
Xoc, an Extension-Oriented Compiler for Systems Programming

Russ Cox∗ Tom Bergan† Austin T. Clements∗ Frans Kaashoek∗ Eddie Kohler†

MIT CSAIL∗ UCLA CS†

Abstract

Today’s system programmers go to great lengths to extend the lan-
guages in which they program. For instance, system-specific com-
pilers find errors in Linux and other systems, and add support for
specialized control flow to Qt and event-based programs. These
compilers are difficult to build and cannot always understand each
other’s language changes. However, they can greatly improve code
understandability and correctness, advantages that should be acces-
sible to all programmers.

We describe an extension-oriented compiler for C called xoc.
An extension-oriented compiler, unlike a conventional extensible
compiler, implements new features via many small extensions that
are loaded together as needed. Xoc gives extension writers full
control over program syntax and semantics while hiding many
compiler internals. Xoc programmers concisely define powerful
compiler extensions that, by construction, can be combined; even
some parts of the base compiler, such as GNU C compatibility, are
structured as extensions.

Xoc is based on two key interfaces. Syntax patterns allow ex-
tension writers to manipulate language fragments using concrete
syntax. Lazy computation of attributes allows extension writers to
use the results of analyses by other extensions or the core without
needing to worry about pass scheduling.

Extensions built using xoc include xsparse, a 345-line exten-
sion that mimics Sparse, Linux’s C front end, and xlambda, a 170-
line extension that adds function expressions to C. An evaluation
of xoc using these and 13 other extensions shows that xoc exten-
sions are typically more concise than equivalent extensions written
for conventional extensible compilers and that it is possible to com-
pose extensions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Languages, Design, Experimentation

Keywords extension-oriented compilers

1. Introduction

Programmers have long found it useful to make domain-specific
changes to general-purpose programming languages. Recent ex-
amples include Sparse (Torvalds and Triplett 2007), Tame (Krohn
et al. 2007), and Mace (Killian et al. 2007). The most common im-
plementation is a monolithic preprocessor: a compiler front end that
accepts the base language plus domain-specific changes, compiles

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS ’08 March 1–5, 2008, Seattle, Washington, USA.
Copyright © 2008 ACM 978-1-59593-958-6/08/0003…$5.00
Reprinted from ASPLOS ’08, Proc. 13th International Conference on Architectural

Support for Programming Languages and Operating Systems, March 1–5, 2008, Seat-
tle, Washington, USA., pp. 244–254.

the changes into base language constructs, writes out the equiva-
lent base program, and invokes the original compiler or interpreter.
The most serious problem with this approach is that extensions are
heavyweight and isolated. Preprocessors must include entire front
ends for the base language itself, and multiple extensions are diffi-
cult to use together.

Recent extensible compiler research (e.g., Necula et al. 2002;
Nystrom et al. 2003; Grimm 2006; Visser 2004) aims to solve this
problem. Starting with an extensible compiler for the base lan-
guage, a programmer writes only the code necessary to process the
domain-specific changes. A typical implementation is a collection
of Java classes that provide a front end toolkit for the base lan-
guage. To extend such compilers, a programmer subclasses some
or all of the classes, producing a new compiler that accepts the base
language with the domain-specific changes. This approach reduces
implementation effort but still creates compilers that are not com-
posable: changes implemented by two different compilers can’t be
used in the same program since the compilers can’t understand and
process one another’s input. Recent extensible compilers have some
support for extension composition (Van Wyk et al. 2007a; Nystrom
et al. 2006), but still require that extension writers explicitly assem-
ble each desired composition.

This paper proposes an extension-oriented compiler where new
features are implemented by many small extensions that are loaded
on a per-source-file basis, much as content-specific plugins are
loaded by web browsers and other software. As in current exten-
sible compilers, this approach starts with a compiler for the base
language, but extensions do not create whole new compilers. In-
stead, the base compiler loads the extensions dynamically for each
source file.

A key challenge in an extension-oriented compiler is to enforce
the boundaries between the different extensions and the base com-
piler, while still allowing extensions the freedom and power to al-
ter language semantics. We meet this challenge with two key in-
terfaces. First, extension writers use syntax patterns (Bravenboer
and Visser 2004) to manipulate language fragments and abstract
syntax trees (ASTs) using the concrete syntax of the programming
language being compiled. This hides the details of both parsing
and internal representation from extension modules. Second, ex-
tension writers implement most program analyses via on-demand
(lazy) AST attributes. This hides the details of pass scheduling from
extensions; the passes exist only implicitly in the dependencies
between the various attributes. These ideas originated with other
systems, but combined, and augmented by other design choices—
including extensible functions, extensible data structures, and a
GLR-based parser with modular grammars—their value is multi-
plied. The result seems to us qualitatively better for extension pro-
gramming than systems based on a single interface, such as term
rewriting or Java subclassing.

We have designed and implemented xoc, an extension-oriented
compiler for C, that provides these interfaces. The compiler itself
is structured as a core with a set of extensions. The compiler totals
32,062 lines of code and is complete enough that it can process the
source files of the Linux kernel.

244

grammar XRotate extends C99

{

expr: expr "<<<" expr [Shift]

| expr ">>>" expr [Shift];

}

extend attribute

type(term: ptr C.expr): ptr Type

{

switch(term){

case ~expr{\a <<< \b} || ~expr{\a >>> \b}:

if(a.type.isinteger && b.type.isinteger)

return promoteunary(a.type);

error(term.line, "non-integer rotate");

return nil;

}

return default(term);

}

extend attribute

compiled(term: ptr C.expr): ptr COutput.expr

{

switch(term){

case ~{\a <<< \b}:

n := a.type.sizeof * 8;

return ‘C.expr{

({ \(a.type) x = \a;

\(b.type) y = \b;

(x<<y) | (x>>(\n-y)); })

}.compiled;

case ~{\a >>> \b}:

n := a.type.sizeof * 8;

return ‘C.expr{\a <<< (\n-\b)}.compiled;

}

return default(term);

}

Figure 1. The xrotate extension. Note that the x and y variables introduced in compiled don’t cause variable capture problems; see
section 2.3.

Using xoc we have designed and implemented 15 extensions to
date. These range from trivial extensions, such as a bitwise rotate
operator, to extensions for which systems programmers have imple-
mented domain-specific front ends, such as Sparse (a source code
checker for the Linux kernel). Based on these extensions we con-
clude that programmer effort for an extension is relatively small
and scales with the complexity of the extension. Most extensions
are short, and the ones that are larger are large because the exten-
sion is more complicated. For example, the rotate extension is 34
lines, while the Sparse extension is 345 lines. We also conclude
that the extension writer need not understand much of xoc’s inter-
nals; xoc’s extension interface consists of relatively few grammar
rules and attributes, only a few of which need to be modified for
a typical extension, and extensions can manipulate xoc’s internal
program representation naturally using concrete syntax. Finally, we
conclude that extensions can compose: an extension writer can sup-
ply several extensions to the compiler at the same time and use the
combination in a program or in another extension.

This paper identifies extension-oriented compilation as a re-
search problem and makes the following contributions towards
solving that problem:

1. The use of syntax patterns to manipulate the abstract syntax
tree and attributes, and lazy computation of AST attributes to
eliminate explicit scheduling of compilation passes.

2. The design of xoc, a prototype extension-oriented compiler for
the C language, which implements syntax patterns and lazy
computation of AST attributes, as well as a GLR parser and
extensible functions and data structures.

3. A prototype implementation of xoc in zeta, a C-like interpreted
procedural language with first-class functions. Zeta makes writ-
ing extensions easier than standard C, although extension writ-
ers must adjust to a slightly different language. Our implemen-
tation runs zeta using a bytecode interpreter and is therefore
limited in its performance; we plan to replace the bytecode in-
terpreter with compilation to machine code, which should re-
duce the compilation time for a large program from tens of sec-
onds to a fraction of a second.

