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Abstract In this paper we consider the model of communication where
wireless devices can either switch their radios off to save energy (and
hence, can neither send nor receive messages), or switch their radios on
and engage in communication. The problem has been extensively studied
in practice, in the setting such as deployment and clock synchronization
of wireless sensor networks – see, for example, [31,41,33,29,40]. The goal
in these papers is different from the classic problem of radio broadcast,
i.e. avoiding interference. Here, the goal is instead to minimize the use of
the radio for both transmitting and receiving, and for most of the time
to shut the radio down completely, as the radio even in listening mode
consumes a lot of energy.

We distill a clean theoretical formulation of minimizing radio use and
present near-optimal solutions. Our base model ignores issues of commu-
nication interference, although we also extend the model to handle this
requirement. We assume that nodes intend to communicate periodically,
or according to some time-based schedule. Clearly, perfectly synchronized
devices could switch their radios on for exactly the minimum periods re-
quired by their joint schedules. The main challenge in the deployment
of wireless networks is to synchronize the devices’ schedules, given that
their initial schedules may be offset relative to one another (even if their
clocks run at the same speed). In this paper we study how frequently the
devices must switch on their radios in order to both synchronize their
clocks and communicate. In this setting, we significantly improve pre-
vious results, and show optimal use of the radio for two processors and
near-optimal use of the radio for synchronization of an arbitrary number
of processors. In particular, for two processors we prove deterministic
matching Θ (

√
n ) upper and lower bounds on the number of times the

radio has to be on, where n is the discretized uncertainty period of the
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clock shift between the two processors. (In contrast, all previous results
for two processors are randomized, e.g. [33], [29]).
For m = nβ processors (for any positive β < 1) we prove Ω(n(1−β)/2)
is the lower bound on the number of times the radio has to be switched
on (per processor), and show a nearly matching (in terms of the ra-
dio use) Õ(n(1−β)/2) randomized upper bound per processor, (where Õ
notation hides poly-log(n) multiplicative term) with failure probability
exponentially close to 0. For β > 1 our algorithm runs with at most
poly-log(n) radio invocations per processor. Our bounds also hold in a
radio-broadcast model where interference must be taken into account.

1 Introduction

Motivation: Radios are inherently power-hungry. As the power costs of process-
ing, memory, and other computing components drop, the lifetime of a battery-
operated wireless network deployment comes to depend largely on how often a
node’s radio is left on. System designers therefore try to power down those radios
as much as possible. This requires some form of synchronization, since successful
communication requires that the sending and receiving nodes have their radios
on at the same time. Synchronization is relatively easy to achieve in a wired,
powered, and well-administered network, whose nodes can constantly listen for
periodic heartbeats from a well-known server. In an ad hoc wireless network or
wireless sensor network deployment, the problem becomes much more difficult.
Nodes may be far away from any wired infrastructure; deployments are expected
to run and even to initialize themselves autonomously (imagine sensors dropped
over an area by plane); and environmental factors make sensors prone to failure
and clock drift. Indeed there has been a lot of work in this area, see for example:
[4,5,6,9,14,15,16,24,27,28,29,31,32,33,34,35,36,37,38,39,40]. Many distinct prob-
lems are considered in these papers, and it is beyond the scope of this paper
to survey all these works, however most if these papers (among other issues)
consider the following problem of radio-use consumption:

