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ABSTRACT 1 INTRODUCTION

Fast-growing Internet applications like streaming medid a Selecting the right set of functionality for a network proab
telephony prefer timeliness to reliability, making TCP apo is subtle and touches on issues of modularity, efficiency; fle
fit. Unfortunately, UDP, the natural alternative, lacks con ibility, and fate-sharing. One of the best examples of gatti
gestion control. High-bandwidth UDP applications must im- this right is the split of the original ARPAnet NCP functidna
plement congestion control themselves—a difficult task—ority into TCP and IP. We might argue about a few details, such
risk rendering congested networks unusable. We set out t@s whether the port numbers should have been in IP rather than
ease the safe deployment of these applications by designing TCP, but the original functional decomposition looks rekaar
congestion-controlled unreliable transport protocol. The out-  ably good even 25 years later. The key omission from both
come, the Datagram Congestion Control Protocol or DCCP,TCP and IP was congestion control, which was retrofitted to
adds to a UDP-like foundation the minimum mechanisms nec-TCP, the main bandwidth consumer, in 1988 [22]. Protocols
essary to support congestion control. We thought those mechother than TCP were appropriately left alone: TCP conges-
anisms would resemble TCP’s, but without reliability argl, e  tion control curbs the bandwidth usage of long-lived sessio
pecially, cumulative acknowledgements, we had to recemsid such as file transfers, and is bound up with TCP’s flow control
almost every aspect of TCP’s design. The resulting protocoklnd reliable bytestream semantics; the TCP congestionatont
sheds light on how congestion control interacts with unareli mechanisms are thus irrelevant for connectionless, winleli
able transport, how modern network constraints impactprot applications such as DNS over UDP.

col design, and how TCP’s reliable bytestream semantics in- However, recent years have seen a large increase in appli-
tertwine with its other mechanisms, including congestion-c  cations using UDP for long-lived flows. These applications,
trol. which include streaming media, Internet telephony, videec
ferencing, and games, all share a preference for timeliness
over reliability. That is, given a chance to retransmit ad ol
packet or to transmit a new packet, they often choose the
new packet. By the time the old packet arrived, it would have
been useless anyway: in media applications, users oftéerpre
bursts of static to choppy rebuffering delay; in games, ¢imdy
latest position information matters. TCP’s reliable byresm
delivery can introduce arbitrary delay and cannot be told to
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unreliable transfer, streaming media, Internet telephoay ~ What these applications want. .
Applications generally doot want to implement TCP-

friendly congestion control themselves. This is not only be
This paper differs from the version published at SIGCOMM 2006 in that cause congestion C_0ntr0| can_constraln p(_erformance,_but al
it has been reformatted at a larger point size. because properly implementing congestion control is very
Much of the work described here was done at the InternatiGuahputer ~ hard, as the long history of buggy TCP implementations
?E!ence '”?t'lu_"ebce”;e_r for Internet Reskeamh in Bzrgﬂa:f‘(’j;”'?'s _ makes clear [33, 34]. Applications might be willing to sub-

is material is based in part upon work supported by theddatiScience  ; :

Foundation under Grant Nos. 0205519 and 0230921. Any ampshiindings, jectthemselves to Cong?Stlon control, not least for thej_gljo
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could be built—UDP, plus just those mechanisms necessargan send. The necessarily tight coupling between feedback
to support congestion control. The result, the Datagram Constyle and the congestion control algorithm makes this medul
gestion Control Protocol (DCCP) [14, 18, 24], is currently a breakdown rather unnatural. For example, adding smoother
IETF Proposed Standard. rate-based algorithms such as TFRC [16] to the Congestion
We expected the design process to run smoothly: after allManager (as an alternative to the basic abruptly-changing
unreliability is simpler to provide than reliability, so r&ly AIMD algorithm) would require different feedback from the
unreliable congestion control would be no harder to providereceiver; this would then require a new kernel API to supply
than reliable congestion control. That naive expectatias w the necessary feedback to the new Congestion Manager mod-
wrong, and a protocol that should have been simple to desigmile.
was not so simple after all. The development process helped Related work on architectural and technical issues in the
us appreciate the ways TCP’s reliability, acknowledgementdevelopment of new transport protocols includes papers on
flow control, and congestion control mechanisms intertwineSCTP, RTP [39], RTSP [38], and UDP-Lite [26]. A periph-
into an apparently seamless whole. In particular, DCCRk la erally related body of research on the development of new
of retransmissions and cumulative acknowledgementsdorce congestion control mechanisms for high-bandwidth environ
us to rethink almost every issue involving packet sequencin ments, or with more explicit feedback from routers, hightig
Of course, TCP appears seamless only when you ignore its exhe need to be flexible to accommodate future innovation.
tensive evolution, and we still believe that an unreliabie-p
tocol's simpler semantics form a better base for layerimgfu 2 AppPLICATION REQUIREMENTS