4. An evaluation of xoc and 15 currently implemented extensions.
Some of the extensions support features that others have imple-
mented as separate front ends for C, allowing for a comparison
of the extension-oriented compiler and front-end approaches.

We implemented one extension (bitwise rotate) in multiple ex-
tensible compilers, allowing a comparison with our approach.

After presenting the xoc extension interface, we describe its im-
plementation, present several extension case studies, and examine
our extensions as a group. We then discuss related work and con-
clude.

2. The Xoc Extension Interface

The xoc prototype is a source-to-source translator. It reads C pro-
grams that might use extensions, analyzes the programs, compiles
them into equivalent standard C code, and then invokes gcc to
create an object file. If extensions are specified on the command
line, xoc dynamically loads those extensions before processing the
possibly-extended input files. This section describes how exten-
sions are written by presenting the interface xoc provides to ex-
tension writers.

Because the xoc prototype focuses on the front end—back-end
extensions are left for future work—its primary data structure is the
internal representation of the input program. Xoc’s interface for this
data structure must support parsing, constructors, accessors, and
analysis passes. It is important to make these fundamental compiler
manipulations as easy as possible. Xoc achieves this simplification
by hiding parsing details behind context-free grammars, hiding
program manipulation behind concrete syntax patterns, and hiding
analysis scheduling behind lazily-computed attributes.

As a running example throughout this section, we will consider
an extension that adds bitwise rotate operators <<< and >>> to the
language. The operators behave like the standard << and >> bit shift
operators except that bits shifted off the end of the 32- or 64-bit
word are shifted back in at the other end. Figure 1 gives the exten-
sion’s full source code. Even this trivial extension still illustrates
the difficult issues inherent to extension-oriented compiler design.
For example, the extension’s grammar statements add <<< and >>>

expressions to the language, but in the context of a source file, other
extensions may have added other expression types as well. An ex-
pression like “(a <? (b <<< c)) <<< 4” (<? is gcc’s minimum
operator) forces the xrotate extension to analyze, compute with,
and generate code for an operand that uses an extension unknown
to xrotate’s author; the xgnu-minmax extension that implements
<? must do the same. Our work has concentrated on finding sim-
ple interfaces that make extension composition natural, simple, and
robust to errors.

245

2.1 Grammars and parsing

Xoc provides special syntax—a grammar statement—for defining
and extending the context-free grammar rules used to parse the in-
put. There are three main subproblems: providing a definition of C
that is easily extended, keeping different extension grammars sep-
arate, and handling ambiguity (inputs that can be parsed multiple
ways).

Extending grammars Xoc must provide a base C grammar that
is easy for extension writers to understand and to extend. Xoc’s
base C grammar has 72 symbols, but few are relevant to a typi-
cal extension writer (for example, 13 are dedicated to distinguish-
ing between numeric constant formats). Knowing only expr (ex-
pressions), stmt (statements), and a few others relating to C type
declarators is surprisingly effective; a working vocabulary of un-
der a dozen symbols suffices for the vast majority of extensions, as
discussed in section 4.

Xoc defines a base grammar for standard C:

extensible grammar C99 {

...

%left Add Shift

%precedence Add > Shift

...

expr: name

| expr "+" expr [Add]

| expr "-" expr [Add]

| expr ">>" expr [Shift]

| expr "<<" expr [Shift]

...

}

Extensions add new grammar rules with an extend grammar

statement. For example, the rotate extension defines its new opera-
tors using:

grammar XRotate extends C99

{

expr: expr "<<<" expr [Shift]

| expr ">>>" expr [Shift];

}

Unlike in parser generators such as yacc, the grammar rules do
not specify parsing actions. Xoc’s only parsing action is to build
a generic parse tree. The interface for manipulating the parse tree
is discussed in section 2.2. Not requiring the extension writer to
provide explicit actions makes it easier to define new syntax.

This example also illustrates xoc’s use of precedence to col-
lapse the C standard’s many expression types (additive-expr,
multiplicative-expr , and so on) into just expr. The bracketed
[Shift] tags specify named precedence levels: the new rotate op-
erators have the same precedence as the shift operators.

An extension can also introduce a new precedence level be-
tween existing ones; for example, xalef-iter introduces Alef’s
iteration operator :: with precedence between << and <= (Winter-
bottom 1995).

grammar XAlefIter extends C99

{

%right AlefIter;

%priority Shift > AlefIter > Relational;

expr: expr "::" expr [AlefIter];

}

Keeping grammars separate The grammar declarations above
define one grammar, C99, and two extensions to C99: XRotate

and XAlefIter. Since the latter two come from independent
extensions, it is important to be clear which grammars are be-
ing used in which contexts. After the above definitions, xoc
distinguishes between four different possible grammars: C99,

C99+XRotate, C99+XAlefIter, and C99+XRotate+XAlefIter

(C99+XAlefIter+XRotate is the same grammar). When parsing
the input, xoc uses C99 plus all loaded extensions, but other parts
of the compiler may expect only certain kinds of input syntax.
Xoc’s type system helps enforce these expectations.

Xoc’s type system can express that a particular AST corre-
sponds to a particular non-terminal, as in C99.expr. Distinguishing
different kinds of ASTs is useful for defining what kind of syntax a
function expects. For example, a function that analyzes only stan-
dard C99 expressions could take a C99.expr, while a function that
also allows rotate expressions could take (C99+XRotate).expr .
These types are defined statically, but subtype instances can be
checked dynamically: for example, xoc lets extensions check
whether a value that is statically typed as C99+XRotate is actu-
ally pure C99. Finally, the type system also allows a “wildcard”
grammar, as in C99+?. A wildcard represents an arbitrary set of
grammar extensions that is not known statically. This is how xoc
shares syntax trees between extensions that have no knowledge of
each other’s syntax.

Ambiguity Typically, there will be only one possible parse tree
for a given input, but the possibility of ambiguity—multiple parse
trees—is unavoidable when using a context-free grammar as the
input specification. Others have proposed using parsing expression
grammars (Ford 2004), which replace the context-free alternation
operator with an ordered-choice operator so that ambiguity is im-
possible. This approach essentially resolves ambiguities quietly;
we prefer to treat ambiguity as a signal that the programmer might
not be getting the expected result and to respond with a red flag. If
there are multiple ways to parse an input string, xoc will discover
all possible parses and report an error.

Detecting ambiguity is particularly important when using inde-
pendently written extensions that might define different meanings
for the same syntax. For example, if using rotate and a “be like
Java” extension, a programmer might not realize that there are two
definitions for >>> (rotate or Java’s unsigned right shift). We’d pre-
fer that extensions loaded in different orders produce the same re-
sult, so it is important to detect the ambiguity, rather than silently
choosing one or the other.

Checking context-free grammars for ambiguity is uncom-
putable (Lewis and Papadimitriou 1997, pp. 259–261), so xoc
settles for detecting the ambiguity when it arises in the input. In
the example just given, a conflict will be reported only if the errant
developer uses the >>> operator in his program. We have not had
many problems with ambiguity so far; future experience may en-
courage the use of heuristics to detect obvious extension conflicts
statically.

2.2 Syntax patterns

Once an input program has been parsed, xoc and its extensions need
to traverse the AST, computing its properties and often rewriting it
into different forms. Rather than expose the AST using traditional
data structures, xoc extensions refer to the AST using concrete
syntax (the syntax of the programming language).