Informal Problem description: Consider two (or more) processors that can
switch their radios on or off. The processors’ clocks are not synchronized. That
is, when a processor wakes up, each clock begins to count up from 0; however,
processors may awake at different times. The maximum difference between the
time when processors wake up is bounded by some positive integer parameter
n ∈ N. If processors within radio range have their radios on in the same step, they
can hear each other and can synchronize their clocks. When a processor’s radio
is off, it saves energy, but can neither receive nor transmit. Initially, processors
awaken with clock shifts that differ by at most n time units. The objective for
all the processors is to synchronize their clocks while minimizing the use of radio
(both transmitting and receiving). We count the maximum number of times any
processor’s radio has to be on in order to guarantee synchronization. Indeed, as
argued in many papers referenced above, the total time duration during which
the radio is on is one of the critical parameters of energy consumption, and
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operating the radio for considerable time is far costlier than switching radio off
and switching it back on. We assume that all the processors that have their
radios on at the same time can communicate with each other. The goal of all
processors is to synchronize their clocks, i.e. to figure out how much to add to
their offset so that all processors wake up at the same time. (We also consider
an extension that models radio interference, where if more then one processor
is broadcasting at the same time, all receiving processors that have their radio
switched on hear only noise.)

For multiple processors, we assume that all processors know the maximum
drift n, otherwise the adversary can make the delay unbounded, It is also as-
sumed that all processors know the total number of processors m, although, we
also consider a more general setting where n is known for all processors, but m
is not. In this setting, we relax the problem, and instead of requiring synchro-
nization of all m processors, we instead require synchronization of an arbitrarily
close to 1 constant fraction of all processors. In this relaxation of our model,
we require that the radio usage guarantee holds only for those processors that
eventually synchronize.

Furthermore, our model assumes that all processors are within radio range of
each other, so that the link graph is complete. Our techniques can be thought of
as establishing synchronization within completely connected single-hop regions.
Clearly, single-hop synchronization is necessary for multi-hop synchronization.
Our single-hop synchronization protocol, with simple changes, can synchronize a
connected multi-hop network in the sense that (1) two directly connected nodes
know one another’s clock offsets, and (2) given any two nodes in the network v
and w, there exists a path v0 = v, v1, . . . , vn = w where each adjacent pair of
nodes is connected and synchronized. Thus our central concern in this paper is
on establishing lower bounds and constructing nearly optimal solutions for the
single-hop case.

Towards Formalizing the Abstract Model: To simplify our setting we
wish to minimize both transmit and receive cost (i.e., all the times when the
radio must be “on” either transmitting or receiving). We discretize time to units
of the smallest possible interval that allows a processor to send a message to or
receive a message from another processor within radio range. We normalize the
cost of transmitting and receiving to 1 unit of energy per time step. (In practice,
transmission can be about twice as expensive as receiving. We can easily re-
scale our algorithms to accommodate this as well, but for clarity of exposition
we make these costs equal.) We ignore the energy consumption needed to power
the radio on and to power it off, which is at most comparable but in many cases
insignificant compared to the energy consumption of having the radio active.
This is the model considered, for example, in [31,29,5,6,37,42,12,34].
Informal Model Description: For the purposes of analysis only, we assume
that there is global time (mapped to positive integers). All clocks can run at
different speeds, but we assume that clock drifts are bounded; i.e., there exists
a global constant c, such that for any two clocks their relative speed ratio is
bounded by c. Now, we define as a time “unit” the number of steps of the slowest
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clock, such that if two of the fastest processors’ consecutive awake times overlap
by at least a half of their length according to global time, then the number of
steps of the slowest clock is sufficient time for any two processors to communicate
with each other. This issue is elaborated in Section 7. In our report [8], that is,
the full version of the paper, we give the Synchronization Algorithm. We now
formalize the informal model description into the precise definition of our model.

Our Formal Model and Problem Statement: Global time is expressed
as a positive integer. m processors start at an arbitrary global time between
1 and n, where each processor starts with a local “clock” counter set to 0.
The parameter n refers to the discretized uncertainty period, or equivalently, to
the possible maximal clock difference, i.e., to the maximal offset between clocks;
hence, we will use these terms interchangeably. Both global time and each started
processor’s clock counter increments by 1 each time unit. The global clock is for
analysis only and is not accessible to any of the processors, but an upper bound
on n is known to all processors. Each processor algorithm is synchronous, and
can specify, at each time unit, if the processor is “awake” or “sleeping.” (The
“awake” period is assumed to be sufficiently long to ensure that the energy
consumption of powering the radio on and then shutting it off at each time
unit is far less than the energy expenditure to operate the radio even for a single
time unit). All processors that are awake at the same time unit can communicate
with each other. (Our interference model changes this so that exactly two awake
processors can communicate with each other, but if three or more processors
are simultaneously awake, none of them can communicate.) The algorithm can
specify what information they exchange. The goal is for all m processors to
adjust their local clocks to be equal to each other, at which point they should all
terminate. The protocol is correct if this happens either always or if the protocol
is randomized with probability of error that is negligible. The objective is to
minimize, per processor, the total number of times its radio is awake.