tionality. We therefore discuss many of the issues we faced ] - ]
in designing a modern transport protocol, including sonae th ANy protocol designed to serve a specific group of applica-

the TCP designers did not face as squarely, such as robsstnedons should consider what those applications are likely to
against attack. need, although this needs to be balanced carefully against a

desire to be future-proof and general.
Related Work In the early days of Internet multimediathe = One of DCCP'’s target applications Iaternet telephony.
research community naturally assumed that congestion coniteractive speech codecs act like constant-bit-ratecesyr
trol would be an integral part of UDP applications, although sending a fixed number of frames per second. Users are ex-
much of this work targeted multicast [11, 29]. In the end, tremely sensitive to delay and quality fluctuation—evenenor
commercial software vendors focused on unicast and omittecdo than to bursts of static—so retransmissions are often use
congestion control. Recently, applications such as Sk¢pg [ less: the receiver will have passed the playback point befor
have started to perform coarse-grained congestion adaptat the retransmission arrives. Quick adaptation to availaiel-
to allow the use of higher quality codecs when bandwidth per-width is neither necessary nor desired; telephony demands a
mits, but not in a form that encourages interoperability. slower congestion response. The data rate is changed by ad-
Systems such as Time-lined TCP [32] retrofit some sup-justing the size of each compressed audio frame, either-by ad
port for time-sensitive data onto TCP, but do so using a spejusting codec parameters or by switching codecs altogether
cific deadline-based policy. Real applications often haseam At the extreme, some speech codecs can compress 20 ms of
complex policies. For example, application-level message audio down to 64 bits of payload. (The packet rate, however,
may have different levels of importance and there may be inds harder to adjust, as buffering multiple frames per packet
terdependencies between them, the canonical example beirgiuses audible delay.) Such small payloads pressure t® tra
MPEG'’s key frames (I-frames) and incremental frames (B/P-port layer to reduce its own header overhead, which becomes a
frames). significant contributor to connection bandwidth. A codeg/ma
SCTP supports multiple datagram streams in a single conalso save bandwidth by sending no data during the silence pe-
nection [46]. This improves timeliness for some applicasio  riods when no one is talking, but expects to immediately re-
since missing packets from one stream do not delay packetiirn to its full rate as soon as speech resumes. Many of these
from any other stream. Nevertheless, SCTP’s reliabilikg |  issues are common fateractive videoconferencing as well,
TCP’s, can introduce arbitrary delay. A partial relialyiléx-  although that involves much higher bandwidth.
tension, PR-SCTP [45], attempts to overcome this by allgwin ~ Streaming media introduces a different set of tradeoffs. Un-
a sender to explicitly abandon outstanding messages. &his r like interactive media, several seconds of buffer can bé use
quires at least a round-trip time; the suggested API resesnbl to mask some rate variation, but since users prefer temporar
Time-lined TCP’s. video artifacts to frequent rebuffering, even streamingliae
Another approach is to provide congestion control at agenerally prefers timeliness to absolute reliability. &bden-
layer below TCP or UDP, as with the Congestion Man- codingstandards often lead to application datagrams aflyid
ager [3, 6]. While this may have benefits for TCP, the benefitsvarying size. For example, MPEG’s key frames are many
for unreliable UDP applications are less clear. These agpli times larger than its incremental frames. An encoder may thu
tions must provide their own protocol mechanisms to detectgenerate packets at a fixed rate, but with orders-of-maditu
and acknowledge losses. This information is then fed to thesize variation.
Congestion Manager, which determines when the application Finally, interactive games use unreliable transport to com-



