
DNAvisualization.org: an entirely serverless web
tool for DNA sequence visualization

Benjamin D. Lee* 1,2,3, Michael A. Timony2,4, and Pablo Ruiz3

1In-Q-Tel Lab41
2Harvard Medical School

3School of Engineering and Applied Sciences, Harvard University
4SBGrid

* Correspondence: Benjamin D. Lee <benjamindlee@me.com>

Abstract
Raw DNA sequences contain an immense amount of meaningful bi-

ological information. However, these sequences are hard for humans to
intuitively interpret. To solve this problem, a number of methods have
been proposed to transform DNA sequences into two-dimensional visual-
izations. DNAvisualization.org implements several of these methods in
a cost effective and performant manner via a novel, entirely serverless
architecture. By taking advantage of recent developments in serverless
parallel computing and selective data retrieval, the website is able to
offer users the ability to visualize up to thirty 4.5 Mbp DNA sequences
simultaneously using one of five supported methods and to export these
visualizations in a variety publication-ready formats.

Introduction

As DNA sequencing technology becomes more commonplace, tools for the analysis
of its data are among the most cited papers in science (1). The reason is simple:
DNA sequences are, by themselves, almost completely unintelligible to humans.
Seeing meaningful patterns in DNA sequences (which are often too large to be
shown in their entirety on a screen) is a significant challenge for researchers.
One approach to addressing this problem is to convert DNA sequences into two-
dimensional visualizations that capture some part of the biological information
contained within them. This approach has the benefit of taking advantage of
the highly developed human visual system, which is capable of tremendous feats
of pattern recognition and memory (2).

A variety of methods have been proposed to convert DNA sequences into two
dimensional visualizations (3–12). These methods are highly heterogenous, but,

1

https://DNAvisualization.org


for the sake of this paper, we will only discuss methods with no degeneracy, i.e.
methods that produce visualizations which may be unambiguously transformed
back into the DNA sequences from which they were generated. All of these
methods operate on a single underlying principle: they map each nucleotide in
a DNA sequence to one or more points in the Cartesian plane and treat each
sequence as a walk between these points.

One effect of mapping each base to at least one point is that the number of points
grows linearly with the length of the DNA sequence. This poses a technological
challenge, as the ability to sequence DNA has vastly outpaced tools to visualize
it. Indeed, there is currently a dearth of DNA visualization tools capable of
implementing the variety of methods that have been introduced in the literature
(11, 13, 14). Taking inspiration from DNAsonification.org (15), which allows for
the auditory inspection of DNA sequences, we propose DNAvisualization.org to
fill this gap in the web-based visualization toolset.

Methods and Results

Interface

The user interface for the tool is deliberately simple. A user first selects a
visualization method from one of the five currently supported methods (6, 7, 11,
16) and then provides FASTA-formatted sequence data to visualize, either by
using the operating system’s file-input prompt, dragging-and-dropping files onto
the browser window, or pasting the raw data into a text prompt. Upon receipt
of sequence data, a loading spinner indicates that the system is processing the
data. After the data processing is complete, the loading spinner is replaced with
the two-dimensional visualization.

The initial view is such that the entirety of each sequence’s visualization is visible:
every part of every sequence can be seen. This poses an immediate challenge, as
comparing sequences of vastly different lengths will result in the smaller sequence
being so small as to be essentially invisible. To solve this problem, the tool
allows users to toggle the visibility of sequences by clicking on the corresponding
legend entry, which will automatically rescale the visualization’s axes to fit the
displayed sequences. The legend coloring is dynamic as well. The user may
decide to color code the legend either with each sequence (shown in fig. 1a) or
each file in its own color (shown in fig. 1b) and toggle between options after the
data has been plotted, allowing for both inter- and intra-file comparisons.

To inspect a region of the visualization more closely, a user may click and drag
over it to zoom in. When zooming in, a more detailed visualization is shown by
asynchronously retrieving data for the region, allowing for base-pair resolution
analysis. With a single click, the axis scaling may be reset to the default zoom
level.

2



The title and subtitle of the visualization are dynamically set but may be
overridden at any time by the user. If the user wishes, their visualization may
be downloaded in one of several formats suitable for publication such as SVG,
PDF, JPG, and PNG.