We remark that the above model is sufficiently expressive to capture a more
general case where clocks at different nodes run at somewhat different speeds, as
long as the ratio of different speeds is bounded by a constant, which is formally
proven in Section 7.

Our Results: We develop algorithms for clock synchronization in radio net-
works that minimize radio use, both with and without modeling of interference.
In particular, our results are the following.

1. For two processors we show a Ω(
√

n ) deterministic lower bound and a match-
ing deterministic O(

√
n ) upper bound for the number of time intervals a

processor must switch its radio on to obtain one-hop synchronization.
2. For arbitrary m = nβ processors, we prove Ω

(
n

1−β
2

)
is the lower bound

on the number of time intervals the processor must switch its radio for any
deterministic protocol and show a nearly-matching (in terms of the number
of times the radio is in use) O

(
n

1−β
2 ·poly-log(n)

)
randomized protocol, which

fails to synchronize with probability of failure exponentially (in n) close to
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zero. Furthermore, our upper bound holds even if there is interference, i.e.,
if more than one processor is broadcasting, listening processors hear noise.

3. It is easy to see that processors cannot perform synchronization if n is un-
known and unbounded, using a standard evasive argument. However, if n is
known, we show that 8/9 (or any other constant fraction) of the processors
can synchronize without knowing m, yet still using O(n

1−β
2 · poly-log(n))

radio send/receive steps, with probability of failure exponentially close to
zero.

We stress that while the upper bound for two processors is simple, the match-
ing lower bound is nontrivial. This (with some additional machinery) holds true
for the multi-processor case as well.

Comparison with Previous (Systems) Work: Tiny, inexpensive embed-
ded computers are now powerful enough to run complex software, store signifi-
cant amounts of information in stable memory, sense wide varieties of environ-
mental phenomena, and communicate with one another over wireless channels.
Widespread deployments of such nodes promise to reveal previously unobserv-
able phenomena with significant scientific and technological impact. Energy is
a fundamental roadblock to the long-lived deployment of these nodes, however.
The size and weight of energy sources like batteries and solar panels have not
kept pace with comparable improvements to processors, and long-lived deploy-
ments must shepherd their energy resources carefully.

Wireless radio communication is a particularly important energy consumer.
Already, communication is expensive in terms of energy usage, and this will
only become worse in relative terms: the power cost of radio communication
is fundamentally far higher than that of computation. In one example coming
from sensor networks, a Mica2 sensor node’s CC1000 radio consumes almost as
much current while listening for messages as the node’s CPU consumes in its
most active state, and transmitting a message consumes up to 2.5 times more
current than active CPU computation [36]. In typical wireless sensor networks,
transmitting is about two times more expensive than listening, and about 1.5
times more expensive than receiving, but listening or transmitting is about 100
times more expensive as keeping the CPU idle and the radio switched off4 (i.e.,
in a “sleep” state).