municate position information and the like. Since they canthird-party attacksvhere the attacker cannot guess valid con-
quickly make use of available bandwidth, games may prefer anection sequence numbers [31]. If initial sequence numbers
TCP-like sawtooth congestion response to the slower regpon are chosen sufficiently randomly [8], attackers must snoop
desired by multimedia. data packets to achieve any reasonable probability of suc-
Since retransmissions are not necessarily useful for theseess. However, we found a number of subtleties in applying
time-sensitive applications, they have a great deal tofgaim sequence number security to an unreliable protocol; dgcuri
the use of Explicit Congestion Notification [35], which lets conflicts directly with some of our other goals, requiring a
congested routers mark packets instead of dropping thensearch for reasonable middle ground. Middlebox robustness
However, ECN capability must only be turned on for flows and transparency led us to introduce explicit connectitupse
that react to congestion, which requires a negotiationeetw and teardown, which ease the implementation burden on fire-
the two endpoints to establish. Most of these applicatioms ¢ walls and NATs, and required the disciplined separation of
rently use UDP, but UDP’s lack of explicit connection setup network-level information from transport information. rfex-
and teardown presents unpleasant difficulties to network adample, our mobility design never includes network addesse
dress translators and firewalls and complicates sessiah-est in packet payloads or cryptographically-signed data.

lishment protocols such as SIP. Any new protocol should im- 3. A framework for modern congestion control. DCCP

prove on UDP's friendliness to middleboxes. should support many applications, including some whose
needs differ radically from file transfer (telephony, sinéag
2.1 Goals media). To attract developers, DCCP should aim to meet ap-

lication needs as much as possible without grossly vitdati

CP friendliness. Clearly DCCP should support all the fea-
tures of modern TCP congestion control, including selectiv
acknowledgements, explicit congestion notification (ECN)
acknowledgement verification, and so forth, as well as obvi-
ous extensions hard to port to TCP, such as congestion ¢ontro
of acknowledgements. More importantly, congestion cdntro
algorithms continue to evolve to better support applicatio
needs. DCCP should encourage this evolution. Applications
can thus choose among varieties of congestion control: DCCP
provides aframework for implementing congestion control,
not a single fixed algorithm. Currently, the choice is betwee
TCP-like, whose sawtooth rates quickly utilize availatdet-

Considering these requirements, the evolution of moder
transport, and our desire for protocol generality and matim
ity, we eventually arrived at the following primary goals fo
DCCP’s functionality.

1. Minimalism. We prefer a protocol minimal in both func-
tionality and mechanism. Minim&linctionality means that, in
line with the end-to-end argument and prior successfuktran
port protocols in the TCP/IP suite, DCCP should not provide
functionality that can successfully be layered above ithsy t
application or an intermediate library. This helped deiaem
what to leave out of the protocol; for instance, applicagion
can easily layer multiple streams of data over a single isnrel
able connection. M|n|mahechan|sr_nmeansthat DCTCP.S core width, and TFRC [16], which achieves a steadier long-term
protocol features should be few in number, but rich in impli- . . . .

: : rate. In future, DCCP will support experimentation with new
cation. Rather than solve protocol problems one at a time, we

. . congestion control mechanisms, from low-speed TFRC vari-
prefer to design more general mechanisms, such as the de-

) . ants to more radical changes such as XCP [23]. Each of these
tails of sequence numbering, that can solve several prablem”_ A .
. . : variants may require different acknowledgement mechagjism
at once. We intended to design a simple protocol, but there . )
) o TR . ; or instance, TFRC'’s acknowledgements are much more par-
are many kinds of simplicity: minimal mechanism defines the

L . L . simonious than TCP’s. Thus, DCCP supports a range of ac-
type of simplicity we sought in DCCP. Minimal mechanism . ;
also helps us achieve a secondary goal, namely minimal (or al§nowledgement types, depending on the selected congestion
least small)header size. To be adopted for small-packet ap- control method.
plications such as Internet telephony, DCCP headers should Another aspect concerns challenging links where loss and
be reasonably compact even in the absence of header confOrruption unrelated to congestion are common, such as cel-
pression techniqueS. For example’ e|ght bytes is unaddepta lular and wireless teChnO|OgieS. Although there is no wide
overhead for reporting a one-bit ECN Nonce. Header over-2greement on how non-congestion loss and corruption should
head isn't critical for well-connected hosts, but we want to affect send rates, DCCP should allow endpoints to declare

support DCCP on ill-connected, low-powered devices such agvhen appropriate that packets were lost for reasons uecelat
cell phones. to network congestion, and even to declare that delivery of
2. RobustnessThe network ecosystem has grown rich and CO'Tupt data is preferred to loss.