Implementation

The web tool is built using a novel, entirely serverless architecture, with comput-
ing, as well as data storage and selective retrieval, done in a serverless manner.
To understand how this system differs from a traditional architecture, consider a
traditional approach to building the DNAvisualization.org tool. A server, usually
running Linux or Microsoft Windows, is established to handle HTTP requests
to the website. This server is either maintained by a university or, increasingly
often, a cloud service provider. If there are no requests (as can be expected
to be a nontrivial fraction of the time for low-traffic web tools), the server sits
idle. When requests are submitted, the server responds to each one. If the
server is at capacity, requests may go unanswered or, with additional complexity,
more servers may be requested from cloud services provider to meet the greater
demand. Data storage is usually provided by a relational database management
system (RDBMS), which must also be running on a server.

This paradigm has several disadvantages: disruptions to the server result in
disruptions to the website, greater expertise is required for the development
and maintenance of the website, the server wastes resources while sitting idle,
and the server’s computational and storage capacity is directly limited by its
hardware.

To solve these problems, a new model has been introduced called serverless
computing or Function-as-a-Service (FaaS). The basic idea is that a software
developer specifies code to be executed (i.e. a function) and then invokes it on
varying inputs. The cloud service provider is thereby delegated the responsibility
for the execution of the code. In this model, the pricing is by function invocation.
When not being used, there is no cost to the user. On the other hand, if there
are numerous simultaneous function invocations, each invocation is handled
separately, in parallel.

By making the serverless function a virtual “server” and invoking the function
upon each individual request, one is able to take full advantage of serverless
computing. For each request to the website, a virtual server is created for just
long enough to respond to the request and then immediately extinguished. This
results in the website being able to instantly scale to use precisely the resources
needed to meet demand.

DNAvisualization.org is built atop Amazon Web Services (AWS) due to their
generous free tier that, at the time of this writing, allows for one-million free
function invocations per month using their Lambda serverless compute platform,

3



(a) Sequence mode

(b) File mode

Figure 1: DNAvisualization.org supports color coding each sequence or file
individually.

4



which is anticipated to easily meet the demand for the site. In the event that
the free tier is exceeded, AWS Lambda’s pricing is very affordable.

For DNAvisualization.org, we use AWS Lambda to serverlessly transform sub-
mitted DNA sequences into their visualizations in parallel, in addition to serving
the static assets (i.e. HTML, Javascript, and CSS files) to the user. The site
uses Python’s Flask web framework and has its deployment to AWS Lambda
seamlessly automated by the Zappa tool.

It must be noted that using a serverless architecture to host a website is not
novel by itself. Rather, the novelty of the architecture lies in its combination of
serverless computing for request handling with query-in-place data retrieval on
compressed data. As mentioned previously, a normal web architecture would
use a server running a RDBMS to handle data storage. In the case of DNA
visualization, the database would be used to persist the transformed DNA
sequences as x- and y-coordinates that may be queried when zooming in on a
region. However, using a database server creates many of the same issues as
using a server for web hosting, such as scalability, cost, and parallelism. Instead
of using an RDBMS, we used the S3 cloud storage platform combined with the
S3 Select query-in-place functionality offered by AWS. In essence, this service
allows one to upload a compressed tabular file to S3 and then submit a SQL
query to be executed against the tabular data. In this paradigm, pricing is based
on the amount and duration of data storage, the amount of scanned during
querying, and the amount of data returned by query.

For DNAvisualization.org, each submitted sequence’s transformation is stored on
AWS S3 in the open-source Apache Parquet tabular data format using Snappy
columnar compression. Then, when a user zooms in on a region, a request is sent
to AWS Lambda, which submits a SQL query to S3 Select, which in turn scans
the file for data in the region. The matching data is then returned to the Lambda
function, which downsamples the data if necessary (to prevent wasting users’
memory with more data points than can be shown) and returns it to the browser,
which then updates the visualization. This process happens entirely in parallel
for each sequence that the user has submitted, regardless of how much demand
there is on the website, showcasing the usefulness of serverless computing. The
S3 buckets (i.e. folders) containing the cached DNA sequence transformations
are configured such that twenty-four hours after a user has submitted a sequence
for visualization, its transformation is automatically deleted, thereby further
reducing the cost of the website’s operation.

An overview of the architecture is presented in fig. 2.

