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Abstract
An asynchronous program is one that contains procedure calls
which are not immediately executed from the callsite, but stored
and “dispatched” in a non-deterministic order by an external sched-
uler at a later point. We formalize the problem of interprocedu-
ral dataflow analysis for asynchronous programs as AIFDS prob-
lems, a generalization of the IFDS problems for interprocedural
dataflow analysis. We give an algorithm for computing the precise
meet-over-valid-paths solution for any AIFDS instance, as well as
a demand-driven algorithm for solving the corresponding demand
AIFDS instances. Our algorithm can be easily implemented on top
of any existing interprocedural dataflow analysis framework. We
have implemented the algorithm on top of BLAST, thereby obtain-
ing the first safety verification tool for unbounded asynchronous
programs. Though the problem of solving AIFDS instances is
EXPSPACE-hard, we find that in practice our technique can effi-
ciently analyze programs by exploiting standard optimizations of
interprocedural dataflow analyses.

Categories and Subject Descriptors   D.2.4 [Software Engineer-
ing]: Software/Program Verification.
General Terms   Languages, Verification, Reliability.
Keywords    asynchronous (event-driven) programming, dataflow
analysis.

1. Introduction
Asynchronous programming is a popular and efficient program-
ming idiom for managing concurrent interactions with the environ-
ment. In addition to the usual, or synchronous, function calls where
the caller waits at the callsite until the callee returns, asynchronous
programs have asynchronous procedure calls which, instead of be-
ing executed from the callsite, are stored in a task queue for later
execution. An application-level dispatcher chooses a call from the
task queue, executes it to completion (which might lead to further
additions to the task queue), and repeats on the remaining pending
calls.

Asynchronous calls permit the interleaving of several logical
units of work, and can be used to hide the latency of I/O-intensive
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tasks by deferring their execution to a point where the system
is not otherwise busy. They form the basis of event-driven pro-
gramming, where the asynchronous calls correspond to callbacks
that may be triggered in response to external events. Further, if
mechanisms to ensure atomicity, either by using synchronization
[24] or by using transactions [15, 29], are used to ensure asyn-
chronous calls are executed atomically, then the scheduler can be
multi-threaded, running different asynchronous calls concurrently
on different threads or processors [32]. There have been a vari-
ety of recent proposals for adding asynchronous calls to existing
languages via libraries, such as LIBASYNC [20], LIBEVENT [21],
and LIBEEL [6, 5]. These libraries have been used to build efficient
and robust systems software such as network routers [19] and web
servers [25]. Further, several recent languages such as NESC [12],
a language for networked embedded systems, and MACE [23], a
language to build distributed systems, provide explicit support for
asynchronous calls.

The flexibility and efficiency of asynchronous programs comes
at a price. The loose coupling between asynchronously executed
methods makes the control and data dependencies in the program
difficult to follow, making it harder to write correct programs. As
asynchronous programs are typically written to provide a reliable,
high-performance infrastructure, there is a critical need for tech-
niques to analyze such programs to find bugs early or to discover
opportunities for optimization.

For programs that exclusively use synchronous function calls,
interprocedural dataflow analysis [31, 28] provides a general
framework for program analysis. In the setting of [28], interproce-
dural dataflow problem is formulated as a context-free reachability
problem on the program graph, i.e., a reachability problem where
the admissible paths in the graph form a context free language of
nested calls and returns. Unfortunately, this approach does not im-
mediately generalize to asynchronous programs, for example, by
treating asynchronous calls as synchronous. In fact, such an anal-
ysis yields unsound results, because the facts that hold at the point
where the asynchronous call is made may no longer hold at the
point where the stored call is finally dispatched. Though the val-
ues passed as parameters in the asynchronous call remain unaltered
till the dispatch, the operations executed between the asynchronous
call and its dispatch may completely alter the values of the global
variables. Further, the pairing of asynchronous calls and their ac-
tual dispatches makes the language of valid program executions a
non-context free language, and a simple reduction to context free
reachability seems unlikely.

This paper formalizes the problem of dataflow analysis for asyn-
chronous programs as Asynchronous Interprocedural Finite Dis-
tributive Subset (AIFDS) problems, a generalization of the IFDS
problems of Reps, Horwitz and Sagiv [28] to programs that addi-
tionally contain asynchronous procedure calls. The key challenge
in devising algorithms to solve AIFDS problems precisely, that
is, to compute the meet over all valid paths (MVP) solutions for
such problems, lies in finding a way to handle the unbounded set
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of pending asynchronous calls, in addition to the unbounded call
stack. We surmount this challenge through three observations.

1. Reduction We can reduce an AIFDS instance into a stan-
dard, synchronous dataflow analysis problem where the set of
dataflow facts is the product of the original set with a set of
counters which track, for each of finitely many kinds of pend-
ing calls, the exact number of instances of the call that are pend-
ing. Though the reduced instance has the same solution as the
AIFDS instance, we cannot use standard dataflow analyses to
compute the solution as the lattice of dataflow facts is now un-
bounded: the counters can grow unboundedly to track the num-
ber of pending asynchronous calls.

2. Approximation Given any fixed parameter k ∈ N, we can
compute approximations of the meet-over-valid path solutions
in the following way. We compute an under-approximation of
the infinite reduced instance using a counter that counts up to k,
dropping any asynchronous call if there are already k pending
instances for that call. We call this problem the k-reduced IFDS
problem. We compute an over-approximation of the infinite
reduced instance using a counter that counts up to k, and bumps
up to infinity as soon as the value exceeds k. This has the effect
of tracking up to k pending calls precisely, and then supposing
that an unbounded number of calls are pending if an additional
asynchronous call is performed. We call this problem the k∞-
reduced IFDS problem. For each k, both the over- and the
under-approximations are instances of standard interprocedural
dataflow analysis as the abstraction of the counters makes the
set of dataflow facts finite. Thus, we can compute over- and
under-approximations of the precise solution of the AIFDS
instance by running standard interprocedural dataflow analysis
algorithms [28].

3. Convergence In a crucial step, we prove that for each AIFDS
instance, there always exists a k for which the solutions of
the over-approximate IFDS instance and the under-approximate
IFDS instance coincide, thereby yielding the precise solution
for the AIFDS instance. Thus, our simple algorithm for com-
puting the meet over valid paths solutions for AIFDS instances
is to run an off-the-shelf interprocedural analysis on the k and
k∞-reduced IFDS instances for increasingly larger values of k,
until the two solutions converge upon the precise AIFDS solu-
tion.

The proof of the third observation, and therefore, that our al-
gorithm is complete, proceeds in two steps. First, we demonstrate
the existence of a finite representation of the backward or inverse
MVP solution of the infinite reduced instance. To do so, we design
a backward version of the algorithm of Reps, Horwitz and Sagiv
[28] and prove that it terminates with the finite upward-closed back-
wards solution by using properties of well quasi-orderings [1, 10].
Second, we prove that if the backward solution is the upward clo-
sure of some finite set, then there exists a k at which the solutions
of the finite k- and k∞-reduced IFDS instances converge. Though
the correctness proof uses some technical machinery, its details are
entirely hidden from an implementer, who need only know how to
instantiate a standard interprocedural dataflow analysis framework.