strange since the basic TCP/IP protocols were designed. A 4. Self-sufficiencyDCCP should provide applications with
modern protocol must behave robustly in the presence of atan APl as simple as that of UDP. Thus, as in TCP, a DCCP
tackers as well as network address translators, firewalls, a implementation should be able to manage congestion control
other middleboxes. First, DCCP should be robust againat datwithout application aid. DCCP receivers must detect conges
injection, connection closure, and denial-of-servica@ts.  tion events without application intervention; DCCP sesder
Robustness does not, however, require cryptographic guara must calculate and enforce fair sending rates without appli
tees; as in TCP, we considered it sufficient to protect agjainstion cooperation. Furthermore, congestion control patarse



must be negotiated in-band. Clent  Request oM

5. Support timing-reliability tradeoffs. Any API for Response Connection
sending DCCP packets will support some buffering, allow- [ Ack | Initiation
ing the operating system to smooth out scheduling bumps. ]
However, when the buffer overflows—the application’s send . Data/AckiDataAck—] ?g:sfer
rate is more than congestion control allows—a smart appli- ]
cation may want to decide exactly which packets should be CloseReq
sent. Some packets might be more valuable than others (au- Close Connection
dio data might be preferred to video, for example), or newer Reset Termination

packets preferred to older ones. DCCP should support npt onl
naive applications, but also advanced applications thait wa
fine-grained control over buffers and other tradeoffs betwe
timing and reliability.

Figure 1: DCCP packet exchange overview.

main DCCP mechanisms, be it connection setup, acknowl-
edgements, or even congestion control, apply naturallyuie m
ticast, and even among multicast applications one size does

L . . not fit all [21]. We resisted the temptation to generalize be-
Any design is determined as much by what is left out as byyond what we believed we could do well.

what is included. During the lengthy DCCP design process,
many suggestions were made to add functionality; most did3 DCCP OVERVIEW

not make the cut. In some cases it is interesting to note why
not. DCCP is a unicast, connection-oriented protocol with bidi-

Flow control. In a reliable protocol it makes no sense rectional data flow. Connections start and end with threg-wa

to transmit packets that the receiver may discard. Howeverhandshakes, as shown in Figure 1; datagrams begin with the
timing-critical applications may, under some circumsts)c  16-byte generic header shown in Figure 2. The Port fields
be unable to avoid doing so. Receivers may prefer to drop oldesemble those in TCP and UDP. Data Offset measures the
data from their buffers in favor of new data as it arrives, or offset, in words, to the start of packet data. Since this field
may prefer an application-specific policy difficult to exgse is 8 bits long, a DCCP header can contain more than 1000
at the transport level. Flow control is also nontrivial tot ge Dytes of option. The Type field gives the type of packet,
right: likely-mistaken flow control limits have been obsedv ~ @nd is somewhat analogous to parts of the TCP flags field.
to lower peak transfer rates [1, 48]. Thus, we decided that'he hames in Figure 1 correspond to packet types, of which
DCCP should not impose any flow control limitation separate DCCP specifies ten. Many packet types require additional in-
from congestion control. This essentially extends supfosrt ~ formation after the generic header, but before optionsrhegi
timing—reliability tradeoffs to its logical endpoint. Obarse,  this design choice avoids cluttering the universal headtr w

optional flow control could easily be layered on top of DCCP infrequently-used fields. Even the acknowledgement number
if desired. is optional, potentially reducing header overhead for nid

Selective reliability. Prioritizing timeliness over reliabil- ~ re€ctional flows of data. There are no equivalents to TCP's
ity does not preclude retransmitting data, so long as the ref€ceive window and urgent pointer fields or its PUSH and
transmissions reach the receiver in time. Transport-lager URG flags, and TCP has no equivalent to CCVal (Section 6.2)
lective reliability might be convenient for applicatiortsyt ~ OF CsCov/Checksum Coverage (Section 6.5). Sequence and
we've found no obviously preferable API for identifying e acknowledgement num_bers are 48 bits long, although some
datagrams that should be retransmitted; retransmissiad-de Packet types also permit a compact form to be used (see Sec-
lines [32], maximum retransmission counts, and buffeedas 0N 4.5).
strategies all have advantages and disadvantages. Since
transmissions are easily layered above DCCP, selectiire rel
ability was left out of the protocol itself for now. DCCP’s congestion control methods are modularly separated

Streams. SCTP [46] provides applications with stoream from its core, allowing each application to choose a method
abstraction: sub-connection flows with independent secpien it prefers. The core itself is largely focused on connection
spaces. The benefit is that head-of-line blocking betweermanagement—setup, teardown, synchronization, feature ne
streams is eliminated. For an unreliable protocol, though,gotiation, and so forth.

2.2 Deliberate omissions

r
i SEQUENCE NUMBERS

there is no blocking problem, as neither reliable nor ineord
delivery is guaranteed. It is trivial to layer streams ov&@P
where they are required.