Network researchers have designed various techniques for minimizing power
consumption [5,6,37]. For example, Low-Power Listening [34] trades more expen-
sive transmission cost for lower listening cost. Every node turns on its radio for
listening for a short interval τ once every interval n > τ . If the channel is quiet,
the node returns to sleep for another n; otherwise it receives whatever message
is being transmitted. To transmit, a node sends a preamble of at least n time
units long before the actual message. This ensures that no matter how clocks
are offset, any node within range will hear some part of the preamble and stay
4 Example consumption costs: CPU idle with clock running and radio off (“standby

mode”), 0.1–0.2 mA (milliamps); CPU on and radio listening, 10 mA; CPU on and
radio receiving, 15 mA; CPU on and radio transmitting, 20–25 mA.
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awake for the message. A longer n means a lower relative receive cost (as τ/n is
smaller), but also longer preambles, and therefore higher transmission cost.

A more efficient solution in terms of radio use was proposed by PalChaudhuri
and Johnson [33], and further by Moscibroda, Von Rickenbach and Wattenhofer
[29]. The idea is as follows. Notice that in the proposal of [34], the proposal was
for a transmitting processor to broadcast continuously for n time units, while
receiving processors switch their radios on once every n time units to listen. Even
for two processors, this implies that total use of the radio is n + 1 time units
(i.e., it is linear in n). The observation of [33,29] is that we can do substantially
better by using randomization: if both processors wake their radios O(

√
n ) time

units at random (say both sending and receiving), then by birthday paradox
with constant probability they will be awake at the same time and will be able
to synchronize their clocks. As indicated before, we show instead a deterministic
solution to this problem, its practical importance, and a matching lower bound.

Our results strengthen and generalize previous works that appeared in the
literature [31,42,41,12]. See further comparisons in the relevant sections.
Comparison with Radio Broadcast:

Usually, in a broadcast setup, a node is able to receive a message if and
only if it does not transmit, and there is one and only one of its neighbors
that transmits, at that time. In the case when nodes are not able to detect
collision, [3,2] showed randomized protocols. A deterministic broadcast algo-
rithm, with work time O(n11/6), has been given in [11]. The improvements of
these algorithms have followed [25]: for undirected radio network graphs, with
diameter diam, for randomized broadcast the expected work time has been
O(diam · log(n/diam) + log2 n), while for deterministic broadcast the expected
work time has been Ω(n log n/ log(n/diam)). In [26], a faster algorithm for di-
rected radio network graphs has provided running time O(n log n log(diam)).
Additionally, other algorithms for broadcast [13,17,19,22,24] as well as for clock
synchronization [32,35,14,4] have been proposed. The work of radio broadcast is
different from the problem we address at this paper. However, as we mention in
the technical description, once we resolve the problem of meeting times, we can
easily combine our solutions with radio broadcast goal to avoid interference.

High-level ideas of our constructions and proofs

• For the two processor upper bound, we prove that two carefully chosen affine
functions will overlap no matter what the initial shift is. The only technically
delicate part is that the shift is over the reals, and thus the proof must take
this into account.

• For the two processor lower bound, we show that for any two strings with
sufficiently low density (of 1’s) there always exists a small shift such that
none of the 1’s overlap. This is done by a combinatorial counting argument.

• For multiple processors, the idea of the lower bound is to extend the previous
combinatorial argument, while for the upper bound, the idea is to establish a
“connected” graph of pairwise processor synchronization, and then show that
this graph is an expander. The next idea is that instead of running global



7

synchronization, we can repeat the same partial synchronization a logarith-
mic number of times (using the same randomness) to yield a communication
graph which is an expander. We then use standard synchronization protocol
over this “virtual” expander to reach global synchronization.

• For handling interference, we observe that standard “back-off” proto-
cols [1,10] can be combined with previous machinery to achieve non-
interference, costing only a poly-logarithmic multiplicative term.