We have implemented this algorithm on top of the BLAST in-
terprocedural reachability analysis which is a lazy version of the
summary-based interprocedural reachability analysis of [28]. The
result is an automatic safety verifier for recursive programs with
unboundedly many asynchronous procedure calls. Our reduction
technique enables the reuse of optimizations that we have previ-
ously found critical for software verification such as on-the-fly ex-
ploration, localized refinement [18], and parsimonious abstraction
[17]. While we cannot hope for an algorithm that works efficiently
for all asynchronous programs (the AIFDS problem is EXPSPACE-

Figure 1. An Example Plb

hard, in contrast to IFDS which is polynomial time), our initial ex-
periments suggest that in practice the forward reachable state space
and the k required for convergence is usually small, making the
algorithm practical. In preliminary experiments, we have used our
implementation to verify and find bugs in an open source load bal-
ancer (plb) and a network testing tool (netchat). We checked for
null pointer errors, buffer overruns, as well as application-specific
protocol state properties. In each case, our implementation ran in
less than a minute, and converged to a solution with k = 1.

Related Work. Recently, the reachability (and hence, dataflow
analysis) problem for asynchronous programs was shown decidable
[30], using an algorithm that we believe will be difficult to imple-
ment and harder to scale to real systems. First, the algorithm works
backwards, thereby missing the opportunities available for opti-
mization by restricting the analysis to the (typically sparse) reach-
able states that we have found critical for software verification [18].
Second, one crucial step in their proof replaces a recursive syn-
chronous function with an equivalent automaton constructed using
Parikh’s lemma [26]. Thus, their analysis cannot be performed in
an on-the-fly manner: the language-theoretic automaton construc-
tion must be performed on the entire exploded graph which can
be exponentially large in software verification. Finally, instead of
multiset rewriting systems and Parikh’s lemma, our proof of com-
pleteness relies on counter programs and a version of context free
reachability on well quasi-ordered state spaces [10].

Counters [22] have been used to model check concurrent C [16]
and Java programs, via a reduction to Petri Nets [7]. However,
those algorithms were not interprocedural and did not deal with
recursion. Our proof technique of providing a forward abstraction-
based algorithm whose correctness is established using a backward
algorithm was used in [16] and formalized for a general class of
infinite state systems in [13].
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Notice that in contrast to the decidability of AIFDS, the
dataflow analysis problem for two threads each with recursive syn-
chronous function calls is undecidable [27]. This rules out similar
algorithmic techniques to be applied to obtain exact solutions for
multithreaded programs, or models in which threads and events are
both present.

2. Problem
Figure 1 shows an asynchronous program Plb culled from an
event-driven load balancer. Execution begins in the procedure main
which makes an asynchronous call to a procedure (omitted for
brevity) that adds requests to the global request list r, and makes
another asynchronous call to a procedure reqs that processes the
request list (highlighed by a filled box). The reqs procedure checks
if r is empty, and if so, reschedules itself by asynchronously call-
ing itself. If instead, the list is not empty, it allocates memory for
the first request on the list, makes an asynchronous call to client
which handles the request, and then (synchronously) calls itself
(highlighted by the unfilled box) after moving r to the rest of the
list. The procedure client handles individual requests. It takes as
input the formal c which is a pointer to a client t structure. In
the second line of client the pointer c is dereferenced, and so it
is critical that when client begins executing, c is not null. This is
ensured by the check performed in reqs before making the asyn-
chronous call to client. However, we cannot deduce this by treat-
ing asynchronous calls as synchronous calls (and using a standard
interprocedural dataflow analysis) as that would additionally con-
clude the unsound deduction that r is also not null when client is
called.

We shall now formalize the asynchronous interprocedural finite
dataflow analysis (AIFDS) framework, a generalization of the IFDS
framework of [28], solutions of which will enable us to soundly
deduce that when client begins executing, c is non-null, but that
r may be null.

2.1 Asynchronous Programs

In the AIFDS framework, programs are represented using a gener-
alization of control flow graphs, that include special edges corre-
sponding to asynchronous function calls.

Let P be a finite set of procedure names. An Asynchronous
Control Flow Graph (ACFG) Gp for a procedure p ∈ P is a pair
(Vp, Ep) where Vp is the set of control nodes of the procedure p,
including a unique start node vs

p and a unique exit node ve
p, and Ep

is a set of directed intraprocedural edges between the control nodes
Vp, corresponding to one of the following:

• an operation edge corresponding to a basic block of assign-
ments or an assume predicate derived from a branch condition,

• a synchronous call edge to a procedure q ∈ P , or
• an asynchronous call edge to a procedure q ∈ P .

For each directed call edge, synchronous or asynchronous, from v
to v′ we call the source node v the call-site node, and the target
node v′ the return-site node.

EXAMPLE 1: Figure 2 shows the ACFG for the procedures main,
reqs and client of the program Plb. For each procedure, the
start node (resp. exit node) is denoted with a short incoming edge
(resp. double circle). The labels on the intraprocedural edges are
either operations corresponding to assumes (in box parentheses),
and assignments, or asynchronous call edges, shown in filled boxes,
e.g., the edge at v1, or synchronous call edges, shown in unfilled
boxes, such as the recursive call edge at node v9, for which the
call-site and return-site are respectively v9 and v10. �

A Program G∗ comprises a set of ACFGs Gp for each proce-
dure in p ∈ P . The control locations of G∗ are V ∗, the union of

the control locations of the individual procedures. The edges of G∗

are E∗, the union of the (intraprocedural) edges of the individual
procedures together with a special set E′ of interprocedural edges
defined as follows. Let Calls be the set of (intraprocedural) syn-
chronous call edges in G∗. For each synchronous call edge from
call-site v to procedure q returning to return-site v′ in Calls we
have:

• An interprocedural call-to-start edge from the call-site v to the
start node vs

q of q, and,
• An interprocedural exit-to-return edge from the exit node ve

q of
q to the return-site v′.

As in [28], the call edges (or call-to-return-site edges) allow us to
model local variables and parameter passing in our framework.

In Figure 2, the dotted edges correspond to interprocedural
edges. The edge from call-site v9 to the start node v4 of reqs is a
call-to-start edge, and the edge from the exit node v10 to the return-
site v10 is an exit-to-return edge.

An Asynchronous Program is a program G∗ that contains a
special dispatch procedure main (with ACFG Gmain ), which is
not called by any other procedure, and that has, for every other
procedure, a self-loop synchronous call edge from its exit node
ve
main to itself. The exit node ve

main is called the dispatch node, the
self-loop synchronous call edges of the dispatch node are called
dispatch call edges, the call-to-start edges from the dispatch node
are called dispatch call-to-start edges, and the exit-to-return edges
to the dispatch node are called dispatch exit-to-return edges.

Thus, an Asynchronous Program is a classical supergraph of
[28] together with special asynchronous call edges, and a special
dispatch procedure that has synchronous call edges for each proce-
dure, which are used to model asynchronous dispatch.

EXAMPLE 2: The ACFG for main shown in Figure 2 is the
dispatch procedure for Plb. The exit node v3, shaded in blue, is
the dispatch node with dispatch edges to reqs and client. The
interprocedural edge from v3 to v12 is a dispatch call-to-start edge
to client and the edge from v15 to v3 is a dispatch exit-to-return
edge. �

2.2 Asynchronous Program Paths

Executions of an asynchronous program correspond to paths in the
ACFGs. However, not all paths correspond to valid executions. In
addition to the standard requirement of interprocedural validity,
namely that synchronous calls and returns match up, we require that
a dispatch can take place only if there is a pending asynchronous
call to the corresponding procedure.

Paths. A path of length n from node v to v′ is a sequence of edges
π = (e1, . . . , en) where v is the source of e1, v′ is the target of en,
and for each 0 ≤ k ≤ n− 1, the target of ek is the source of ek+1.
We write π(k) to refer to the kth edge of the path π.
Interprocedural Valid Paths. Suppose that each call edge in Calls
is given a unique index i. For each call edge i ∈ Calls suppose that
the call-to-start edge is labeled by the symbol (i and the exit-to-
return edge is labeled by the symbol )i. We say that a path π from
v to v′ is an interprocedural valid path if the sequence of labels on
the edges along the path is a string accepted by the following Dyck
language, generated by the non-terminal D:

M → ε | M (i M )i for each i ∈ Calls
D → M | D (i M for each i ∈ Calls

We use IVP(v, v′) to denote the set of all interprocedural valid
paths from v to v′.