Discussion

Because DNA sequence transformation is an inherently parallelizable task, the
use of serverless computing is a natural fit for this application. However, not all

5



Figure 2: A sequence diagram demonstrating the interactions between the client’s
browser, AWS Lambda, and AWS S3. There are two sets of interactions: initial
sequence transformation and sequence querying. Each of these interactions
happens in parallel for each sequence.

6



web applications for biology are amenable to serverless computing.

The primary limitation of this architecture is necessity for a short duration of
computation (currently on the scale of seconds) or, failing that, the ability to
parallelize the computation and the data. In addition, memory constraints on
the scale of megabytes to several gigabytes must also be respected. Applications
which violate these requirements will need significant modifications to this
architecture in order to function. As the capabilities of serverless computing
increase, the burden of these limitations will decrease. For more information
about the limitations of serverless computing, see (17).

These limitations were bypassed by this tool in several ways, which may be of
interest to readers attempting to implement similar architectures in the future.
When implementing parallelization, we were faced with a choice between higher,
file-level parallelization (parsing and transforming each file’s sequences in a
separate Lambda function invocation) and lower, sequence-level parallelization
(parsing the files in the browser and invoking a Lambda function to transform
each sequence individually). We initially chose the former but quickly ran into
memory issues, even when opting to use the most generous memory allocation
available (3,008 MB at the time of writing1). To reduce memory demands, we
switched to sequence-level parallelism and eliminated as many dependencies as
possible.

Currently, the website is limited to visualizing up to thirty sequences of up to
4.5 Mbp each for a grand total of 135 Mbp of sequence data at a time. The total
sequence count limitation ensures that our chart renderer can handle rendering
all of the points (downsampled to a static 1,000 points per sequence) and the
sequence length limitation ensures that the transforming Lambda function’s
memory is not overwhelmed. In the future, we aim to increase this limit by taking
advantage of further optimizations in memory management during transformation
and increases in the total amount of memory available to function invocations.

Conclusion

This web tool serves as a demonstration of the applicability of serverless com-
puting to computational molecular biology as well as a useful tool to quickly
gain an intuitive visual overview of DNA sequences. While not all applications
are amenable to serverless computing, those that are may achieve greater perfor-
mance with decreased cost and development complexity, a significant advantage
over traditional web architectures. By making sequence visualization fast and
simple as well as by providing an open-source example of serverless computing
and data retrieval, this tool aims to make both of these valuable techniques more
widely used within the biological research community.

1This total includes all of the function’s code as well as the data on which it is invoked.

7



Data Availability

The website is freely accessible at https://DNAvisualization.org. The software
repository is hosted at https://github.com/Benjamin-Lee/DNAvisualization.org.

Funding

This work was supported by the non-profit firm In-Q-Tel, Inc. Funding for open
access charge: In-Q-Tel, Inc.

References

1. Wren,J.D. (2016) Bioinformatics programs are 31-fold over-represented among
the highest impact scientific papers of the past two decades. Bioinformatics, 32,
2686–2691, DOI: 10.1093/bioinformatics/btw284.

2. Brady,T.F., Konkle,T., Alvarez,G.A. and Oliva,A. (2008) Visual long-term
memory has a massive storage capacity for object details. Proceedings of the Na-
tional Academy of Sciences, 105, 14325–14329, DOI: 10.1073/pnas.0803390105.
PMCID: PMC2533687.

3. Randić,M., Vračko,M., Zupan,J. and Novič,M. (2003) Compact 2-D graph-
ical representation of DNA. Chemical Physics Letters, 373, 558–562, DOI:
10.1016/S0009-2614(03)00639-0.

4. Qi,Z.-H., Li,L. and Qi,X.-Q. (2011) Using Huffman coding method to visualize
and analyze DNA sequences. Journal of Computational Chemistry, 32, 3233–
3240, DOI: 10.1002/jcc.21906.

5. Guo,X. and Nandy,A. (2003) Numerical characterization of DNA sequences
in a 2-D graphical representation scheme of low degeneracy. Chemical Physics
Letters, 369, 361–366, DOI: 10.1016/S0009-2614(02)02029-8.

6. Yau,S.S.T. (2003) DNA sequence representation without degeneracy. Nucleic
Acids Research, 31, 3078–3080, DOI: 10.1093/nar/gkg432.

7. Gates,M.A. (1986) A simple way to look at DNA. Journal of Theoretical
Biology, 119, 319–328, DOI: 10.1016/S0022-5193(86)80144-8.