For example, the expression ast ~ expr{\a <<< \b} evalu-
ates true if ast is an AST node generated by the first rule in the
XRotate grammar above. When this destructuring expression eval-
uates true, it binds the variables a and b to the AST nodes for the
subexpressions. A similar syntax creates new ASTs. If a and b are
already ASTs corresponding to expressions, then the restructuring
expression ‘expr{\a <<< \b} constructs a new AST representing
the <<< syntax. Like Lisp, xoc unifies internal and external pro-
gram representation. Whereas Lisp makes programs look like an
internal data structure, xoc makes the internal data structure look
like a program.

246

Syntax patterns can be arbitrarily complex program fragments,
not just single rule applications. For example, the following snippet
rewrites repeated rotation into an equivalent single rotation:

if(ast ~ expr{\a <<< \b <<< \c})

ast = ‘expr{\a <<< (\b + \c)};

Section 3 discusses how the grammar symbols of a, b, and c are
inferred.

The examples so far have assumed that ast was declared as
C99+XRotate, so that the <<< operator is available for use in the
destructuring and restructuring patterns. When the grammar type
includes +?, syntax from any extension can appear in slots like \a

and \b, but the concrete syntax used in the pattern is restricted to
the named grammars. Consider these three lines:

1 C99.expr{\a <<< \b}; // invalid!

2 (C99+XRotate).expr{\a <<< \b};

3 (C99+XRotate+?).expr{\a <<< \b};

Line 1 is invalid in xoc (xoc will print an error when loading the ex-
tension), because there are no rules involving <<< in the C99 gram-
mar. Lines 2 and 3 are valid but have different meanings. Suppose
an extension that introduced a ** exponentiation operator were also
loaded. Line 2 would not allow exponentiation expressions within
\a and \b, but line 3 would.

Xoc provides a few mechanisms to make syntax patterns even
more convenient. By convention, xoc defines C as C99 plus all ex-
tensions currently in scope plus ?. Also, xoc uses static type infor-
mation to infer the grammar and symbol name in syntax patterns. If
the static type information is sufficient, explicit names can be omit-
ted. For example, if ast is declared as C.expr, then one can write
ast ~ {\a <<< \b} instead of ast ~ expr{\a <<< \b}. Also,
conversion routines can be registered to convert automatically be-
tween non-AST types and AST nodes, allowing the use of zeta val-
ues like integers and strings directly in slots.

C’s type syntax does not always align with the top-down struc-
ture of the underlying types. Even so, xoc arranges for special
processing of the syntax patterns before they are used in destruc-
turing and restructuring, so that expressions like t ~ {\tt*} and
t ~ {\tt(*)(void*, int)} work as expected.

2.3 Lazy attributes

In addition to traversing and rewriting the program, compilers ana-
lyze the program to determine how to compile it. Many compilers
are structured as a series of passes: first variable scoping, then type
checking, then constant evaluation, and so on. Extensions may need
to use the results of some of these analyses or even introduce their
own. Other extensible compilers expose this pass-based structure
to extensions, requiring them to declare how they fit into the exist-
ing compiler passes. Inspired in part by attribute grammars (Knuth
1968; Paakki 1995; Van Wyk et al. 2007a,b), xoc eliminates passes
and pass scheduling by representing analyses as lazily-computed
attributes.

Xoc’s attributes are not attribute grammars: there is no strict
enforcement that attribute computations proceed in a particular
order, and attribute computations are free to examine the rest of
the AST without using the attribute framework.

Attributes are referred to using structure member notation, as in
a.type, but they are computed on demand at first access and then
cached. (Caching the value is safe because ASTs are immutable.)

Each attribute is defined by the ordinary xoc code that computes
it. A key feature is that extensions can change the behavior of this
code. For example, the type attribute, which specifies the type of
an expression, is defined in the xoc core as:

attribute

type(term: ptr C.expr): ptr Type

{

switch(term){

case ~{\a << \b} || ~{\a >> \b}:

if(a.type.isinteger && b.type.isinteger)

return promoteunary(a.type);

error(term.line, "non-integer shift");

return nil;

// ... other cases ...

}

error(term.line, "cannot type check expression");

return nil;

}

The rotate extension extends the type attribute with support for
rotations:

extend attribute

type(term: ptr C.expr): ptr Type

{

switch(term){

case ~{\a <<< \b} || ~{\a >>> \b}:

if(a.type.isinteger && b.type.isinteger)

return promoteunary(a.type);

error(term.line, "non-integer rotate");

return nil;

}

return default(term);

}

Inside an extend attribute body, the name default refers to
the definition of the attribute before it was extended. The rotate
extension checks for and handles the rotate cases, but leaves all
other behavior unchanged by deferring to default. If different xoc
extensions extend the same attribute, the extensions are chained
together via these default calls.

The type attribute proceeds top-down, but the full power of lazy
attributes is realized when attributes are not purely top-down. For
example, the set of variables in scope on entry to each AST node
depends on nodes to the left in the abstract syntax tree. To help
compute this, xoc provides builtin attributes parent, prev, and
next, which are a node’s parent, left sibling, and right sibling in
the AST. These attributes can be used to define any traversal order,
which is expanded lazily as it is used. Because of this design, the
variable scope at any node can be queried at any time.

Compiler Structure Xoc is implemented using a library of at-
tributes that extensions use and sometimes augment. The attributes
described here make up the core of the compiler. The dependencies
implicit among xoc’s attributes determine the complete compiler
structure.

After parsing the initial input to produce an AST root, xoc
looks at the root’s welltyped attribute, a boolean specifying
whether the entire tree is free of type errors. Extensions that intro-
duce new statements extend welltyped to check those statements.
For expressions, the type attribute (shown above) evaluates to the
C type of the expression—int, void*, and so on—or null if the
expression contains type errors. Type checking depends on vari-
able scoping, which is provided by vars and vars_out, the sets of
variables in scope at entry to and exit from an AST node.

If root.welltyped is true, xoc uses root.vars_out as the
list of globals defined in the program. Each global’s compiled

attribute holds the equivalent standard C representation for that
global. This representation uses grammar COutput, a synonym
for C99+XGnuStmtExpr. (Allowing the GNU statement expression
simplifies the compilation of expressions with side effects.) Xoc
passes these compiled attributes to the C output code. Finally xoc
invokes gcc on the C output.

247

Variable Capture Any program rewriting system must worry
about unintended variable capture in expanded code: if a refer-
ence to a variable x is copied into a new AST, it should by default
continue to refer to the same variable, even if there is a different
definition of x in scope at the new location. Avoiding unintended
variable capture in expansions is called hygiene (Kohlbecker et al.
1986). To enforce hygiene, xoc provides a built-in copiedfrom at-
tribute that links a copied AST node to the node it was copied from.
To compute sym, the attribute for the symbol associated with a vari-
able name reference, xoc uses copiedfrom.sym when copiedfrom

is not null, which guarantees that the meaning of names will not
change, even when moved between scopes. For example, in the
rotate extension (Figure 1), the introduction of the temporaries x

and y does not cause any problems even if the fragments \a and \b

refer to other variables named x or y. The C output library renames
variables appropriately when two distinct variables share a name.

2.4 Other interfaces

Several secondary Xoc interfaces, including extensible data struc-
tures, extensible functions, higher-order tree rewriters, and a con-
trol flow analysis module, enhance the power of the main extension
interfaces.