Intuitively, M corresponds to the language of perfectly balanced
parentheses, which forces the path to match the return edges to
the corresponding synchronous call sites, and D allows for some
procedures to “remain on the call stack.”
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Figure 2. ACFGs for Plb

Unlike in synchronous programs, not all Dyck paths correspond
to potential executions of the Asynchronous Program, as we have
not accounted for asynchronous procedure calls. For example, the
path along the edges between nodes v0,v1,v2,v3,v12 of the ACFGs
of Figure 2 is a valid interprocedural path, but does not correspond
to a valid asynchronous execution as there is no pending asyn-
chronous call to client at the dispatch node v3. To restrict analy-
ses to valid asynchronous executions, we use schedules to map dis-
patch call-to-start edges on paths to matching prior asynchronous
call edges.

Schedules. Let π be a path of length n. We say σ : N → N is a
schedule for π iff σ is one-to-one, and for each 0 ≤ k ≤ n, if π(k)
is a dispatch call-to-start edge to procedure p, then:

• 0 ≤ σ(k) < k, and,
• the edge π(σ(k)) is an asynchronous call to procedure p.

Intuitively, the existence of a schedule implies that at each syn-
chronous “dispatch” of procedure p at step k, there is a pending
asynchronous call to p made in the past, namely the one on the
σ(k)-th edge of the path. The one-to-one property of σ ensures that
the asynchronous call is dispatched only once. There are no asyn-
chronous executions corresponding to interprocedural paths that
have no schedules.

EXAMPLE 3: Figure 3 shows a path of Plb, abbreviated to show
only the asynchronous call edges and synchronous call-to-start
edges. Ignore the boxes with the numbers on the left and the right
for the moment. For the prefix comprising all but the last edge, there
are two schedules indicated by the arrows on the left and right of
the path. Both schedules map the dispatch call-to-start edge 2 to
the asynchronous call at edge 1. The left (right) schedule maps
the dispatch call-to-start edges 8, 9 to the asynchronous calls at

5, 3 respectively (3, 5 respectively). If we include the last edge,
there is no schedule as there are three dispatch call-to-start edges to
client but only two asynchronous calls, and so, by the pigeonhole
principle there is no one-to-one map. �

2.3 Asynchronous IFDS

An instance of a dataflow analysis problem for asynchronous pro-
grams can be specified by fixing a particular asynchronous pro-
gram, a finite set of dataflow facts, and for each edge of the pro-
gram, a distributive transfer function that given the set of facts that
hold at the source of the edge, returns the set of facts that hold at
the target.

AIFDS Instance. An instance A of an asynchronous interprocedu-
ral finite distributive subset problem or (AIFDS problem), is a tuple
A = (G∗, Dg , Dl, M,�), where:

1. G∗ is an asynchronous program (V ∗, E∗),
2. Dg, Dl are finite sets, respectively called global and local

dataflow facts – we write D for the product Dg × Dl which
we called the dataflow facts,

3. M : E∗ → 2D → 2D maps each edge of G∗ to a distributive
dataflow transfer function,

4. � is the meet operator, which is either set union or intersection.

Unlike the classical formulation for synchronous programs (e.g.
[28]), the asynchronous setting requires each dataflow fact to be ex-
plicitly split into a global and a local component. This is because at
the point where the asynchronous call is made, we wish to capture,
in addition to which call was made, the initial input dataflow fact re-
sulting from the passing of parameters to the called procedure. We
cannot use a single global set of facts to represent the input config-
uration, as operations that get executed between the asynchronous
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Figure 3. Path showing a sequence of asynchronous posts (in
shaded boxes) and synchronous calls (in unfilled boxes). Two dif-
ferent schedules are shown using the arrows from dispatch call-to-
start edges to asynchronous call points.

call and the actual dispatch may change the global fact, but not the
local fact.

For example, in Plb (Figure 1), at the point where the asyn-
chronous call to client is made, the global pointer r is not null,
but this fact no longer holds when client begins executing after
a subsequent dispatch. However, the local pointer c passed via a
parameter cannot be changed by intermediate operations, and thus,
is still not null when client begins executing after a subsequent
dispatch.

Thus, our dataflow facts are pairs of global facts Dg and local
facts Dl. By separating out global and local facts, when dispatching
a pending asynchronous call, we can use the “current” global fact
together with the local fact from the asynchronous call to which the
schedule maps the dispatch.

EXAMPLE 4: The following is an example of an AIFDS instance.
G∗ is the asynchronous program of Figure 2, Dg is the set {r, r̄}
that respectively represent that the global pointer r is definitely
not null and r may be null, and Dl is the set {rc, rc, c, c̄} that
respectively represent that the local pointer rc is definitely not null,
rc may be null, c is definitely not null and c may be null. We omit
the standard transfer functions for these facts for brevity. Thus, the
pair (r̄, c) is the dataflow fact representing program states where r
may be null, but c is definitely not null. �

Path Functions. Let A = (G∗, Dg , Dl, M,�) be an AIFDS
instance. Given an interprocedural valid path π, we define a path
relation PR(A)(π) ⊆ D × D that relates dataflow facts that hold
before the path to those that hold after the operations along the
path are executed. Formally, given an interprocedural valid path

π = (e1, . . . , en) from v to v′ we say that (d, d′) ∈ PR(A)(π)
if there exists a schedule σ for π and a sequence of data flow facts
d0, . . . , dn such that, d = d0, d′ = dn and, for all 1 ≤ k ≤ n:

• if ek is an asynchronous call edge, then dk = dk−1,
• if ek is a dispatch call-to-start edge, then dk = (dg, dl) where

dk−1 = (dg, ·) and (·, dl) ∈ M(eσ(k))(dσ(k))

• otherwise dk ∈ M(ek)(dk−1).

We define the distributive closure of a function f as the func-
tion: λS. ∪x∈S f(x). The path function is the distributive closure
of:

PF (A)(π) = λd.{d′ | (d, d′) ∈ PR(A)(π)}
As a path may have multiple schedules, the path relation is de-

fined as the union of the path relation for each possible schedule,
which, in turn is defined by appropriately composing the trans-
fer functions for the edges along the path as follows. We directly
compose the transfer functions for the edges that are neither asyn-
chronous calls nor dispatch call-to-start edges. We defer applying
the transfer function for asynchronous call edges until the matching
dispatch call-to-start edge is reached. For each call-to-start edge,
we use the given schedule to find the matching asynchronous call
edge. The global dataflow fact after the dispatch is the global fact
just before the dispatch. The local fact after the dispatch, is obtained
by applying the transfer function for the matching asynchronous
call edge to the dataflow fact just before the matching asynchronous
call was made.