• For the protocol that does not need to know m (recall that m is the total
number of processors within radio-reach), we first observe that if m > n,
by setting m = n our protocol already achieves synchronization with near-
optimal radio use. The technical challenge is thus to handle the case where
m < n but the value of m is unknown to the protocol. Our first observation
is to show that processors can overestimate m, in which case the amount
of energy needed is much smaller (per processor) than for smaller m, and
then “check” if the synchronized component of nodes has reached current
estimate on m. If it did not, than our current estimate of m can be reduced
(by a constant factor) by all the processors. To assure that estimates are
lowered by all the processors at about the same time, we divide the protocol
into “epochs” which are big enough not to overlap even with a maximal clock
drift (of n). Summing, the energy consumption is essentially dominated by
the smallest estimate of m, which is within a constant factor of correct
value of m, and all processors that detect it stop running subsequent (more
expensive) “epochs”.

2 Mathematical Preliminaries

Lemma 1 (Two-Color Birthday Problem). For any absolute constant C >√
1− ln 0.1 ≈ 1.8173 and any positive s, t ∈ (0, 1), where s+ t = 1, the following

holds. Suppose r = Cns identical red balls and b = Cnt identical blue balls are
thrown independently and uniformly at random into n bins. Then, for sufficiently
big n, the probability that there is a bin containing both red and blue balls is > 0.8.

Proof. See the full version [8] 5.

3 Lower Bounds

The problem of asynchronous wakeup, i.e., low-power asynchronous neighbors
discovery, has already been known in the literature [31,42,41,12]. Its goal is to
design an optimal wake-up schedule, i.e., to minimize the radio use for both
transmitting and receiving. The techniques used, e.g., in the previously cited
papers, vary from the birthday paradox in [31], block-design in [42], the quo-
rum based protocol in [41] to an adaption of Chinese reminder theorem [20]
in [12]. In our work, we firstly generalize the birthday paradox, obtaining the

5 For the proofs of all subsequent theorems, lemmas, and claims, see the full version [8].
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Two Color Birthday Problem (see Lemma 1). Next, we build the tools for our
main analysis on the upper and lower bounds on the optimal radio use for wire-
less network synchronization. In particular, we start with Lemma 2, which is a
stronger combinatorial bound compared to [42], and then generalize results in
Lemma 3.

Recall that n is the maximum offset between processor starting times and
m = nβ is the number of processors. Assume that each processor runs for some
time L. Its radio schedule can then be represented as a bit string of length L,
where the ith bit is 1 if and only if the processor turned its radio on during that
time unit. We first consider the two-processor case. Recall that in our model
maximal assumed offset is at most n. If we take 2 bit strings corresponding to
the two processors, the initial clock offset corresponds to a shift of one string
against the other by at most n positions. Note that if we set L > 4n, the maximal
shift is at most n 6 L/4.
Note. In the next sections, without loss of generality we apply the ceiling function
to any real number, e.g., Lα, L/C2 are treated as dLαe, dL/C2e, respectively.

To prove our lower bound, we need to prove the following: for any two L-bit
strings with at most

√
L /C ones in each string (for some constant C > 1/

√
2 ),

there always exists a shift < L/4 of one string against another such that none
of the ones after the shift in the first string align with any of the ones in the
second string. In this case we say that the strings do not overlap. W.l.o.g., we
make both strings (before the shift) identical. To see that this does not limit
the generality, we note that if the two strings are not identical, we can make a
new string by taking their bitwise OR, what we call the “union” of strings. If
the distinct strings overlap at a given offset, then the “union” string will overlap
with itself at the same offset.

Lemma 2 (Two Non-Colliding Strings). For any absolute constant C >
1/
√

2 , and for every L-bit string with ` 6
√

L
C ones, there is at least one shift

within L/(2C2) such that the string and its shifted copy do not overlap.

Next, we want to prove a general lower bound for multiple strings. The high-
level approach of our proof is as follows. We pick one string, and then upper
bound the total number of ones possible in the “union” of all the remaining
(potentially shifted) strings. If we can prove that assuming the density of all
the strings is sufficiently small, and there always exists a shift of the first string
that does not overlap the “union” of all the remaining strings, we are done. The
“union” string is simply a new string with a higher density.