First, data structures can be marked extensible, meaning that
extensions can define additional fields that are looked up in a
per-object hash table but still use field access syntax (a.field).
These extensions are lexically scoped so that different extensions
cannot accidentally see each other’s fields (Warth et al. 2006).
Functions can be marked extensible in the same style as attribute
computations; a few xoc functions involve more than just a single
AST and must be written this way. For example, xcanconvert

determines whether it is possible to convert one type implicitly
into another. An extension might relax the rules involving character
pointers using:

extend fn

xcanconvert(from: ptr Type, to: ptr Type): bool

{

if((from ~ {unsigned char*} && to ~ {char*})

|| (from ~ {char*} && to ~ {unsigned char*}))

return true;

return default(from, to);

}

Extensible functions are similar to advice in Lisp (Teitelman 1966)
and in aspect-oriented programming (Kiczales et al. 1997). The
combination of extensible data structures and extensible functions
is sufficient to implement attributes, but attributes are so fundamen-
tal in xoc that it makes sense to give them their own syntax.

To allow generic traversal of any abstract syntax (usually, to
look for a particular type of node), the xoc function astsplit

returns an array containing an AST’s child nodes. To allow generic
rewriters, the xoc function astjoin performs the inverse operation,
building a new AST node given an example and a replacement set
of children. Xoc also abstracts this interface into a collection of
higher-order tree rewriters, similar to Stratego’s strategies (Visser
2004).

Xoc also provides a traditional library for computing control
flow graphs.

3. The Xoc Implementation

This section describes our current implementation of xoc, which
is the third prototype we’ve built. This xoc is written in a custom
language we call zeta. Zeta is a procedural language with first-
class functions. A bytecode interpreter, also called zeta, compiles
and runs zeta programs. Zeta is a typical procedural language but
augmented with the xoc-specific features discussed in the previous

1,083 C Utility routines (hash tables, lists, etc.)
1,727 C GLR parser
1,259 C DFA-based lexer

14,316 C Zeta interpreter core
2,955 C AST support for Zeta
7,707 Zeta Xoc
3,015 Zeta Extensions

32,062 Total

Figure 2. Line counts for xoc source code.

section. Figure 2 gives line counts for zeta and xoc. Of the zeta code
making up xoc, half is devoted to type checking C and a quarter to
printing C output for gcc.

We wrote the earlier two prototypes directly in extended C,
using xoc to compile itself, but bootstrapping xoc in itself made
it difficult to experiment with new extensibility features. Using
zeta has made it much easier to try (and discard) features. Once
xoc is more mature, we are interested in revisiting the question
of implementing xoc using itself, but we have found zeta to be a
fruitful base for experimenting with extensible compiler structure.

3.1 Grammars and ambiguity

Zeta implements the grammar statement using a GLR parser. The
C99 grammar is 328 lines and 72 symbols. GLR parsers handle
ambiguity—multiple ways to parse a given input—by returning all
possible parses, letting the caller choose the correct one. Using
a GLR parser allows checking for ambiguity. It also handles C’s
type-vs.-name ambiguity without tightly coupling the lexer and the
type checker, giving considerably more freedom in the design of
the compiler. Finally, the GLR parser can accommodate any possi-
ble context-free grammar, unlike traditional LR parsers with fixed
lookahead (including LALR(1) parsers like yacc). These more re-
stricted language classes are not closed under union, meaning that
some extensions would work fine in isolation but cause unneces-
sary parsing conflicts when used together. In contrast, it is simply
not possible to write a context-free grammar that a GLR parser will
be unable to handle.

When the parser returns multiple parse trees, it is due either to
C’s name vs. type ambiguity or to ambiguity introduced by exten-
sions. Xoc invokes a disambiguation function to resolve the name
vs. type ambiguities. Any ambiguities that remain are considered
errors: xoc prints information about them and exits. Disambigua-
tion is intentionally not extensible; we believe that C’s inherent
ambiguity is unfortunate enough and do not encourage extension
writers to introduce new ambiguous language constructs.

3.2 Abstract syntax

The internal abstract syntax representation is generic: each node is
either an AstRule, which contains a pointer to the grammar rule
and pointers to the appropriate number of children for that rule; an
AstString, which is a lexical token; or an AstSlot, which is a slot
like \a in a syntax pattern.

AST types (e.g., (C99+XRotate).expr) are a property of the
entire subtree rooted at that node, and xoc programs need to be
able to check whether an AST is an instance of a given grammar
type at run-time. This may sound like an expensive run-time check,
but since ASTs are immutable, the most specific grammar type can
be computed incrementally at AST construction time, making the
check inexpensive.

248

3.3 Syntax patterns

Syntax patterns are implemented by parsing them using the GLR
parser, creating a template used for destructuring or restructuring.1

Previous systems (e.g., Bachrach and Playford 2001; Weise and
Crew 1993) have proposed similar use of syntax patterns, espe-
cially for restructuring, but they end up less convenient, because
the extension writer has to annotate every slot with its grammar
symbol, as in expr{\a::expr <<< \b::expr}. These annotations
can quickly obscure the convenience of writing in direct syntax.

Since xoc does not require such annotations, the first problem in
handling syntax patterns is deciding their meaning. Since input pro-
grams may be ambiguous, so can destructuring and restructuring
patterns. Worse, since destructuring and restructuring pattern vari-
ables can match arbitrary grammar symbols instead of just tokens,
even patterns like expr{-\a} are ambiguous: perhaps \a is meant
to stand in for a numeric constant, or perhaps a variable name, or
perhaps just an arbitrary expression. The ambiguity of -\a could
be eliminated if every variable like \a were tagged with its gram-
mar symbol as in other systems, but doing so loses much of the
brevity and convenience of the destructuring and restructuring pat-
terns. Xoc decides the meaning of syntax patterns in two different
ways.

First, AST subtyping like C.expr and C.name allow xoc to
determine the kind of slot by looking at the type of expression being
substituted into that slot. This is most often helpful in restructuring.

Second, when the type of the slot is not uniquely specified, xoc
can specify as much as it knows (e.g., “this is either a number or a
name”; or “this is some kind of list”; or “this could be anything”)
and let the GLR parser try all those possibilities and find out which
work. If many work, xoc chooses the shallowest parse tree. For
example, expr{\a <<< \b} treats \a and \b as exprs. Another
valid parse would be to treat them as numbers, converting them into
expr using the “expr: number” grammar rule, but that would result
in a deeper parse tree. We have found that the shallowest parse is
almost always the one we mean; when it is not, xoc will give a type
error and the extension writer can add an explicit annotation like
\a::number.

4. Case Studies and Evaluation

In order to evaluate xoc, we implemented a variety of extensions,
ranging from trivial extensions such as xrotate from section 2
to complex extensions such as xlambda, which adds first-class
closures, and xsparse, which implements the same analysis as the
Linux kernel checker, Sparse. Figure 3 summarizes the extensions.

The second column in Figure 3 gives each extension’s line
count. As we hoped, simple extensions require few lines of code,
while implementations of more complex extensions seem propor-
tional to their complexity. In addition, we would like to show how
xoc’s extension interfaces simplify the task of writing extensions
compared to the front-end approach and the extensible-compiler
approach.

We describe four extensions in detail: xsparse, an analysis ex-
tension, implemented in xoc to mimic Sparse; xvault, another
analysis extension, implemented in xoc and compared against a
Polyglot version; xrotate, a simple rewriting extension, imple-
mented in xoc, CIL, xtc, and Polyglot; and xlambda, a more com-
plex rewriting extension, implemented in xoc and xtc. Finally, we
present a few statistics and observations about the extensions as a
group.

1 The idea of parsing a code pattern once and then saving the parsed
representation for repeated use was first proposed by Hammer (Hammer
1971), who suggested it as an alternative to purely lexical implementations
of syntax macros.

4.1 Sparse, the Linux kernel checker

Sparse (Torvalds and Triplett 2007) is a source code checker for the
Linux kernel. Sparse checks for violations of Linux coding style
and extends the C type system with annotations for two important
notions that are applicable beyond the Linux kernel.