EXAMPLE 5: Figure 4 shows a path of the program Plb, together
with the dataflow facts obtained by applying the path function on
the prefix of the path upto each node. At the start of the first call to
reqs, the global r and the local rc may both be null. After the first
check, at v5, we know that r is definitely not null, hence the global
fact is r. Similarly after the malloc and the subsequent check,
the local fact at v7 is rc, i.e., rc is not null. After the subsequent
assignment to r, it may again become null, hence the global fact is
r̄. Note that at v7 where the asynchronous call to client is made,
r holds, but not at v3 just before the dispatch call to client. There
is a single schedule for this path, that maps the dispatch edge from
v3 to v12 to the asynchronous call edge from v7 to v8. Thus, the
global fact at v12 is the same as at the previous dispatch location,
namely r̄, that r may be null. The local fact at v12 is obtained by
applying the transfer function of the matching asynchronous call to
the dataflow fact (r, rc) that held at the matching asynchronous call
site at v7. As the call passes the local rc as the formal c, the local
fact is c, i.e., c is not null. �

AIFDS Solutions. Let A = (G, Dg, Dl, M,�) be an AIFDS
instance. The meet over all valid paths (MVP) solution to A is a
map MVP(A) : V ∗ → 2D, defined as:

MVP(A)(v) = �π∈IVP(vs
main ,v)PF(A)(π)(�)

Thus, given an AIFDS instance A, the problem is to find an algo-
rithm to compute the MVP solution for A.

If a path has no schedule, then its path relation is empty, and so
its path function maps all facts to ⊥. Thus, the MVP solution only
takes into account paths that correspond to a valid asynchronous
executions.

3. Algorithm
There are two problems that any precise interprocedural analysis
for asynchronous programs must solve. First, it must keep track of
the unbounded set of pending asynchronous calls in order to only
consider valid asynchronous program executions. Second, it must
find a way to determine the local dataflow facts corresponding to
the input parameters, that hold after a dispatch call-to-start edge.
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Figure 4. A path of the program Plb. The rectangles denote the
dataflow facts obtained by applying the path function on the prefix
of the paths upto each node. The shaded grey box is the global fact,
and the unshaded box the local fact at each point. To reduce clutter,
we show the facts at nodes where they differ from the facts at the
predecessor.

This is challenging because these local facts are the result of ap-
plying the transfer function to the dataflow facts that held at the
point when the matching asynchronous call was made, which may
be unboundedly far back during the execution.

Our approach to solving both these problems is to reduce an
AIFDS instance into a standard IFDS instance by encoding the
pending asynchronous calls inside the set of dataflow facts, by tak-
ing the product with a new set of facts that count how many asyn-
chronous calls to a particular function, with a given input dataflow
fact are pending. However, as the pending set is unbounded, this
new set of facts is infinite, and so we cannot directly solve the in-
stance. Instead, we abstractly count the number of facts, thus yield-
ing a finite instance, and then use the standard IFDS algorithm to
obtain a sequence of computable under- and over-approximations
of the exact AIFDS solution, which we prove, is guaranteed to
converge to the exact solution. We first recall the standard (syn-
chronous) Interprocedural Dataflow Analysis framework and then
describe our algorithm.

Solving Synchronous IFDS Instances. A Synchronous Dataflow
Analysis problem instance (IFDS [28]) is a tuple I =

(G∗, D, {�}, M,�) that is a special case of an AIFDS instance,
where:

1. the program G∗ has no asynchronous call edges,
2. there is a single global set of dataflow facts D.

For any valid interprocedural path from v to v′ all schedules are
trivial as there no dispatch call edges. The MVP solution for an
IFDS instance I can be computed by using the algorithm of [28]
that we shall refer to as RHS.

THEOREM 1. [Algorithm RHS [28]] For every IFDS instance I =
(G∗, D, {�}, M,�), we have RHS(I ) = MVP(I ).

Counters. A counter C is a contiguous subset of N ∪ {∞}. We
assume that ∞ ∈ C whenever the counter C is an infinite subset.
For a counter C, and a natural number n ∈ N, maxC(n) is n if
n ∈ C and max C otherwise, and minC(n) is n if n ∈ C and
min C otherwise. For a map f , we write f [s �→ v] for the new
map:

λx. if x = s then v else f(x)

A counter map f is a map from some set S to a counter C. For any
s ∈ S, we write f +C s for the counter map:

f [s �→ maxC(f(s) + 1)]

and we write f −C s for the map:

f [s �→ minC(f(s) − 1)]

Note that both f +C s and f−C s are maps from S to C. Intuitively,
we think of f+C s (resp. f−Cs) as “adding” (resp. “removing”) an
s to (resp. from) f . We define the counter C∞ as the set N ∪ {∞},
and for any k ≥ 0, the counter Ck as {0, . . . , k}, and the counter
C∞

k as {0, . . . , k,∞}. We write c0 for the counter map λs.0. A
C∞ counter map tracks the exact number of s in f . A Ck counter
map tracks the exact number of s in f upto a maximum value of
k, at which point it “ignores” subsequent additions. A C∞

k counter
map tracks the exact number of s in f upto a maximum of k after
which a subsequent increment results in the map getting updated
to ∞, which remains, regardless of the number of subsequent
removals.

3.1 Algorithm ADFA

We now present our Algorithm ADFA for computing the MVP
solution of AIFDS instances. The key step of the algorithm is the
use of counter maps to encode the set of pending asynchronous
calls inside the dataflow facts, and thereby converting an AIFDS
instance into an IFDS instance.

Given an AIFDS instance A = (G∗, Dg, Dl, M,�), and a
counter C we define the C-reduced IFDS instance as the tuple
(G∗

C , DC , {�}, MC ,�C) where:

• G∗
C is obtained by replacing each asynchronous call edge in G∗

with a fresh trivial operation edge between the same source and
target node,

• DC is the set (Dg × Dl) × (P × Dl → C). The elements of
the set are pairs (d, c) where d is a dataflow fact in Dg × Dl

and c is a counter map that tracks, for each pair of asynchronous
call and input dataflow fact, the number of such calls that are
pending.

• MC is defined on the new dataflow facts and edges as follows.

if e is an asynchronous call edge to p in G∗ then
MC(e)(d, c) = {(d, c +C (p, d′

l)) | (·, d′
l) ∈ M(e)(d)}

if e is a dispatch call to start edge
to p in G∗ then MC(e)(d, c) =
{((dg, d′

l), c −C (p, d′
l)) | c(p, d′

l) > 0, d = (dg, ·)}
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otherwise MC(e)(d, c) = {(d′, c) | d′ ∈ (M(e)(d)}.

• �C is the union (resp. intersection) operation if � is the union
(resp. intersection) operation.

Intuitively, the reduced transfer function for an asynchronous
call “adds” the pair of the called procedure and the initial local
dataflow fact to the counter map. For a dispatch call-to-start edge
to procedure p, the transfer function returns the set of tuples of
the current global dataflow fact together with those local facts dl

for which the counter map of (p, dl) is positive, together with the
countermaps where the pairs (p, dl) have been removed. If for all
pairs (p, ·) the counter map value is zero, then the transfer function
returns the empty set, i.e. ⊥.

EXAMPLE 6: Figure 4 shows a path of the C∞-reduced instances
of Plb. On the left of each (intraprocedural) path, we show the
dataflow facts resulting from applying the path function to the
prefix of the path upto each corresponding node. The shaded box
contains the global dataflow fact, the white box the local fact,
and the numbers i, j, k on top represent the counter map values
for (reqs,�), (client, c), and (client, c̄) respectively. For all
other pairs, the counter map is always zero. Note that the value for
(reqs,�) increases after the asynchronous call at v1, decreases
after the dispatch at v3 and again increases after the asynchronous
call at v11. At the second occurrence of v3 (the dispatch location),
(client, c) is the only pair with client as the first parameter, for
which the counter map value is positive. Thus, after the dispatch,
the dataflow fact is the pair of the global r̄ from the dispatch
location and the local c from the counter map. �

Our first observation is that the MVP solution of the C∞-
reduced instance is equivalent to the MVP solution of the original
AIFDS instance. This is because the C∞-reduced instance exactly
encodes the unbounded number of pending asynchronous call and
initial local fact pairs within the counter maps of the dataflow facts.
Thus, for any interprocedural valid path the (reduced) path function
returns the union of the set of dataflow facts resulting from every
possible schedule.

