complex programs have been
proven over time.

— [Feng et al. 2008] treat interrupts and preemptive threads as found in OS kernels.
They use an ownership-transfer semantics where portions of state are transferred
between interrupt handlers and threads. Pre-emptive thread libraries for locks, con-
ditions variables and context switching, comprising some 300 lines of x86 assembly
code, were machine certified; the proof took 82k lines of Coq, including more than 1k
definitions and 1.8k lemmas and theorems

— [Sergey et al. 2015] report on the verification using the aforementioned Fine-grained
CSL. They provide verifications of a variety of low-level algorithms including a CAS-
lock, a Ticketed lock, a GC allocator, a non-blocking stack, and a concurrent spanning
tree construction. Proofs range from hundreds to 2k lines of Coq. An emphasis is
placed on reusability; for instance, the stack uses the GC allocator, which in turn
uses a lock, but the stack uses the spec of the allocator and the allocator uses the
spec rather than the implementation of a lock.

— [Xu et al. 2016] verify key modules of a commercial preemptive OS kernel, the µC/OS-
II kernel. The authors report that the ownership transfer idea of CSL plays a key
role in the specifications and proofs. Modules verified include the scheduler, inter-
rupt handlers, message queues, and mutex locks. 1.k lines of C code is verified using
216k lines of Coq, including framework code. It took 4 person years to develop the
framework, 1 person year to prove the first module (for message queues), and then
the remaining modules, consisting around 900 lines of C code, were done in 6 person-
months.
This is apparently the first commercial pre-emptive kernel to have been verified (a
number of high profile non-premptive kernel verification efforts, such as the cele-
brated seL4 project, have gone before).

Automatic Program Analysis.. With a verification-oriented abstract interpreter the
program annotations that a human would supply to a mostly-automatic verifier –
such as loop invariants, and sometimes pre/post specs – are inferred using a vari-
ety of techniques such as fixed-point iteration, widening and narrowing, interpolation,
and abduction. Naturally, a verification tool will be able to prove less when the hu-
man is not supplying annotations, but the corresponding gain is that the techniques
can be wholly automatic, working on bare code without asking the human for help to
get started. Thus, verification-oriented abstract interpreters can be deployed with less
friction than can mostly-automatic verifiers.

Abstract interpretation with sequential separation logic has seen rather a lot of at-
tention; see [Calcagno et al. 2011] and its references. There have been comparatively
fewer works on abstract interpretation with CSL (admittedly, a very difficult problem).

— [Gotsman et al. 2007] were the first to show how to infer resource invariants in CSL.
They use reachability in the abstract heap to decide how to divide the state between

ACM SIGLOG News 60 July 2016, Vol. 3, No. 3



shared and thread-local after each critical region. Then, the invariants are discovered
by convergence of a fixed point in the usual way of abstract interpretation.

— [Calcagno et al. 2009] also infers resource invariants, but differs from the work of
Gotsman et al by using the concept of footprint rather than reachability to divide the
state after critical regions. This allows them to prove some of the ownership transfer
example, such as O’Hearn’s pointer-transferring buffer, that cannot be proven with
the technique of Gotsman et al. Footprints are approximated using the abductive
inference technique of [Calcagno et al. 2011].

— [Botincan et al. 2012] describe an algorithm that takes as input a sequential pro-
gram with a proof in separation logic and some additional annottions, and outputs
a concurrent program with a proof in CSL. Abduction is used to perform the decom-
posiitons needed to do the CSL proof.

These works make good steps, but program analysis with CSL is underdeveloped com-
pared to the work in mostly-automatic and interactive verification. This is an imbal-
ance that is deserving of further attention in the research community, especially since
the possibility for broad impact is, except possibly in the very long term, much greater
with verification-oriented abstract interpreters than less automatic tools.

5. CONTEXT, CIRCA 2016
At the beginning of the paper we mentioned that, as of 2002-2003:

— few realistic concurrent programs had been subjected to proof, and
— the semantics of concurrency for “simple” shared memory programs was well de-

veloped, but we were lacking tractable models for shared memory programs with
structured state accessed via pointer manipulation.