First, Sparse adds address spaces to C pointer types. Unanno-
tated pointers are considered kernel pointers, which marks them
as address_space(0) and permits dereferencing. Annotating a
pointer with __user marks it as address_space(1) and noderef,
which forbids dereferencing. Sparse emits warning for all casts
and implicit conversions between address spaces and for all ille-
gal dereferences.

Second, Sparse adds context modifiers to C function types.
These can be used to statically check basic lock/unlock pairings.
The context is an integer that follows every possible flow path
through each function. By default, the context entering a func-
tion must equal the context exiting the function, but a function
can be annotated as increasing or decreasing the context by some
amount. For example, an acquire function would be marked as
increasing the context by one. If an unannotated function were to
call acquire without later releasing the lock, a context mismatch
would be flagged.

The xsparse extension implements address spaces and context
modifiers atop xoc.

Address Space Checking xsparse’s implementation of address
space checking is straightforward. First, xsparse extends the type
attribute to check address_space and noderef annotations on cast
expressions and pointer dereferences. The extended attribute defers
to default before doing the necessary checks:

extend attribute

type(term: ptr C.expr): ptr Type

{

t := default(term);

// Sparse type checks here

return t;

}

The primary advantage of this implementation is its use of default,
which lets xsparse add new behavior without worrying about
the details of existing behavior. This makes xsparse address
space checking naturally composable with other extensions. The
xcanconvert function is extended in the same manner.

Context Checking For context checking, xsparse extends the
welltyped attribute for functions. This allows it to restrict the defi-
nition of “well typed” programs to exclude those with context mis-
matches. xsparse uses a traditional control flow analysis module
supplied by xoc to generate and traverse the flow graph of each
function being type checked. In order to check new control flow
introduced by other possible extensions, xsparse passes the func-
tion’s compiled attribute—the standard C representation—to the
control flow analysis.

Evaluation To evaluate xsparse, we compare with it with Sparse,
which is implemented as an entire front end. We checked the Linux
kernel with xsparse, and xsparse produced the same warnings as
Sparse.

xsparse’s implementation is simpler than Sparse’s. Sparse is
about 25,000 lines of code, while xsparse is 345 lines of code. Of
course, this result is not surprising because xsparse can leverage
xoc’s infrastructure for extensibility.

Unlike Sparse, xsparse can easily be composed with other
extensions. For example, xsparse can correctly analyze a program
that uses the xalef-iter extension’s :: operator for iteration or
the xgnu-conditional extension’s binary ?: operator.

249

Name Lines Description

xaif 50 Make if and while anaphoric, as in On Lisp (Graham 1996).
xalef-check 24 Add check statement as in Alef (Winterbottom 1995).
xalef-iter 196 Add iterator expressions as in Alef.
xgnu-asm 47 Parse (but do not analyze) GNU inline assembly.
xgnu-caserange 61 Allow ranges in case labels (case 0 ... 9:).
xgnu-conditional 14 GNU binary conditional operator ?:.
xgnu-minmax 24 GNU min and max operators <?, >?, <?=, and >?=.
xgnu-typeof 33 GNU typeof type specifier (typeof(q) p = q;).
xlambda 170 Heap-allocated lexical closures that are compatible with regular function pointers.
xloop 168 Labeled break and continue, as in Java and Perl.
xpcre 452 Perl-like syntax for the PCRE regular expression library, including flow-sensitive

checks for out-of-range submatch references.
xrotate 34 Rotate operators <<< and >>>.
xsparse 345 Workalike for the Sparse program checker (Torvalds and Triplett 2007).

(80 lines for type checking, 245 lines for flow checking.)
xtame 516 Tame style event-driven programming (Krohn et al. 2007).
xvault 641 An implementation of Vault’s flow-sensitive type system (DeLine and Fahndrich

2001) for C.

Figure 3. Extensions written using xoc. The lines column counts non-comment source lines.

xsparse is not as fast as Sparse. A typical Linux source file
(do_mounts.c, 600kB and 15,000 lines after preprocessing) takes
fifteen seconds to check with xsparse but only a tenth of a second
to check with Sparse. We believe most of the slowdown is due to
zeta’s interpreter and not the extensibility mechanisms themselves.
Preliminary tests suggest that replacing the zeta interpreter with an
on-the-fly compiler will produce a 20–40x speedup for xsparse.

4.2 Vault, a high-level protocol checker

For a more complex case study, we compare xvault, an implemen-
tation of Vault’s type system (DeLine and Fahndrich 2001) in xoc,
with Coffer, the implementation of Vault in Polyglot by the authors
of Polyglot.

The Vault language uses a flow-sensitive type system to enforce
protocols in low-level software. Vault uses linear capabilities, or
keys, to ensure that all tracked objects are always freed and never
used without being allocated. Pre- and post-conditions on functions
specify how the held set of keys is affected by a function call. Vault
includes a few other features: keys can be tagged with a state name,
keys can guard variables (which cannot be used unless their key is
held), and variant types can support run-time checks on key state.

xvault implements all these features except variant types. Cof-
fer adds Vault-like keys to Java, but does not support key states
or key guards. Coffer has to worry about classes and exceptions.
We omit those features of Coffer from the comparison. Coffer and
xvault implement Vault’s type system in equivalent ways: they
add syntax for the flow-sensitive types, add type-checking rules to
understand those types, and use a dataflow analysis to check them.

The xvault implementation is smaller than Coffer’s mainly due
to xoc’s handling of syntax trees. Coffer must declare semantic ac-
tions, making its grammar extension 199 lines (excluding class and
exception parsing rules not needed in C), as opposed to xvault’s
20. Further, Coffer must define subclasses to represent the abstract
syntax for new method and type declarations. These classes require
a few boilerplate methods, such as visitChildren, reconstruct,
and prettyPrint, which are not necessary in xoc thanks to syntax
patterns and generic traversals. In total, Coffer is 2276 lines of un-
commented code (excluding package and import declarations and
code to manipulate classes and exceptions) while xvault is 641
lines.

Language Files Lines
xoc Zeta 1 34
CIL OCaml 9 94
xtc Java + Rats! 7 194 + 35
Polyglot Java + PPG 13 294 + 28

Figure 4. Files modified and lines of code added to implement
rotate in various extensible compilers.

Unlike Coffer, xvault is composable with other extensions.
For example, because Vault’s flow analysis is more powerful than
Sparse’s, a programmer might choose to load Vault for flow analy-
sis and Sparse for address space checking. We have created a few
small test programs to verify that this combination works. A ver-
sion of Polyglot written in J& (Nystrom et al. 2006) can mix Coffer
with other extensions, but this process requires the programmer to
compose the grammars and pass schedules manually.

4.3 Bitwise rotate

To further compare xoc to recent extensible compilers, we imple-
mented the bitwise rotate operator in section 2 using CIL, xtc, and
Polyglot. Although a trivial extension, this exercise explored the
fixed costs of each compiler’s extension interface and highlighted
key differences between their approaches to extensibility and xoc’s.
Figure 4 summarizes the effort required to implement each exten-
sion.

The core of the rotate extension for CIL is only 48 lines of
OCaml (not including comments and whitespace) in a single new
file. However, because CIL is targeted only at analysis extensions,
adding support for the parsing and abstract syntax of the rotate op-
erator required modifications to seven source files in the CIL core.
OCaml’s pattern matching facilities and CIL’s printf-style restruc-
turing library make the rotate implementation for CIL significantly
shorter than the implementations for xtc and Polyglot. However,
pattern matching required mentally translating the concrete rotate
syntax into its abstract syntax, and CIL’s use of printf-style format
strings means syntax errors can not be statically detected.