Lemma 3 (General Two Non-Colliding Strings with Different Densi-
ties). Let s, t > 0 such that s + t < 1, and let C > 1. For two L-bit strings such
that the number of ones in the first string is a = Ls/C, and the number of ones
in the second string is b = Lt/C, there is a shift within L/C2 + 1 such that the
first string and the shifted second string do not overlap.

Here, wlog, we considered only “left” shift. If we needed both left and right
shift, then we would have an additional factor of 2. Using Lemma 3, the lower
bounds immediately follow.
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Theorem 1. There exists an absolute constant C > 1, such that for any nβ

strings of length L with at most n(1−β)/2 ones in each string, there always exists
a set of shifts for each string by at most L/4 such that no string’s ones overlap
any of the ones in all the other strings.

4 Matching Upper Bound for Two Processors

We now show the upper bound. That is, we give the deterministic algorithm for
two devices. In particular, for any initial offset of at most n, we show a schedule
where two processors meet with probability equal to one inside a “time-window”
of length W = 2n + 4

√
n + 2.

Theorem 2. For any n, there exists a string of length W = 2n + 4
√

n + 2 with
at most 4

√
n + 4 ones such that this string will overlap itself for all shifts from

1 to n.

We remark that the bound that we prove in the above section is in fact more
general than the subsequent independent work of [12], which appeared after our
report [8]. Note that our bound holds for all values of n, and in fact the two
strings could be made identical by doubling the cost.

5 Upper Bound for m Processors

In this setting we have m = nβ processors (and as before the maximum shift is
at most n). We first state our theorem:

Theorem 3. There exists a randomized protocol for nβ processors (which fails
with probability at most 1/2O(n)) such that: (i) if β < 1 the protocol is using at
most O

(
n

1−β
2 · poly-log(n)

)
radio steps per processor, and (ii) if β > 1 using

at most O (poly-log(n)) radio steps per processor. Furthermore, the same bounds
hold for the synchronization in the radio communication model, where a processor
can hear a message if one (and strictly one) message is broadcasted.

Next we give a high-level outline of the construction of our algorithm for
β ∈ [0, 1). For the case of β > 1 we only need Steps 4 and 5, see below. The
formal analysis and proofs of the Main Algorithm are given in [8].
Outline of the Main Algorithm:

Step 1. We let each processor run for L = 4n steps, waking up during this time
O

(
n

1−β
2

)
times uniformly at random. It is important to point out that

each processor uses independent randomness. We view it as m-row and L
(L > W + n) column matrix A (taking into account all the shifts), where
W = 2n+4

√
n +2 is defined in Theorem 2. Fix any row of this matrix (say

the first one). We say that this row “meets” some other row, if 1 in the first
row also appears (after the shifts) in some other row. If this happens, the
first processor can “communicate” with another processor. We show that for
a fixed row, this happens with a constant probability.
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Step 2. Each processor repeats Step 1 (using independent randomness) O(log m)
times. Here, we show that a fixed row has at least O(log m) connections
to other rows (not necessarily distinct) with probability greater than 1 −
1/poly(m).

Step 3. From Step 2. we conclude that the first row meets at least a constant number
of distinct other rows with probability greater than 1− 1/(2m).

Step 4. We use the union bound to conclude that every row meets at least con-
stant number of distinct other rows with probability greater than 1/2. If
we repeat this process a logarithmic number of times, we show that we get
an expander graph with overwhelming probability (for the definition of an
expander see [30]). Thus, considering every row (i.e., every processor) as
a node, this represents a random graph with degree of at least a constant
number for each node, which is an expander with high probability.

Step 5. During the synchronization period, a particular processor will synchronize
with some other processor, without collision, by attempting to communicate
whenever it has a 1 in its row. (In the case of interference, the processor
can communicate if only one other processor is up at this column, which we
can achieve as well, using standard “back-off” protocols [1,10], costing only
poly-logarithmic multiplicative term.)