Expanding on the latter, we needed to be able to explain the connection between such
concepts as race freedom, the Separation Property and Ownership Hypothesis, and
the sense of independence in Dijkstra’s principle of loosly connected processes. It was
easy to define some model for a concurrent language, but not one that let us delve into
these sorts of properties; and they were all intimately related to the initial Concurrent
Separation Logic.

Fast-forward to 2016 and, on the verification side:

— many small but realistic and increasingly intricate concurrent programs have been
verified interactively and semi-automatically, and there are tens of implemented
tools to do so, and

— a significant portion of an industrial, pre-emptive OS kernel has been verified.

These advances are beyond what we would dared to imagine in 2002-2003. Shortly
after CSL was introduced, we were given the friendly challenge by Doug Lea (au-
thor of java.util.concurrent, a library full of advanced tricks) to verify optimistic, non-
blocking algorithms. These algorithms seemed beyond the intuitive reach of the initial
CSL techniques, and we wrestled with them for quite some time (see, e.g., [Parkinson
et al. 2007] for early struggles). But with perseverence and insight the field as a whole
has moved to the point where mechanized verification of another of these algorithms
now comes as no surprise. Concerning OS verification, as soon as CSL was available
Berdine and O’Hearn became keenly interested in the problem of attacking a micro-
kernel; microkernel designs seemed to fit CSL conceptually, but verification technology
for concurrent programs was not sufficiently developed, at least as far as we knew, to
make such an effort feasible as of 2002-2003.

While the distance we have come in verification is very positive, to keep some per-
spective on what has been achieved it is important to stress that the tools referred to
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here are from the research sector. We have not yet seen concurrent software routinely
verified within industry, by industry and not by researchers from either academia or
industry; that is, verification of concurrent software is not yet deployed.

On the semantics side, there has been a flurry of development. We have models sup-
porting increasingly simple and powerful proof methods. Soundness has been proven
for concurrency logics not only with higher-order predicates but even with higher-order
store obtained from storing resource invariants. The semantic models incorporate sep-
aration and interference at the same time. And there are general frameworks like in
the Views work which give general conditions that allow to formulate concurrent sep-
aration logics for a given situation.

So there has been significant progress in logic and semantics. But there is much
more work to do.

One important direction in pure theory is unification. The diagram in Figure 1 show-
ing the CSL family tree shows a lot of variation, and it would be valuable to bring to
a form of conclusion all of the developments on non-standard models and variations of
CSL. The Views and Concurrent Kleene Algebra work both provide interesting start-
ing points. There are also a lot of related ideas swirling around in models for weak
memory and for distributed databases that have not been fully worked out. It seems
that there is good and possibly deep theoretical work to be done.

As we have seen there has been a lot of progress in mechanized verification of concur-
rent programs; but there has been less in automatic program analysis. With program
analysis we would like to give programmers feedback without requiring annotations,
say by trying to prove specific integrity properties (such as memory safety or race
freedom); annotations can help the analysis along, but are not needed to get started,
and this greatly eases broad deployment. A number of prototype concurrency analyses
based on CSL have been developed, as we mentioned in the previous section, but there
has been much more work applying sequential separation logic to program analysis.
For example, the Infer program analyser [Calcagno et al. 2015], which is in produc-
tion at Facebook, is applied automatically on a daily basis to hundreds and sometimes
thousands of modifications made to the Facebook code bases; it uses sequential but
not concurrent separation logic. To make advanced program analysis for concurrency
which brings value to programmers in the real world is in the main an open problem,
and not an easy one.

Finally, we would like to say that CSL is but one part of work that goes on in the
broader field of concurrency verification and analysis. There is much interesting work
happening in dynamic concurrency analysis (e.g., the T-SAN tool), in symbolic model
checking for concurrent software (e.g. CBMC), in modelling weak memory (e.g., the
Herd tool), in logics and model checkers for models of distributed systems (e.g., TLA),
and on more closely related logics and tools (e.g., VCC). In this retrospective paper we
have not discussed or even referenced work other than that related to CSL, because
to do justice to the other work would take too much more time and space. But, if we
were to look at the state of the broader field in 2016 versus 2002 we would similarly
see quite a significant level of advance, particularly in tools. While that is certainly
positive and a cause for optimism, making concurrency theory+logic+tools simple and
tractable enough to be deployed is still a great challenge, and a most worthwhile one
because concurrent programs remain amongst the most difficult to understand.
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