The rotate extension for xtc is 194 lines of Java code, plus 35
lines of Rats! parser specification. The bulk of the implementation
is concerned with navigating xtc’s generic syntax trees and dealing

250

with their dynamic types. The generic syntax trees obviate the
need to know or extend any abstract syntax in the rotate extension;
however, without the benefit of destructuring syntax, the rotate
extension implementation requires knowledge of precise details of
concrete program syntax and of the exact relationships between
expression-related non-terminals in the grammar.

The Polyglot-provided extension skeleton alone is 108 lines of
Java and PPG (Polyglot Parser Generator) code and 98 lines of shell
wrapper, again not including comments or whitespace. Implement-
ing the rotate operator added 214 lines of Java/PPG. Because the
design patterns that make Polyglot flexible require many distinct in-
terfaces and classes, even simple extensions consist of many classes
and large amounts of boilerplate code. For example, in addition to
specifying the translation of rotate syntax, the rotate extension must
provide implementations and factories for its abstract syntax, spec-
ify where it fits into the pass schedule, and provide a driver for
compiling programs written in rotate-extended Java. This compar-
ison (Polyglot code that we wrote) is bolstered by the comparison
with Coffer (Polyglot code that Polyglot’s authors wrote) above.

4.4 Function expressions

To exercise xoc, we wrote an extension called xlambda that adds
first-class closures, a feature we have long wished for in C. These
closures behave like regular function pointers, without the usual
C workaround of an extra void* parameter. The new keyword fn

followed by a function definition creates a heap-allocated closure
that can be freed with free. For example, the following snippet
calls qsort with a newly constructed closure:

void alphabetize(int ignorecase, char **str, int nstr)

{

qsort(str, nstr, sizeof(char*),

fn int cmp(const void *va, const void *vb) {

const char **a = va, **b = vb;

if (ignorecase)

return strcasecmp(*a, *b);

return strcmp(*a, *b);

});

}

xlambda provides safe lexical scoping by capturing by-value
copies of all necessary variables from the enclosing environment
directly in the closure structure at the time of creation. By-value se-
mantics allow closures to have unlimited extent; unlike stack-based
closures (for example, GNU C’s nested functions), an xlambda-
created closure is completely self-contained, and thus remains valid
after the function that created it returns.

When xoc compiles the fn expression, xlambda lifts the func-
tion, moving its definition to the top level of the program and
adding an additional argument that points to an environment struc-
ture with fields for all of the variables the closure needs from the
enclosing environment (ignorecase in the example).

The code xlambda will generate begins:

int lambda_cmp(struct env_cmp *env, const void *a, ...)

{

if (env->ignorecase)

...

In addition, xlambda emits code that allocates and initializes a
structure containing env_cmp and a small, dynamically-generated
assembly-language trampoline that adds the extra env argument
and calls lambda_cmp. The closure and the trampoline are allocated
in the same block, so that freeing the function pointer frees the
closure.

Implementation using xoc xlambda uses xoc’s grammar support
to extend the compiler’s grammar with fn expressions using the
grammar specification:

expr: "fn" fndef;

Restructuring and generic syntax allow the construction of the
code that allocates and initializes the closure object to precisely
mimic the literal C code ultimately generated, instead of requiring a
translation into abstract syntax. For example, the following snippet
generates the environment structure based on the free variables of
func, the function being lifted.

fields: list ptr C.sudecl;

for ((v,_) in func.freevars) {

if(!v.isglobal)

fields +=

list[‘C.sudecl{\(v.type) \(mkid(v.name));}];

}

envtype := ‘C.typespec{struct {\fields}}.type;

The fine grained scheduling afforded by attributes allows xlamb-
da to construct new syntax fragments at any time. Code generated
during compile time does not need to be brought “up to speed”
(e.g., if type information is necessary); analysis will be performed
when needed, even if xoc has finished the corresponding analysis
of the rest of the program.

Evaluation Implementing the xlambda extension required 170
lines of Zeta code. Of these 170 lines, 4 declare the grammar ex-
tension, 26 perform free variable analysis, 40 perform scoping and
type checking, and 98 compile fn expressions. Given the complex-
ity of implementing closures, we were happily surprised at the sim-
plicity of xlambda’s implementation, and the ease with which clo-
sures can be added to the C language.

To further evaluate xlambda, we also implemented it using the
xtc toolkit. This implementation was 682 lines of Java, plus 38 lines
of Rats!. Like in the xtc rotate extension, much of the code was
concerned with navigating the generic syntax trees in ways that al-
lowed the appropriate parts of the trees to be modified. In addition,
210 lines were dedicated to working around the possibility of vari-
able capture due to xtc’s lack of automatic hygiene.

4.5 Composability

We designed xoc’s extension interfaces with extension composabil-
ity in mind. We have no way to make sweeping statements about
composability, and it is certainly possible to design extensions that
are not usable together. Even so, we wrote a few programs using
many extensions as a composability sanity check. Here is a pro-
gram that combines xaif, xalef-iter, xlambda, and xpcre:

void

foreach(char **str, int nstr, void(*f)(char*))

{

f(str[0::nstr]);

}

int

main(int argc, char **argv)

{

while(getline()) {

foreach(argv+1, argc-1,

fn void check(char *pat) {

if(it =~ pat)

printf("%s\n", $0.str);

});

free(check);

}

}

This convoluted program matches each line of text returned by
getline against a set of regular expressions given on the com-
mand line. The :: operator, introduced by xalef-iter, executes
its containing statement repeatedly, with each value from 0 to nstr.
The it variable, introduced by xaif, is equal to the last condition

251

evaluated by while; it is copied into the fn closure properly. The
xpcre extension contributes the =~ match and the $0.str syntax.
We compiled this program using all possible extension orderings
and verified that they all compiled to the same, correct code.

As mentioned earlier, we also checked that programs can use
xsparse and xvault together and that xsparse correctly handles
programs using xalef-iter and xgnu-conditional, which intro-
duce new control flow.

Xoc makes it possible to load extensions dynamically and to
mix extensions. These features alone are an advance over existing
work. Although it is certainly possible to write extensions that
conflict when composed—and when it detects conflicts, xoc will
report an error—we are encouraged by the fact that the extensions
we have written do compose. Identifying an exact set of conditions
that guarantee the composability of extensions is interesting future
work. For now, we have refrained from imposing restrictions until
we have a better sense of what kinds of extensions people will
write.

4.6 Discussion

Based on our experience implementing the extensions listed in Fig-
ure 3, we can make some observations about the ease of writing xoc
extensions. More data points are necessary to support hard state-
ments, but xoc extensions seem to require relatively little knowl-
edge of the xoc core. The xoc core has 72 grammar symbols, 56
attributes, and 31 extensible functions. Figure 5 lists the number
of times particular symbols, attributes, or functions are extended
by the extensions in Figure 3. The extensions make their diverse
language changes using relatively few of the grammar symbols, at-
tributes, and functions.

The symbols abdecor1, decor1, and typespec and the func-
tions xapplydecor, xdodecor, xdosudecor, and xsplittypespec

are all involved in processing C type declarations, by far the ugliest
part of C. We have not been able to hide the ugliness completely
in xoc. Nevertheless, the figure shows that two core grammar sym-
bols (expr and stmt), and four core attributes (compiled, type,
welltyped, and forward) are useful for a wide variety of exten-
sions.

5. Related Work

The contribution of our work is the interfaces that allow pro-
grammers to extend xoc dynamically. These interfaces draw on
work done in extensible compilers and other language extensibility
mechanisms.