Multicast. It would have been nice to support multi-party

The simplicity of this core functionality turned out to be a
distinctly mixed blessing. TCP, for example, is able to sim-
plify some aspects of connection management by leveraging
the very semantics of reliability that it aims to provide.F'€

delivery in DCCP, but there doesn’t appear to be any simpleflow control means that two live endpoints always remain syn-
common ground between the different possible uses of mulchronized, and TCP’s reliability means a single cumuladise
ticast, let alone between unicast and multicast. None of theknowledgement number suffices to describe a stream’s state.
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More generally, TCP combines reliability, concisenessmf a

knowledgement, and bytestream semantics in a tightly uhifie ., SoucePort |  DestinatonPort
whole; when we tried to separate those properties, its mech-(a) 1?atalolffslet F?Yal CsCoy :C:h:ec:ks:ufn: e
anisms fell apart. Sometimes the solutions we developed in Res| Type | Reserved |  Sequence Number
response seem as simple as TCP’s and sometimes they don't, = " " " " Sequence Number (low bits)
but they are almost always different. e —————————————————,
DCCP’s core connection management features all depengp, _ Reserved . .|,  Acknowledgement Number

on the most fundamental tool available, namebguence L. ... . Acknowledgement Number (lowbits)
numbers. We now know to consider sequence numbers care-_ . .
fullv: seeminaly small chanaes to sequence number SensantiCFlgure 2: DCCP packet header. The generic header (a) begins every°PDCC
ully: 9Y g ] ! ] datagram. Individual packet types may add additional mfgion, such as
have far-reaching effects, changing everything up to tlee pr (b) an acknowledgement number. The packet header is falldweDCCP
tocol state machine. The interlocking issues surroundig s options, then payload; payload starts Data Offset wordsthet datagram.
guence numbers collectively form the most surprising seurc

of complexity in DCCP’s design, so we explore them in some SYN or FIN bits, do not occupy sequence space, and thus can-

depth. not be acknowledged conventionally. As a result, TCP cannot
easily evaluate the loss rate for pure acknowledgements-or d
4.1 TCP sequence numbers tect or react to reverse-path congestion, except as famgas hi

) ) ~_ acknowledgement loss rates reduce the forward path’s sate a
TCP uses 32-bit sequence numbers representing applicatiofq.

data bytes. Each packet carries a sequence number, or segno,
and a cumulative acknowledgement number, or ackno. 4.2 DCCP sequence numbers

A cumulative ackno indicates that all sequence numbers UpDCCP must be able to detect loss without application support
to, but not inCIUding, that ackno have been received. The re1nevitab|y, then, DCCP headers must include sequence num-
ceiver guarantees that, absent a crash or applicatioverter pers. Those sequence numbers should measure datagrams, not
tion, it will deliver the corresponding data to the applioat  pytes, since in accordance with the principles of Applimati
Thus, the ackno succinctly summarizes the entire history Ofl_ayer Framing [13], unreliable applications generally dsen
a connection. This succinctness comes at a price, howevegnd receive datagrams rather than portions of a byte stream.
the ackno provides no information about whethater data  This also simplifies the expression of congestion contgn-al
was received. Several interlocking algorithms, includiagt  rithms, which generally work in units of packets. (Some care
retransmit, fast recovery, NewReno, and limited transBiit [ s required to calculate congestion control using the ayera
help avoid redundant retransmissions by inferring or tenta packet size.)
tively assuming that data has been received. Such assurmaptio  \What, though, should be done with packets that don't carry
can be avoided if the sender is told exactly what data was regpplication data? DCCP’s goals include applying congastio
ceived, a more explicit approach implemented by TCP selectontrol to acknowledgements, negotiating congestionrobnt
tive acknowledgements (SACK) [10]. features in band, and supporting explicit connection sahah

TCP sequence numbers generally correspond to individualeardown. The first goal requires detecting acknowledgémen
bytes of application data, and variables measured in seguen |oss; the second requires acknowledging each featureinegot
numbers, such as receive and congestion windows, use unitgion. A single minimalist choice, motivated by TCP’s inclu
of data bytes. Thus, an endpoint may acknowlepae of a  sion of SYN and FIN in sequence space, seemed to address
packet's contents (for instance, when a sender overflows thegy| three goals at once: In DCC&ery packet, including pure
receiver’s receive window), although this happens rarely i acknowledgements, occupies sequence space and uses a new
practice and may indicate an attempt to subvert congestiogequence number.
control [37]. TCP's congestion control algorithms genlgral  This choice had several unintended consequences. (For ex-
operate on these byte-oriented variables in units ofethe  ample, a single sequence space now contains both data packet
pected packet size, which can lead to anomalies [2]. and acknowledgements. Often this should be separated: TCP