For two sets s ⊆ B × D and s′ ⊆ B × D, we say that
s=̇s′ (resp. s⊆̇s′) if {b | (b, ·) ∈ s} is equal to (resp. included in)
the {b′ | (b′, ·) ∈ s′}. For two functions f : A → 2B×D and
f ′ : A → 2B×D′

, we say f=̇g (resp. f⊆̇g) if for all x, the set
f(x)=̇f ′(x) (resp. f(x)⊆̇f ′(x)).

THEOREM 2. [Counter Reduction] For every AIFDS instance A,
if I is the C∞-reduced instance of A, then MVP(I )=̇MVP(A).

Unfortunately, this reduction does not directly yield an algo-
rithm for solving AIFDS instances, as the C∞-reduced instance
has infinitely many dataflow facts, due to the infinite number of
possible counter maps.

Our second observation is that we can generate finite IFDS
instances that approximate the C∞-reduced instance and thus, the
original AIFDS instance. In particular, for any k, the Ck-reduced
and C∞

k instances are, respectively, an under-approximation and
an over-approximation of the C∞-instance.

In the Ck-reduced IFDS instance, the path function returns ⊥
for any path along which there are k + 1 (or more) successive
dispatches to some function starting with some given local fact.
This happens as because the number of tracked pending calls never
rises above k, after the k successive dispatches, the map value must
be zero, thus the k + 1-th call yields a ⊥. Thus, the MVP solution
for the Ck-reduced instance is an underapproximation of the exact
AIFDS solution that includes exactly those paths along which there
are at most k successive dispatches to a particular procedure with a
given local fact.

Dually, in the C∞
k -reduced IFDS instance, once a k + 1-th

pending call is added for some procedure, the counter map is
updated to ∞ (instead of k+1). As a result, from this point on, it is
always possible to dispatch a call to this procedure. Thus, the MVP
solution for the C∞

k -reduced instance is an over-approximation
of the exact AIFDS solution that includes all the valid paths of
the AIFDS instance, and also extra paths corresponding to those
executions where at some point there were more than k pending
calls to some procedure.

EXAMPLE 7: Figure 3 illustrates how the C1-reduced instance
and the C∞

1 -reduced instance are respectively under- and over-
approximations of the C∞-reduced IFDS instance of Plb. Suppose
that Dg and Dl are singleton sets containing �. On the left and
right we show the sequence of dataflow facts obtained by applying
the path functions for the C1 and C∞

1 respectively, on the prefix
of the operations upto that point on the path. The numbers i, j
above the boxes indicate the counter map value for (reqs,�) and
(client,�) respectively. As each asynchronous call is made, the
counter map for the corresponding call is updated, and for each
dispatch call, the value is decremented.

In the C1-reduced instance (left), the second asynchronous call
to client is dropped, i.e., the counter is not increased above 1, and
thus, the second dispatch to client results in ⊥. Thus, the effect of
this path is not included in the (under-approximate) MVP solution
for the C1-reduced instance. In the C∞

1 -reduced instance (right),
the second asynchronous call results in the counter for client
is increased to ∞. Thus, in this instance, the second dispatch to
client yields a non-⊥ dataflow fact. Moreover, any subsequent
dispatch yields a non-⊥ value, all of which get included in the
(over-approximate) MVP solution for the IFDS instance. �

THEOREM 3. [Soundness] For every AIFDS instance A, for every
k ≥ 0, if I ,Ik,I∞

k are respectively the C∞-reduced, Ck-reduced
and C∞

k -reduced IFDS instances of A, then:

(a) MVP(Ik)⊆̇MVP(I )MVP(I∞
k )

(b) MVP(Ik)⊆̇MVP(Ik+1)

(c) MVP(I∞
k+1)⊆̇MVP(I∞

k )

The proof of the soundness Theorem 3, follows by observing
that the Ck- (resp. C∞

k -) instance effectively only considers a
subset (resp. superset) of all the valid asynchronous executions,
and for each path for which both the AIFDS path function and the
reduced instance’s path function return a non-⊥ value, the value’s
returned by the two are identical.

As for each k, the counters Ck and C∞
k are finite, we can use

RHS to compute the MVP solutions for the finite IFDS instances
Ik and I∞

k , thereby computing under- and over- approximations of
the MVP solution for the AIFDS instance.

Our algorithm ADFA (shown in Algorithm 1) for computing
the MVP solution for an AIFDS instance A is to compute succes-
sively more precise under- and over-approximations. An immedi-
ate corollary of the soundness theorem is that if we find some k
for which the under- and over-approximations coincide, then the
approximations are equivalent to the solution for the C∞-reduced
instance, and hence, the exact MVP solution for A. The next theo-
rem states that for every AIFDS instance, there exists a k for which
the under- and over-approximations coincide, and therefore, the Al-
gorithm ADFA is guaranteed to terminate.

THEOREM 4. [Completeness] For each AIFDS instance A there
exists a k such that, if Ik and I∞

k are respectively the Ck- and
C∞

k -reduced IFDS instances of A, then MVP(Ik)=̇MVP(I∞
k )

This Theorem follows from the following lemma.
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Algorithm 1 Algorithm ADFA

Input: AIFDS instance A
Output: MVP solution for A
k = 0
repeat

k = k + 1
Ik = Ck-reduced IFDS instance of A
I∞
k = C∞

k -reduced IFDS instance of A
until RHS(Ik)=̇RHS(I∞

k )
return RHS(Ik)

LEMMA 1. [Pointwise Completeness] Let A =
(G∗, Dg , Dl, M,�) be an AIFDS instance, and I be the
C∞-reduced IFDS instance of A. For every d ∈ Dg × Dl and
v ∈ V ∗, there exists a kd,v ∈ N such that for all k ≥ kd,v ,
∃ck s.t. (d, ck) ∈ MVP(Ik)(v) iff ∃c s.t. (d, c) ∈ MVP(I )(v) iff
∃c∞k s.t. (d, c∞k ) ∈ MVP(I∞

k )(v).

To prove Theorem 4 we pick any k greater than maxd,v kd,v

(this is well defined since D and V ∗ are finite sets). Thus, the
crux of our completeness result is the proof of Lemma 1 which
we postpone to Section 5.

THEOREM 5. [Correctness of ADFA] For every AIFDS instance
A, Algorithm ADFA returns MVP(A).

The proof follows from Theorems 1,3,4.

3.2 Demand-driven AIFDS Algorithm

We now present an algorithm for solving a Demand-AIFDS prob-
lem. This algorithm works by invoking a standard Demand-IFDS
Algorithm on Ck- and C∞

k - reduced IFDS instances of the AIFDS
instance.

Demand-AIFDS Instance. An instance A of a Demand AIFDS
problem is a pair (A, vE) where A is an AIFDS instance, and
vE is a special query node of the supergraph of A. Given a De-
mand AIFDS instance, the Demand-AIFDS problem is to determine
whether MVP(A)(vE) �=⊥.

Demand-IFDS and DemRHS. We define a Demand-IFDS In-
stance as an AIFDS instance (I , vE) where I is an IFDS in-
stance. Let DemRHS be a Demand-IFDS Algorithm such that
DemRHS(I , vE) returns TRUE iff MVP(I )(vE) �=⊥.