5.1 Extensible compilers

Because of the extension-oriented focus, extensions must be easy
to write and use; otherwise the base effort required to create a
new extension threatens to dwarf the incremental effort required
to define the extension-specific details. The following collection of
features are essential to xoc:

• dynamic loading of extensions

• changing syntax via extensible grammars

• syntax patterns for manipulating the internal representation

• a typed syntax tree

• lazy attributes for computing and saving analyses

• a general purpose programming language for writing extensions

This section discusses how these features evolved in xoc by
examining a few extensible compilers which had a direct influ-
ence: CIL, a compiler supporting analysis extensions (Necula et al.
2002); Polyglot, an extensible Java compiler framework (Nys-

Symbol
6 expr

4 stmt

2 abdecor1

2 decor1

2 typespec

1 attr

1 fndef

1 label

1 qual

1 top

Attribute
9 compiled

8 type

8 welltyped

4 forward

2 sym

2 vars_out

1 body

1 iscomputation

1 vars

Function
2 xapplydecor

2 xcompilefnsym

1 typefncall

1 xcanconvert

1 xdodecor

1 xdosudecor

1 xsplittypespec

Figure 5. The number of extensions (from Figure 3) that extend
each grammar symbol, attribute, and function.

trom et al. 2003); xtc, an extensible C and Java compiler frame-
work (Grimm 2006; Hirzel and Grimm 2007); Stratego, a speci-
fication language for program transformations (Visser 2004); and
Silver, an extensible attribute grammar system (Van Wyk et al.
2007a,b).

Dynamic loading CIL, Polyglot, xtc, Stratego, and Silver are
“compiler kits” that must be rebuilt for each different extension or
set of extensions, each time producing a new standalone compiler.
Mixing multiple extensions requires composing them manually. A
version of Polyglot ported to the J& language (Nystrom et al. 2006)
addresses extension composability but still requires constructing a
new compiler for each set of extensions.

In contrast, an extension-oriented compiler like xoc accepts
plugins during compilation. It is not necessary to rebuild xoc each
time the user wants to try a different extension.

Extensible grammars Those extensible compilers that provide
support for changing the input grammar (CIL does not) allow
extension writers to specify changes by writing additional grammar
rules. Polyglot and Silver accept context-free grammar rules but
use an LALR parser, making it possible for extensions to add valid
grammar rules that are nonetheless rejected by the parser. Stratego
solves this problem by using a GLR parser (Tomita 1987; van den
Brand et al. 2002), which allows it to handle any context-free
grammar (and thus any arbitrary grammar additions). Xtc solves
this problem by switching formalisms: it uses parsing expression
grammars (PEGs) and a packrat parser (Ford 2004), which also
handle arbitrary additions.

Like Stratego, xoc uses a GLR parser to allow arbitrary gram-
mar additions. As discussed in section 3.1, GLR parsing has the
added benefit over packrat parsing that it allows the detection of
ambiguities introduced by combinations of grammar extensions.
Unlike Polyglot and xtc, xoc’s grammar modifications are limited
to rule addition; more flexible features such as rule removal are at
odds with automatic composability. Polyglot for J&, for example,
allows rule removal but requires combined grammars to be com-
posed by hand.

Syntax patterns CIL provides simple string-based primitives for
restructuring and destructuring concrete syntax, like C’s printf

and scanf. Polyglot provides a similar printf-style restructuring
syntax. Xtc provides a more general mechanism in which patterns
are stored in a separate file. A program called the FactoryFactory
compiles them to Java methods that extensions can call. The CIL
and Polyglot approach keeps the patterns near their use but cannot
check that they are well-formed when compiling extensions. The
xtc approach can check patterns but requires that they be defined in
a separate file, apart from their use.

252

Stratego provides the best of both approaches using concrete
syntax patterns (Bravenboer and Visser 2004). Stratego’s syntax
patterns are easy to use and are syntax-checked at compile time.
Like Stratego, xoc provides domain-specific support for concrete
syntax patterns in it’s implementation language. Unlike Stratego,
xoc’s syntax patterns are typed, as discussed in the next section.

Typed syntax Parse trees have implicit types: for example, a parse
tree representing a statement cannot be used where a parse tree rep-
resenting a variable name is expected. Compilers differ on whether
they expose these types in the implementation language (StmtNode,
NameNode, etc.) or just use a single abstract syntax type (Node).

CIL, Polyglot, and Silver use explicitly typed syntax trees. This
makes it possible for the implementation language’s compiler to
check that syntax trees are well-formed (where a statement node
is expected, only a statement node can be used). This also gives
the compiler writer more control over the internal syntax tree rep-
resentation. For example, Polyglot uses Java interfaces to classify
abstractly related syntax types, such as the Binary interface, which
is the super type of binary expressions, or Term, which is the super-
type of AST nodes that can contribute to control flow. Such inter-
faces allow the implementation language to check that the required
functionality of new node types has been implemented.

On the other hand, using a single abstract syntax type makes
traversals of foreign syntax particularly easy, since the Node object
typically defines a children array with pointers to the child syn-
tax nodes. Stratego and xtc both take this approach. In contrast,
generic traversal using typed abstract syntax requires something
more heavyweight, like the visitor pattern (Gamma et al. 1994).

Xoc provides a typed syntax tree with subclassing support tai-
lored to the syntax tree (C.expr and so on). Typed syntax is particu-
larly important for syntax patterns: because xtc and Stratego use un-
typed syntax trees, they cannot diagnose errors in which the wrong
type of node is passed to a restructuring pattern (for example, using
syntax for a statement where a variable name is expected).

Internally, xoc’s syntax trees have a uniform representation ex-
posed by the astsplit and astjoin primitives. This makes xtc-
and Stratego-like generic traversals possible. However, it trades
flexibility for loss of control; it is not possible to customize the
internal representation in xoc as it is in Polyglot.

Lazy attributes Compilers are traditionally organized as a se-
quence of passes. Adding extensions in such a model requires
defining how the extension’s computation fits into the pass struc-
ture. Polyglot extensions explicitly declare their scheduling re-
quirements to the Polyglot core, which deduces a schedule; CIL,
xtc, and Stratego require scheduling passes by hand. Both ap-
proaches complicate extension design, since extensions must be
aware of when various analyses take place.

Xoc’s solution to scheduling draws on Silver, where all com-
putations are expressed using an attribute grammars and can thus
draw on extensive work on attribute grammar scheduling (Knuth
1968). Like Silver’s attribute grammars, xoc’s lazy attributes let
the programmer define tree traversal implicitly; the required order
naturally arises from the sequence of references to other attributes.
However, xoc’s added flexibility comes at the loss of formalism:
xoc’s attribute functions cannot be automatically analyzed like con-
ventional attribute grammars can.

General-purpose programming language Most compilers are
written using general-purpose programming languages like C, Java,
or ML, but some projects use custom domain-specific program-
ming models. Domain-specific models can simplify common id-
ioms or constructs and provide stronger static guarantees, but, if
not coupled with a general-purpose language, they can make some
tasks considerably more difficult.

Stratego is based entirely on term rewriting; Silver is based en-
tirely on attribute grammars. Both models are very different from
the general-purpose programming languages whose programmers
are xoc’s target audience. Learning a different model of computa-
tion is a significant barrier to entry for these systems.

Xoc starts with a general-purpose programming language and
adds domain-specific constructs—syntax patterns, a grammar type
system, and lazy attributes—to make writing extensions more con-
venient. Unlike in Stratego and Silver, the domain-specific con-
structs are integrated with a general-purpose language. Syntax pat-
terns and lazy attributes can be bypassed in favor of lower-level
constructs like generic traversal and extensible functions when nec-
essary. We have also experimented with domain-specific constructs
for implementing type checkers (Bergan 2007), but their use does
not preclude the use of the general-purpose language. On the other
hand, providing general-purpose constructs precludes static detec-
tion of errors like attribute circularity or coverage of new syntax.