TCP connections contain other features that must be aceoes not reduce a sender’s rate when an acknowledgement it
knowledged, including connection setup and teardown,-time sends is lost, so neither should DCCP.) The obvious TCP-
stamps, ECN reports, and optional features like SACK. Con-like choice would have been to assign pure acknowledge-
nection setup and teardown is handled elegantly: SYN andnents the same sequence numbers as preceding data pack-
FIN bits occupy sequence space, and are thus covered by thets; only connection handshakes and data would gain new se-
ackno. Each other feature, though, needs its own acknowlguence numbers. Of course, feature negotiation and connec-
edgement mechanism. Each timestamp option contains an ation synchronization would then require ad hoc acknowledge
knowledgement; a TCP header bit (CWR) acknowledges ECNment mechanisms. Another alternative would be to introduce
congestion reports; support for optional features is askno a secondary sequence number space for non-data packets. In
edged via options like SACK-Permitted. the end, though, we believe that despite its warts, the min-

Pure acknowledgements, which contain neither data noimalist path we chose is as simple as or simpler than these



Data(seq 0) Timeout )
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Data(seq 501) Reset(seq 0, ack 1)~ No socket
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sync(seq 1, ack 501) |send sync Nosocket  send Syng SYNC(seq 501, ackoQ No socket
| Sync(seq 1, ackouL) ]
k 50
SyncAck(seq 502 , Reset(seq 201, ack 501
M{ Update to OK, rese
[502, 602]
(a) Synchronization (b) Half-open connection recoverphbem (c) Half-open connection recovery: solution
Figure 3: Recovering synchronization after bursts of loss.
alternatives. sync, but endpoints would have to partially parse options on

Most DCCP packets carry an acknowledgement number apossibly-invalid packets, a troublesome requirement. @ve ¢
well as a sequence number. This led to another critical desidered preventing endpoints from sending data when they
sign decision: To which packet should the ackno correspondWere at risk of getting out of sync, but this seemed fragile,
Cumulative acknowledgements don't make sense in an unimposed an artificial flow control limitation, and, since ave
reliable protocol where the transport layer never retratssm probe packets occupy sequence space, would not have helped.
data. DCCP’s ackno thus reports thatest packet received, Explicit synchronization with unique packet types seema no
rather than the earliest not received. This decision, whiith  like the only working solution.
seems inevitable, has tremendous consequences, since with The details are nevertheless subtle, and formal modeling re
out a cumulative acknowledgement, there is no succinct sumvealed problems even late in the process. For example, con-
mary of a connection’s history. Additional congestion ¢ohkt  sider the ackno on a Sync packet. In the normal case, this
specific options provide information about packets prewgdi ackno should equal the segno of the out-of-range packet, al-
the ackno. The most detailed option, Ack Vector, reports ex-lowing the other endpoint to recognize the ackno as in its
actly which packets were received, and exactly which packet expected range. However, the situation is different when th
were received ECN-marked, using a run-length-encoded byt®ut-of-range packet is a Reset, since after a Reémedther
array; each Ack Vector byte represents up to 64 packets. endpoint is closed. If a Reset had a bogus sequence number

L (due maybe to an old segment), and the resulting Sync echoed

4.3 Synchronization that bogus sequence number, then the endpoints would trade
When a TCP connection is interrupted by network failure, its Syncs and Resets until the Reset's sequence number rose into
probe packets are retransmissions, and use expected sequeithe expected sequence number window (Figure 3(b)). Instead
numbers. But in retransmissionless DCCP, each packet se@ Sync sent in response to a Reset must set its ackno to the
during an outage uses a new sequence number. When coseqno of the latest valid packet received; this allows theed
nectivity is restored, each endpoint might have reached a seendpoint to jump directly into the expected sequence number
guence number wildly different from what the other expects. window (Figure 3(c)). As another example, an endpointin the
Thus, large bursts of loss can force endpoints out of sync, dnitial REQUESTstate—after sending the connection-opening
problem surprisingly difficult to solve. Request packet, but before receiving the Response—respond