Step 6. The processors can now communicate along the edges of the formed ex-
pander (which has logarithmic diameter) as follows. The main insight that
we prove below is that if processors repeat the same random choices of Step
1 through Step 5, the communication pattern of the expander graph is pre-
served. Hence, the structure developed in Step 2 can be reused to establish a
logarithmic-diameter (in m) spanning tree and synchronize nodes with poly-
logarithmetic overhead (using known machinery over this “virtual” graph).
We show in [8], by using standard methods, that communicating over the
implicit expander graph to synchronize all nodes can be done in diam + 2
steps, where diam is the diameter of the expander.

6 Protocol That Does Not Need to Know the Number of
Processors

Suppose our processors know the offset n but not the number of all processors
in the system, that is, m. The main observation here is that once we make a
spanning tree of the graph, each node can also compute the number of nodes
in its spanning tree. Hence, we can make an estimate of m and then check to
see if this estimate is too big. Thus, until the right (within a constant factor)
estimate is reached, all nodes will reject the estimate and continue. Adjusting
constants appropriately, we can guarantee that an arbitrary constant fraction of
the processors will terminate with the right estimate of m (within some fixed
constant fraction). The algorithm for the estimation of m is as follows.
Algorithm: Estimation of m

E1. Set i = 0.
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E2. Build a spanning tree using the Main Algorithm (from the previous section)
for mi = n/2i and count the number of nodes in the tree. If the number of
the nodes in the tree is less than mi then set i := i + 1 and go to step E2.

E3. Output mi.

End of Algorithm: Estimation of m

Theorem 4. Any constant fraction of the processors can synchronize without
knowing m, yet still use O(n

1−β
2 poly-log(n)) radio send/receive steps (with prob-

ability of failure exponentially close to zero). The bound on the radio use holds
only for processors that synchronize.

7 Our Model Can Handle Different Clocks’ Speeds with
Bounded Ratio

Here are the technical details that explain why our model is realistic even if
processors have somewhat different clock speeds. For m processors, let their
clock ticks be {τ1, τ2, . . . , τm}. Let τmin, τmax be minimum, maximum of the set
{τ1, τ2, . . . , τm}, respectively. The clock ticks are in general different, but the
ratio τmax/τmin 6 c is bounded by some constant c, and each processor knows
that upper bound c. Let τtrans be the lower bound on the time necessary for
the transmission, i.e., on the time necessary for communication and synchroniza-
tion between two processors.It is also assumed that the lower bound on τtrans is
known to all processors. Now, knowing c and τtrans, each processor i counts ki

clock ticks as a single time step si such that ki is defined by si = kiτi > 2τtrans.
In other words, each processor enables the condition necessary for the communi-
cation, making its time step si > 2τtrans. It follows that if two processors i and
j overlap for a period of time > 1

2 min{si, sj}, then they can communicate. For
further details see the full version.

Claim. If two processors i, j work within the same global time unit, then they
can communicate and can synchronize.

8 Conclusions and Open Problems

In this paper, we have studied an important problem of power consumption in
radio networks and completely resolved the deterministic case for two processors,
showing matching upper and lower bound. For multiple processors, we were
able to show a poly-logarithmic gap between our randomized protocol and our
deterministic lower bound. However, this is not completely satisfactory. Our
lower bound holds only for deterministic protocols, while our upper bound in
multi-processor case is probabilistic (unlike the two-processor case, where our
upper bound is deterministic as well). Closing this gap remains an interesting
open problem.

Another interesting question is the following. It is important to note that
in radio communication, conservation of power can be achieved in two different
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ways: one approach is to always broadcast the signal with the same intensity
(or to power down radios completely in order to save energy); this is what we
explored in this paper. The second approach is the ability for a radio to broadcast
and receive signals at different intensity, the stronger the signal the further it
reaches. In the case where all processors are at the same distance from each other,
this is a non-issue (i.e., our single-hop networks, the main focus of this paper).
However, for multi-hop networks the question of optimal power-consumption
strategies with varying signal strength is still completely open.
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