To solve a Demand-AIFDS problem, we use Ck- and C∞
k -

reduced under- and over-approximations as before. Only, instead
of increasing k until the under- and over-approximations coincide,
we increase it until either:

1. in the under-approximation (i.e., the Ck-reduced IFDS in-
stance), the MVP solution is not ⊥, in which case we can de-
duce from Theorem 3 that the exact AIFDS solution is also not
⊥, or dually,

2. in the over-approximation (i.e., the C∞
k -reduced IFDS in-

stance), the MVP solution is ⊥, in which case we deduce from
Theorem 3 that the exact AIFDS solution is also ⊥.

The completeness theorem guarantees that this demand-driven al-
gorithm DemADFA (summarized in Figure 2) terminates.

THEOREM 6. [Correctness of DemADFA] For each Demand-
AIFDS instance (A, vE), DemADFA terminates and returns TRUE
if MVPA(vE) �=⊥ and FALSE otherwise.

Though we would have liked polynomial time algorithms for
solving AIFDS and Demand-AIFDS problems, the following re-
sult (also in [30]), that follows by reduction from reachability of
structured counter programs [11], shows that this is impossible.

Algorithm 2 Algorithm DemADFA

Input: AIFDS instance A, Error node vE
Output: SAFE or UNSAFE
k = 0
loop

k = k + 1
Ik = Ck-reduced IFDS instance of A
I∞
k = C∞

k -reduced IFDS instance of A
if DemRHS(Ik)(vE) �=⊥ then return TRUE
if DemRHS(I∞

k )(vE) =⊥ then return FALSE

THEOREM 7. [EXPSPACE-Hardness] The Demand-AIFDS
problem is EXPSPACE-hard, even when there are no recursive
synchronous calls.

3.3 Optimizations

We now describe two general optimizations that can be applied to
any AIFDS instance that reduce the number of states explored by
the analysis.

1. Effective Counting The first optimization is based on two obser-
vations. First, the dispatch node is the only node where the counter
maps are “read” (have any effect on the transfer function). At other
nodes, the counter map is either added to (for some asynchronous
calls), or copied over. Thus, rather than exactly propagating the
counter maps in the dataflow facts, we need only to summarize the
effect of a (synchronous) dispatch on the counter map, and use the
summaries to update the counter maps after each dispatch call re-
turns to the dispatch location. Second, between the time a dispatch
call begins and the time it returns, the counter map values only in-
crease due to asynchronous calls that may happen in the course of
the dispatch.

Thus, we summarize the effect of a dispatch on the counter
map as follows. Suppose that the counter map at a (synchronous)
callsite is c. For a call-to-start edge to procedure p, for each entry
dataflow fact for p, we reset the counter map to c0 (all zeros)
and only compute the dataflow facts reachable from such reset
configurations. For each summary edge [28] for p with the target
counter map c′, we propagate the summary edge at the callsite, by
updating the counter map to: λx.maxC(c(x) + c′(x)), where C is
the counter being used in the reduced instance. The saving from this
optimization is that for each procedure, for each entry dataflow fact,
we only compute summaries starting from the single reset counter
map c0, rather than upto |C||Dl||P | distinct counter maps.

2. Counter Map Covering The second optimization follows from
observing that there is a partial order between the counter maps.
For two counter maps c, c′, we say that c ≤ c′ if for all s, we
have c(s) ≤ c′(s). It is easy to check that if c ≤ c′, then for any
instance I , for all paths π, for all dataflow facts d ∈ Dg × Dl,
the PF (I )(π)(d, c)⊆̇PF (I )(π)(d, c′). This implies that we only
need to maintain maximal elements in this ordering. Thus, the set
of facts reachable from c is covered by the facts reachable from c′,
and so in our implementation of RHS, when we find two instances
of the dispatch location in the worklist, with facts (d, c) and (d, c′)
with c ≤ c′, we drop the former instance from the worklist.

4. Application: Safety Verification
We now describe how the ADFA algorithm can be applied to the
task of safety verification, i.e., determining whether in a given
asynchronous program, some user-specified error location vE is
reachable.

EXAMPLE 8: Figure 5 shows a typical idiom in asynchronous
programs where different clients attempt to write files to a device.
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Figure 5. Example Race

The main function spawns an asynchronous listen procedure that
is nondeterministically called every time a new client joins on a
socket. The procedure then calls new client with a unique gid
or “group id” [6] which processes the request of the individual
clients. A critical mutual exclusion property in such programs is
that once a client, represented by its gid, has “acquired” and thus
begun writing to the device, no other client should be given access
until the first client is finished. To ensure mutual exclusion, many
asynchronous programs use state-based mechanisms like that in
Race. The device is stamped with an owner field that tracks the
last gid that wrote to the device, and a client is granted access if
the owner field is 0, indicating there is no current client writing to
the device. To verify the mutual exclusion, we encode the property
as an assertion by creating a (skolem) constant k that represents
some arbitrary client id, and checking the assertion that whenever
the device is written to in write, that the id of the writer is k, then
the owner of the device is also k. Thus, the program satisfies the
mutual exclusion property iff the error location corresponding to
the label ERR is not reachable. �

To perform safety verification, we instantiate the general AIFDS
framework with dataflow facts and transfer functions derived via
predicate abstraction [2, 14]. The result is a Demand AIFDS in-
stance that we solve using the DemADFA algorithm. If the MVP
solution for the error node is ⊥, then we can deduce that the error
location is not reachable. If the solution is not ⊥, then either the
error location is reachable, or the set of predicates is too impre-
cise, and we automatically learn new predicates from the infeasible
counterexample whose path function is not ⊥, using the technique
of [17]. We then repeat the verification with the new predicates,
until we find an execution that reaches the error location, or the
location is proven to be unreachable [4, 3, 18]. We now describe
how to generate Demand AIFDS instances for a safety verification
problem by describing the corresponding AIFDS instances.

4.1 Predicate Abstraction AIFDS Instances

A Predicate Abstraction AIFDS instance is a tuple A =
(G∗, Dg , Dl, M,�), where:

• G∗ is an asynchronous program,
• Dg is a finite set of global predicates, i.e., predicates over the

global program variables,
• Dl is a finite set of local predicates, i.e., predicates over the

local program variables,

• M(e) is the defined as the distributive closure of:

λ(dg, dl). {(d′
g, d′

l)|sp(e, dg ∧ dl) ∧ d′
g ∧ d′

l is satisfiable }
where sp(e,ϕ) is the strongest postcondition [9] of ϕ w.r.t. the
operation e,

• � is the set union operator.

This is slightly different from the standard formulation of predicate
abstraction [14], where the elements of Dg and Dl are all the
possible cubes over some set of atomic predicates.

We can generate an AIFDS instance ARace for the safety ver-
ification problem for Race as follows. The set of global predi-
cates is {ow = 0, ow > 0 ∧ ow = k, ow > 0 ∧ ow �= k}, where
ow is an abbreviation for dev.owner, and the set of local
predicates is {gid > 0, gid = k, gid �= k, id = k, id �= k}. With
these predicates, for example, the transfer function for the edge
dev.owner = 0 is the distributive closure of λ(dg, dl).(ow =
0, dl), i.e., the global predicate becomes ow = 0 and the local
predicate remains unchanged.

Figure 6 shows the result of the optimized Demand IFDS anal-
ysis for the C∞

1 reduced IFDS instance of ARace. The grey box
contains the global predicate and the white box the local predicate.
The numbers i,j,k,l above the boxes correspond to the counter map
values for (listen,�),(new client, gid > 0),(write, id = k)
and (write, id �= k) respectively.