We cannot eliminate expected-sequence-number windowdp Sync packets with Reset, not SyncAck. This helps clean up
as they are the main line of defense protecting connectiongalf-open connections, where one endpoint closes andmeope
from attack (see Section 4.6). Instead, DCCP suppeets a connection without the other endpoint’s realizing.
plicit synchronization. An endpoint receiving an unexpected TCP senders’ natural fallback to the known-synchronized
sequence or acknowledgement number sends a Sync packetmulative ackno trivially avoids many of these problents, a
asking its partner to validate that sequence number. (TCP ithough subtlety is still required to deal with half-open neo-
this situation would send a reset.) The other endpoint pro-ions.
cesses the Sync and replies with a SyncAck packet. When th
original endpoint receives a SyncAck with a valid ackno, it
updates its expected sequence number windows based on thatTCP acknowledgement requires only a bounded amount of
SyncAck’s seqno; see Figure 3(a) for an example. state, namely the cumulative ackno. Although other SACK

Some early versions of this mechanism synchronized usingtate may be stored, that state is naturally pruned by suc-
existing packet types, namely pure acknowledgements. Howeessful retransmissions. On the other hand, a DCCP acknowl-
ever,mutually unsynchronized endpoints can never resync inedgement contains potentially unbounded state. Ack Vector
such a design, as there is no way to distinguish normal outeptions can report every packet back to the beginning of the
of-sync traffic from resynchronization attempts—both type connection, bounded only by the maximum header space al-
of packet have either an unexpected seqno or an unexpectddcated for options. Since there are no retransmissiors, th
ackno. We considered using special options to get back intaeceiver—the endpoint reporting these acknowledgements—

4.4 Acknowledgements
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wrapping problems at gigabit network speeds (a problem ad-

., SoucePort | . DestinationPort dressed by the timestamp option). Despite this, DCCP origi-
(@) | DataOffset | CCVa] CsCoy ~~~ Checksum nally used short 24-bit sequence numbers. We reasoned that

Res| Type |0 Sequence Number (low bits) fast connections would favor fewer large packets over many
®) | e | T Acknowledgement Number (low bits) small packets, leaving packet rates low. This was, of course

a mistake. A datagram protocol cannot force its users to use
large packet sizes, but absent packet length restrict¥dsits

are too few: a 10 Gb/s flow of 1500-byte packets will sefftl 2
packets in just 20 seconds.

We considered several solutions. The header could be rear-
ranged, albeit painfully, to allow 32-bit sequence numplaus
knowledgement packet; at that point, the receiver can disca this doesn't prpvide enough cushion to avoid the issue. §CP.'

timestamp option is a bad model—verbose, complex, and still

the corresponding acknowledgement information. . : ;
. . . vulnerable to attack. Even a more concise and consisteat tim
We seem to be entering an infinite regression—must ac-

knowledgements of acknowledgements themselves be a stamp would force implementations to parse the options area

knowledged? Luckily, no: an acknowledgement number in_clrtl)ﬁl;;)gee;jetermlnlng whether the packet had a valid sequence

dicating that a particular acknowledgement was receivéd su . . .
9 P 9 The simplest and best solution was simply to lengthen se-

fices to clean up state at the receiver, and this, being aesing| uence numbers to 48 bits (64 would have crowded out other
sequence number, uses bounded state at the sender. Furth%r—

eader fields). A connection using 1500-byte packets would
more, some types of acknowledgements use bounded stat . .

ave to send more than 14 petabits a second before wrapping
and thus never need to be acknowledged.

Unreliability also affects the semantics of acknowledge-48_blt sequence numbers unsafely fast (thatis, in unden2 mi

ment. In DCCP, an acknowledgemamwyer guarantees that Ut(Ia-|s());/veverforcin the resulting overhead on all packets was
a packet’s data will be delivered to the application. Thig-su ' 9 9 P

. o . L considered unacceptable; consider speech codecs, in &hich
ports trading off timeliness against reliability (Goal &on- byte payloads are not atypical. Endpoints should be able to
sider a streaming media receiver that prefers new data t¢fold y'e pay ypical. P

. o ) . choose between short and long sequence numbers.
the receiver blocks for a while, it may find on resuming com-

i : The solution, once found, was relatively clean. Although
putation that more packets are locally enqueued than it Cal) ~=p sequence numbers are 48 bits lona. some packet tvpes
handle in the allotted time. It is desirable for the applmat g 9. P yp

L o may leave off the upper 24 bits (Figure 4). The receiver wil i
as partof the timeliness—reliability tradeoff, to be aloleltop fer i/hose bits’ valuggJ using an (exgected)48-bit sequence num
the old data.