5.2 Other approaches to language extension

Macros Macros are the most popular method for extending
a language, mainly due to the power demonstrated by Lisp’s
macros (Hart 1973; Steele and Gabriel 1993; Graham 1996). Lisp
was also the first to introduce restructuring expressions—the Lisp
term is quasiquotation—to make code generation easier to write
and understand. Programmers have ported Lisp’s macros into other
languages (e.g., Bachrach and Playford 2001; Baker and Hsieh
2002; Weise and Crew 1993). Macros are purely syntactic trans-
formations, making them excellent for adding new syntax but not
useful for semantic changes to existing syntax. Since macros can-
not access compiler internals, they typically do not even type check
their arguments, producing cryptic errors when invoked incorrectly.

Xoc’s extension interface is less concise than macros, but in
return for the loss of brevity, extension writers get automatic syntax
checking, the ability to reuse compiler analyses, and the ability to
introduce semantic changes or restrictions.

Provable extensions Some recent work has focused on being able
to prove correctness properties for specific classes of language ex-
tensions. Semantic type qualifiers (Chin et al. 2005) allow users
to define typing rules for extended sets of qualifiers; the rules are
automatically validated against desired runtime invariants. Other
work has made progress in proving the correctness of dataflow
analyses, compiler transformations, and optimizations (Lerner et al.
2003, 2005). Xoc’s current design prefers flexibility of extension to
provable correctness. A system that enforced safety invariants and
proved correctness properties for some extensions while allowing
others to escape the resulting limitations would give useful flexibil-
ity to extension authors.

6. Conclusion

Xoc is an extension-oriented compiler, which allows an extension
writer to make a small change to the base language and combine
this extension with others, perhaps written by others, much like
how web browsers and other software load content-specific plugins.

A challenge in the design of xoc is to give extension writers the
power to modify the grammar and manipulate and analyze the AST
without forcing the extension writer to understand the representa-
tions within the compiler. Xoc resolves this tension by using syntax
patterns, written in the syntax of the base language, to manipulate
language fragments and ASTs, and using AST attributes, computed
on demand, to hide the scheduling of compiler passes.

Experience with using xoc to write 15 extensions that extend
the compiler in various different ways confirms that these inter-
faces work well. None of the 15 extensions needed to bypass the
interfaces, and in fact xoc provides no mechanism for doing so.

253

Furthermore, the line counts of these extensions indicate that the
extensions are easier to develop than corresponding ones written
using a domain-specific front end or extensible compilers.

Acknowledgments

Todd Millstein provided much useful advice on the design of xoc.
Robert Grimm provided advice on using xtc. The anonymous re-
viewers gave valuable feedback on an earlier draft. During this
work, Russ Cox was supported in part by a fellowship from the
Fannie and John Hertz Foundation, and Eddie Kohler by Sloan
Research and Microsoft Research New Faculty Fellowships. This
project was partially supported by the National Science Foundation
under Grant Nos. 0430425 and 0427202, and by Nokia Research
Center Cambridge.

References

Jonathan Bachrach and Keith Playford. The Java syntactic extender (JSE).
In Proceedings of the 16th annual ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages, and Applications,
2001.

Jason Baker and Wilson C. Hsieh. Maya: Multiple dispatch syntax exten-
sion in Java. In Proceedings of the 2002 ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2002.

Tom Bergan. Typmix: a framework for implementing modular, extensible
type systems. Master’s thesis, University of California Los Angeles,
2007.

Martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In
Proceedings of the 19th annual ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages, and Applications, 2004.

Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type quali-
fiers. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2005.

Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols
in low-level software. In Proceedings of the 2001 ACM SIGPLAN

Conference on Programming Language Design and Implementation,
2001.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, 2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Addison-Wesley, Reading, Massachusetts, 1994.

Paul Graham. On LISP: Advanced Techniques for Common LISP. Prentice-
Hall, 1996.

Robert Grimm. Better extensibility through modular syntax. In Proceedings

of the 2006 ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2006.

Michael Hammer. An alternative approach to macro processing. In
Proceedings of the International Symposium on Extensible Languages,
Grenoble, France, 1971.

Timothy P. Hart. MACRO definitions for LISP. AI Memo 57, MIT AI
Project—RLE and MIT Computation Center, 1973. (reproduced in
Steele and Gabriel 1993).

Martin Hirzel and Robert Grimm. Jeannie: Granting Java native inter-
face developers their wishes. In Proceedings of the 22nd annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications, 2007.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the European Conference on Object-

Oriented Programming, 1997.

Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala,
and Amin M. Vahdat. Mace: language support for building distributed
systems. In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2007.

Donald E. Knuth. Semantics of context-free languages. Mathematical

Systems Theory, 2(2):127–145, 1968.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Proceedings of the 1986 ACM

Conference on LISP and Functional Programming, 1986.

Max Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense.
In Proceedings of the 2007 USENIX Annual Technical Conference, 2007.

Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving
the correctness of compiler optimizations. In Proceedings of the 2003

ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2003.

Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated
soundness proofs for dataflow analyses and transformations via local
rules. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, 2005.

Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory
of Computation. Prentice Hall PTR, Upper Saddle River, New Jersey,
1997.

George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer. Cil:
Intermediate language and tools for analysis and transformation of C
programs. In Proceedings of the 11th International Conference on

Compiler Construction, 2002.

Nathanial Nystrom, Michael Clarkson, and Andrew Myers. Polyglot: an
extensible compiler framework for Java. In Proceedings of the 12th

International Conference on Compiler Construction, 2003.

Nathanial Nystrom, Xin Qi, and Andrew Myers. J&: nested intersection
for scalable software composiiton. In Proceedings of the 21st annual

ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications, 2006.

Jukka Paakki. Attribute grammar paradigm: a high-level methodology in
language implementation. ACM Computing Surveys, 27(2):196–255,
June 1995.

Guy L. Steele, Jr. and Richard P. Gabriel. The evolution of Lisp. In Proceed-
ings of the 2nd ACM SIGPLAN Conference on History of Programming

Languages, 1993.

W. Teitelman. Pilot: A step towards man-computer symbiosis. Technical
Report AITR-221, Massachusetts Institute of Technology, 1966.

Masaru Tomita. An efficient augmented context-free parsing algorithm.
Computational Linguistics, 13(1–2):31–46, January–June 1987.

Linus Torvalds and Josh Triplett. Sparse – a semantic parser for C. http://
www.kernel.org/pub/software/devel/sparse/ (retrieved Decem-
ber 2007), 2007.

Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser.
Disambiguation filters for scannerless generalized LR parsers. In Pro-

ceedings of the 11th International Conference on Compiler Construc-

tion, pages 143–158, 2002.

E. Van Wyk, D. Bodin, L. Krishnan, and J. Gao. Silver: an extensible
attribute grammar system. In Proceedings of the 7th Workshop on

Language Descriptions, Tools, and Analysis, 2007a.

Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin.
Attribute grammar-based language extensions for Java. In Proceedings

of the European Conference on Object-Oriented Programming, 2007b.

Eelco Visser. Program transformation with Stratego/XT. rules, strategies,
tools, and systems in Stratego/XT 0.9. Technical Report UU-CS-2004-
011, Institute of Information and Computing Sciences, Utrecht Univer-
sity, 2004.

Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically scoped
object adaptation with expanders. In Proceedings of the 21st annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications, 2006.

Daniel Weise and Roger Crew. Programmable syntax macros. In Proceed-

ings of the 1993 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 1993.

Phil Winterbottom. Alef reference manual. In Plan 9 Programmers Manual,

Volume Two. Harcourt Brace Jovanovich, 1995.

254