Execution begins in main, with no pending asynchronous calls,
and proceeds to the dispatch location where the global predicate
ow = 0 holds, and the only pending call is to listen. We analyze
listen, the only pending call from the dispatch call site 1, from the
counter map mapping all predicates to zeros (p stands for any of the
global predicates). The exploded supergraph for listen shows that
an execution of listen preserves the global dataflow fact, makes
an asynchronous call to listen, and may, if the call to new gid is
successful (i.e., returns a positive gid), make an asynchronous call
to new client with a positive argument. We plug in the summary
edges from listen into the dispatch call site 1 – the results are
shown with the dotted edges labeled L.

For each generated (i.e., “exploded”) instance of the dispatch
call site, we compute the results of dispatching each possible pend-
ing asynchronous call (together with the input dataflow fact). Thus,
at the dispatch call site instance 2, there are pending calls to listen
and new client. Plugging in the summaries for listen, we de-
duce that the result is either a self loop back to dispatch call site
2, or, if another asynchronous call to new client is made, then
a dotted summary edge to dispatch callsite 3 where there are ∞
calls pending on new client because the actual value 2 obtained
by adding the effect 1 to the previous counter map value at the call
site gets abstracted to ∞ in the C∞

1 reduction.
Similarly, we plug in the summaries for new client and write

(shown in the respective boxes), for each of the finitely many dis-
patch call site instances, resulting in the successors corresponding
to dotted edges labeled N and W respectively. The call site instances
3, 5 are covered by the instances 6, 7 respectively, and so we do not
analyze the effects of dispatches from 3, 5.

Notice that new client is always called with a positive argu-
ment, and that write is only called either when both id and owner
are equal to k or when neither is equal to k, and so the mutual
exclusion property holds.

4.2 Experiences

We have implemented the DemADFA algorithm along with these
optimizations in BLAST[18], obtaining a safety verification tool for
recursive programs with asynchronous procedure calls. In our ex-
periments, we checked several safety properties of two event driven
programs written using the LIBEEL event library [6]. These pro-
grams were ported to LIBEEL from corresponding LIBEVENT pro-
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Figure 6. Summaries for Race

grams, and are available from the LIBEVENT web page [21]. plb
is a high performance load balancer (appx 4700 lines), and nch
is a network testing tool (appx 684 lines). We abstract the event
registration interface of LIBEEL in the following way. We assume
that external events can occur in any order, and thus, the registered
callbacks can be executed in any order. In particular, this means
that we abstract out the actual times for callbacks that are fired
on some timeout event. With this abstraction, each event registra-
tion call in LIBEEL becomes an asynchronous call that posts the
callback. While the predicate discovery procedure implemented in
BLAST[17] is not guaranteed to find well-scoped predicates in the
presence of asynchronous programs, we use it heuristically, and
it does produce well-scoped predicates in our examples. We think
a predicate discovery algorithm that takes asynchronous calls into
account is an interesting open research direction.

Null Pointer. The first property checks correctness of pointer deref-
erences in the two benchmarks. For each callback, we insert an as-
sertion that states that the argument pointer passed into the callback
is non-null. Usually, this is ensured by a check on the argument in
a caller up the asynchronous call chain. Hence, the correctness de-
pends on tracking program flows across asynchronous as well as
synchronous calls. The results are shown in Table 1. There are 4
instances of these checks for plb, namely, plb-1 through plb-4
and 2 for nch. The instances for plb are all safe. There is a bug in
one of the checks in nch where the programmer forgets to check
the result of an allocation. All the runs take a few seconds. In each
example, we manually provide the predicates from the assertions to
BLAST, but additional predicates are found through counterexam-
ple analysis.

Protocol State. plb maintains an internal protocol state for each
connection. The protocol state for an invalid connection is 0, on
connection, the state is 1, and the state moves to 2 and then 3 when
certain operations are performed. These operations are dispatched
from a generic callback that gets a connection and decides which
operation to call based on the state. It is an error to send an invalid
connection (whose state is 0) to this dispatcher. We checked the

assertion that the dispatcher never receives a connection in an
invalid state (file plb-5). We found a bug in plb that showed this
property could be violated. The bug occurs if the client sends a too
large request to read, in which case the connection is closed and
the state reset to 0. However, the programmer forgot to return at
this point in the error path. Instead, control continues and the next
callback in the sequence is posted, which calls the dispatcher with
an invalid connection.
Buffer Overflow. Each connection in plb maintains two integer
fields: one tracks the size of a buffer (the number of bytes to
write), and the second tracks the number of bytes already written.
The second field is incremented on every write operation until the
required number of bytes is written. We check that the second
field is always less than or equal to the first (file plb-6). The
complication is that the system write operation may not write all
the bytes in one go, so the callback reschedules itself if the entire
buffer is not written. Hence the correctness of the property depends
on data flow through asynchronous calls. BLAST can verify that this
property holds for the program. We model the write procedure to
non-deterministically return a number of bytes between 0 and the
number-of-bytes argument.

Our initial experiences highlight two facts. First, even though
the algorithm is exponential space in the worst case, in practice,
the reachable state space as well as the counter value required for
convergence is small (in all experiments k = 1 was sufficient).
Second, the correctness of these programs depends on complicated
dataflow through the asynchronous calls: this is shown by the
number of distinct global states reached at the dispatch location.

5. Proof
The foundation on which our technique for solving AIFDS is based
is that the Ck- and C∞

k -reduced under- and over-approximations
actually converge to the C∞-reduced instance, and therefore to the
precise MVP solution of the AIFDS instance. The main techni-
cal challenge is to prove the completeness Theorem 4, which, as
outlined earlier, proceeds from the proof of Lemma 1. We prove
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Program Time Preds Total Dispatch
plb-1 3.05 7 2047 30
plb-2 4.10 16 1488 18
plb-3 7.05 20 1583 20
plb-4 5.290 14 1486 25
nch-1 1.32 4 521 27
nch-2(*) 0.440 0 - -
plb-5(*) 30.20 55 - -
plb-6 22.68 41 1628 22

Table 1. Experimental results. Time measures total time in sec-
onds. Preds is the total number of atomic predicates used. Total
state is the total number of reachable “exploded” nodes. Dispatch
is the number of reachable “exploded” dispatch nodes. (*) indi-
cates the analysis found a violation of the specification.

Lemma 1 in two steps. In the first step (Lemma 3), we show that
the backward solution of the C∞-reduced IFDS instance is equiv-
alent to the upward closure of some finite number of facts. In the
second step (Lemma 4), we show how, from the finite set of facts,
we can find a k such that the C∞

k -reduced instance coincides with
the C∞-reduced solution.

Upward Closure. For two counter maps c, c′ from S to C, we
write c ≤ c′ if for all s ∈ S, we have c(s) ≤ c′(s). Let
Dg × Dl be a finite set of dataflow facts. The upward closure of a
set B ⊆ (Dg × Dl) × (Dl → C) is the set

B≤ = {(d, c′) | ∃(d, c) ∈ B s.t. c ≤ c′}
We say B is upward closed if B = B≤.

The ordering ≤ on counter maps with a finite domain is a well
quasi-order, that is, it has the property that any infinite sequence
c1, c2, . . . of counter maps must have two positions i and j with
i < j such that ci ≤ cj [8]. We shall use the following fact about
well quasi-orderings.

LEMMA 2. [1] Let f be a function from counter maps to counter
maps that is monotonic w.r.t. ≤. Let (f−1)∗ denote the reflexive
transitive closure of the inverse of f . For any upward closed set U
of counter maps, there is a finite set B of counter maps such that
B≤ = (f−1)∗(U).