8. Zou,S., Wang,L. and Wang,J. (2014) A 2D graphical representation of the
sequences of DNA based on triplets and its application. EURASIP Journal on
Bioinformatics and Systems Biology, DOI: 10.1186/1687-4153-2014-1. PM-
CID: PMC3896961.

9. Jeffrey,H.J. (1990) Chaos game representation of gene structure. Nucleic
Acids Research, 18, 2163–2170.

8

https://dnavisualization.org
https://doi.org/10.1093/bioinformatics/btw284
https://doi.org/10.1073/pnas.0803390105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533687/
https://doi.org/10.1016/S0009-2614(03)00639-0
https://doi.org/10.1016/S0009-2614(03)00639-0
https://doi.org/10.1002/jcc.21906
https://doi.org/10.1016/S0009-2614(02)02029-8
https://doi.org/10.1093/nar/gkg432
https://doi.org/10.1016/S0022-5193(86)80144-8
https://doi.org/10.1186/1687-4153-2014-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896961/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896961/


10. Peng,C.-K., Buldyrev,S.V., Goldberger,A.L., Havlin,S., Sciortino,F., Si-
mons,M. and Stanley,H.E. (1992) Long-range correlations in nucleotide sequences.
Nature, 356, 168–170, DOI: 10.1038/356168a0.

11. Lee,B.D. (2018) Squiggle: A user-friendly two-dimensional DNA sequence
visualization tool. Bioinformatics, DOI: 10.1093/bioinformatics/bty807.

12. Bari,A.G., Reaz,R., Islam,A.T., Choi,H.-J. and Jeong,B.-S. (2013) Effective
Encoding for DNA Sequence Visualization Based on Nucleotide’s Ring Struc-
ture. Evolutionary Bioinformatics, 9, EBO.S12160, DOI: 10.4137/EBO.S12160.
PMCID: PMC3712558.

13. Thomas,J.M., Horspool,D., Brown,G., Tcherepanov,V. and Upton,C. (2007)
GraphDNA: A Java program for graphical display of DNA composition analyses.
BMC Bioinformatics, DOI: 10.1186/1471-2105-8-21. PMCID: PMC1783863.

14. Arakawa,K., Tamaki,S., Kono,N., Kido,N., Ikegami,K., Ogawa,R. and
Tomita,M. (2009) Genome Projector: Zoomable genome map with multiple
views. BMC Bioinformatics, 10, 31, DOI: 10.1186/1471-2105-10-31. PMCID:
PMC2636772.

15. Temple,M.D. (2017) An auditory display tool for DNA sequence analy-
sis. BMC Bioinformatics, 18, DOI: 10.1186/s12859-017-1632-x. PMCID:
PMC5404335.

16. Qi,Z. and Qi,X. (2007) Novel 2D graphical representation of DNA se-
quence based on dual nucleotides. Chemical Physics Letters, 440, 139–144, DOI:
10.1016/j.cplett.2007.03.107.

17. Hellerstein,J.M., Faleiro,J., Gonzalez,J.E., Schleier-Smith,J., Sreekanti,V.,
Tumanov,A. and Wu,C. (2019) Serverless Computing: One Step Forward, Two
Steps Back. In Conference on Innovative Data Systems Research. Asilomar, CA.

Figures and Tables Captions

Figure 1. DNAvisualization.org supports color coding each sequence or file
individually.

Figure 2. A sequence diagram demonstrating the interactions between the client’s
browser, AWS Lambda, and AWS S3. There are two sets of interactions: initial
sequence transformation and sequence querying. Each of these interactions
happens in parallel for each sequence.

9

https://doi.org/10.1038/356168a0
https://doi.org/10.1093/bioinformatics/bty807
https://doi.org/10.4137/EBO.S12160
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712558/
https://doi.org/10.1186/1471-2105-8-21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783863/
https://doi.org/10.1186/1471-2105-10-31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636772/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636772/
https://doi.org/10.1186/s12859-017-1632-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404335/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404335/
https://doi.org/10.1016/j.cplett.2007.03.107
https://doi.org/10.1016/j.cplett.2007.03.107

	Introduction
	Methods and Results
	Interface
	Implementation

	Discussion
	Conclusion
	Data Availability
	Funding
	References
	Figures and Tables Captions