Backward Solutions. For an IFDS instance I =
(G∗, D, {�}, M,�) (where D may be infinite), for any
v′ ∈ V ∗ and d ∈ D, we define the backwards meet over valid
paths solution MVP−1(I , v′, d′)(v) as:

{d | ∃π ∈ IVP(v, v′) s.t. (d, d′) ∈ PR(I )(π)}
Intuitively, the backwards or inverse solution for v′, d′ is the set of
facts at v, which get “transferred” along some valid path to the fact
d′ at v′. If D is finite, we can compute the inverse solution using
a backwards version of the RHS algorithm. It turns out, that if D
corresponds to the infinite set of facts for a C∞-reduced instance
of an AIFDS, then the infinite inverse solution is equivalent to the
upward closure of a finite set. Recall that c0 is the map λx.0.

LEMMA 3. [30, 10] Let A = (G∗, Dg, Dl, M,�) be an AIFDS
instance, and I be the C∞-reduced IFDS instance of A. For every
v′ ∈ V ∗ and d′ ∈ Dg × Dl, there exists a finite set B(v′, d′, v) ⊆
(Dg × Dl) × (P × Dl → N) such that: B(v′, d′, v)

≤
=

MVP−1(I , v′, (d′, c0))(v).

PROOF. Sketch. The proof relies on two facts: first, ≤ forms a well
quasi-order on (Dg × Dl) × (P × Dl → N), and second, that the
dataflow facts and transfer function for A is a monotonic function

on this order. Intuitively, the transfer function is not “inhibited” by
adding elements to the counter map. With these in mind, and using
Lemma 2, we can devise a backwards RHS algorithm whose termi-
nation (shown in [10]) is guaranteed by the well quasi-ordering of
(Dg ×Dl)× (P ×Dl → N) [8, 1] and guarantees the existence of
the finite set B(v′, d′, v). The backward RHS algorithm propagates
dataflow facts backward and creates summaries from return points
to corresponding call points.

An alternate proof of the above result is obtained following
the proof in [30] which reduces the AIFDS instance via Parikh’s
lemma to a multiset rewriting system and uses well quasi-ordering
arguments on multisets to guarantee termination. Parikh’s lemma is
used to replace the original program that may have recursive calls
with an automaton which has the same effect w.r.t. counter maps.

In the the second step, we show that from the set B(v′, d′, v),
we can obtain a k, that suffices to prove the Completeness
Lemma 1.

Maxcount. Let A = (G∗, Dg , Dl, M,�) be an AIFDS instance,
and let I be the C∞-reduced (infinite) IFDS instance of A. We
define the maxcount of A, as:

1 + max
[

d′,v′,v

{c(s) | (d, c) ∈ B(v′, (d′, c0), v), s ∈ S}

Note that as d′, v′, v range over finite sets Dg × Dl and V ∗

respectively, and from Lemma 3 B(v′, (d′, c0), v) is finite, the
maxcount of A is also finite.

We observe that if k is the maxcount of the AIFDS instance, then
if the fact d′ is not in the MVP solution for v′ in the C∞-reduced
instance then it is not in the solution of the finite C∞

k -reduced IFDS
instance.

LEMMA 4. Let A = (G∗, Dg, Dl, M,�) be an AIFDS instance,
with maxcount k, and I (resp. I∞

k ) be the C∞- (resp. C∞
k -) re-

duced IFDS instances of A. For every v′ ∈ V ∗ and d′ ∈ Dg ×Dl,

(a) if (�, c0) �∈ MVP−1(I , v′, (d′, c0))(v
s
main) then for all v ∈

V ∗, MVP(I∞
k )(v) ∩ MVP−1(I , v′, (d′, c0))(v) = ∅

(b) if �c′. (d′, c′) ∈ MVP(I )(v′) then �c′. (d′, c′) ∈
MVP(I∞

k )(v′).

PROOF. First, note that (b) follows from (a) by observing from
the definitions of solutions and backwards solutions that there
exists a c′ such that (d′, c′) ∈ MVP(I )(v′) iff (�, c0) ∈
MVP−1(I , v′, d′), then instantiating the universal quantifier in (a)
with v′, and finally applying the fact that MVP−1(I , v′, (d′, c0))
is upward closed (from Lemma 3). Next, we prove the following
statement which implies (a).

IH ∀n ∈ N, v ∈ V ∗, ∀π ∈ IVP(vs
main , v) of length

n, if (d, c) ∈ PF (I∞
k )(π)(�, c0) then (d, c) �∈

MVP−1(I , v′, (d′, c0))(v).

The proof is by induction on n. The base case follows from
the hypothesis that (�, c0) is not in the backwards solution for
v′, (d′, c0).

For the induction step, suppose the IH holds upto n. Consider
a path π = π′′, (v′′, v) of length n + 1 where the prefix π′′

is of length n. By the definition of the path function, we know
there exists a (d′′, c′′) such that (1) (d, c) ∈ M(v′′, v)(d′′, c′′),
(2) (d′′, c′′) is in PF (I∞

k )(π′′)(�, c0), and (3) therefore, by the
IH, that (d′′, c′′) �∈ MVP−1(I , v′, (d′, c0))(v

′′).
We shall prove the induction step by contradiction. Sup-

pose that (d, c) ∈ MVP−1(I , v′, (d′, c0))(v
′′). By Lemma 3,

there is a (d, c∗) ∈ B(v′, d′, v), such that c∗ ≤ c. Con-
sider the countermap �c� = λx.min {c(x), k + 1}. As c is a
C∞

k counter, and k is bigger than every element in the range
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of c∗ (it is the maxcount), it follows that c∗ ≤ �c�. Thus, as
backwards solutions are upward closed (Lemma 3), (d, �c�) ∈
MVP−1(I , v′, (d′, c0))(v). By splitting cases on the possible op-
erations on the edge (v′′, v), we can show that that there exists
a c′′∗ such that: (i) (d, �c�) ∈ M(v′′, v)(d′′, c′′∗) and (ii) c′′∗ ≤
c′′. In other words, (d′′, c′′∗ ) is in MVP−1(I , v′, (d′, c0))(v

′′).
By the upward closure of the backwards solution, (d′′, c′′) ∈
MVP−1(I , v′, (d′, c0))(v

′′), thereby contradicting (3) above.
Hence, (d, c) �∈ MVP−1(I , v′, (d′, c0))(v

′′), completing the
proof of IH and therefore, the lemma.

We can now prove Completeness Lemma 1.

PROOF. (of Lemma 1). Suppose that there exists a c such
that (d, c) ∈ MVP(I )(v). Then there exists some path π ∈
IVP(vs

mainv,) such that (d, c) ∈ PF(I )(π)(v). Picking the length
of π as kd,v suffices, as for all k greater than this kd,v we can
prove that, (d, ·) ∈ MVP(Ik)(v), and from Theorem 3, (d, ·) ∈
MVP(I∞

k )(v).
Suppose that there is no c such that (d, c) ∈ MVP(I )(v). If

we let kd,v be the maxcount of A, then Lemma 4 shows that there
is no (d, ·) ∈ MVP(I∞

k ), and from Theorem 3, there can be no
(d, ·) ∈ MVP(Ik).

This concludes the proof of correctness. Notice that while the
correctness proof relies on several technical notions, these can all
be hidden from an implementer, who only needs to call an interpro-
cedural dataflow analysis algorithm with appropriate lattices.

6. Conclusion
We believe that our AIFDS framework and algorithm provides an
easy to implement procedure for performing precise static analy-
sis of asynchronous programs. While theoretically expensive, our
initial experiments indicate that the algorithm scales well in prac-
tice. Thus, we believe the algorithms presented in this paper open
the way for soundly transferring the dataflow analysis based op-
timization and checking techniques that have been devised for
synchronous programs to the domain of asynchronous programs,
thereby improving their performance and reliability.
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