For many reasons, however, this data should have been ab_er. The following procedure takes a 24-bit vakiand an

knowledaed already. Acknowledaing packets onlv on a "_%xpected sequence numbseand returns's 48-bit extension.
. g€ Y. AC ging pac y PP 1 includes two types of comparison, absolute (writtehand
cation delivery would distort round-trip time measurensent

i AN
and unacceptably delay option processing; acknowledgt=zmenCIrCUIar mod 24 (written ©).

options should, for congestion control purposes, repolt on ryg,, :=r mod 24 ryign := [r/224];

losses and marks that happened in the network proper. T@f (riow @ S < row) Il sincremented past 224 — 1
avoid muddying the semantics, we separate these concerns return((rpjgh+ 1) mod PY x 2?4 15,

at the expense of a little efficiency. DCCP acknos and ac-lseif §Q riow <9) II's decremented past O (reordering)
knowledgement options repohieader acknowledgement: a return((rpigh+ 224 — 1) mod 24) x 224+ s,

packet was received, processed, and found valid, its aption®!Se
were processed, and its data was enqueued for possible fu-

ture delivery to the application. A separate option calledeD Connection initiation, synchronization, and teardownkpac
Dropped indicates when an acknowledged packet's data Wagis ajways use 48-bit sequence numbers. This ensures that
not delivered—for example, when that data was dropped inhe endpoints agree on sequence numbers’ full values, and

the receive buffer. greatly reduces the probability of success for some sedbus
tacks. But data and acknowledgement packets—exactly those
packets that will make up the bulk of the connection—may;, if
How big should the sequence space be? Short sequence nurire endpoints approve, use 24-bit sequence numbers instead
bers lead to smaller headers, less bandwidth, and less iemdpo trading maximum speed and incremental attack robustness fo
state. On the other hand, they wrap more frequently—that isJower overhead. Although a single sequence number length
long-lived connections must quickly reuse sequence nusnber would be cleaner, we feel the short sequence number mecha-
running the risk that old delayed packets might be accepted anism is one of DCCP’s more successful features. Good control
new—and make connections more vulnerable to attack. over overhead is provided at moderate complexity cost with-
TCP’s 32-bit per-byte sequence numbers already haveut opening the protocol unduly to attack.

Figure 4: DCCP header with short sequence numbers. See also Fig. 2.

needs explicit help to prune this state. Thpgre acknowl-
edgements must occasionally be acknowledged. Specifically,
the sender must occasionally acknowledge its receipt ofan a

returryigh x 224 +s,

4.5 Sequence number length



4.6 Robustness against attack is quite easy to inject data into a connection that allows 24-

Robustness against attack is now a primary protocol desigr?It sequence numbers: given the default windombt- 100

N ) . ackets, an attacker must seddz 83000 Data packets to get
goal. Attackers should find it no easier to violate a new proto b P 9

, T . : L 50% chance of success. An application can reduce this risk
col’'s connection integrity—by closing a connection, irjeg

) ) simply by not asking for short sequence numbers, and data
data, moving a connection to another address, and so forth— Ply by g q

i , o i . injection attacks seem less dangerous than connectioh rese
itgir(;ttc;\;:icg?tg;CPs connection integrity. Unfortunatéhys attacks; the attacker doesn’t know where in the stream their

b _ l data will appear, and DCCP applications must already deal
Tt(_:P gli?rair(wteemqgeniing?; o stfcu[!ty. kSucceis u c%n- OIwith loss (and, potentially, corruption).
nection attacks require that the attacker know (1) each end- Unless we are careful, though, data injection might cause

pomr:s a(;jdrgs{s:nd pqrt e.m.(tj. (I2) valid sequen(t;e numberr]s fo&onnection reset. For example, certain invalid optionshinig
each endpoint. Assuming initial Sequence NUMDErS are DNOSE, o the receiver to reset the connection; an injected Data

\évell (that IS, random_ly) [8],trel;_fa_1blysgues§|ng slequerfjf(_:mng packet might include such an option. Several aspects of the
ers rzquwes snooplngl onttraklc. ngopmg a ?.0 SU310€52- a? protocol were modified to prevent this kind of attack escala-
cavesaropper can easily aftack a connection [31]. App 'tion. At this point, no Data packet, no matter how malformed

cat|onfs desw;ng prtotectlohn aga'?]St Srlllgoplng ?IE?I(D:!(SI\?I'S? its header or options, should cause a DCCP implementation to
some form ot cryptography, such as f=sec or S OP~yeset the connection, or to perform transport-level opamat

tion. ) ) that might eventually lead to resetting the connection.ifror
Of course, a non-snooping attacker can always try their Iuckstance, many options must be ignored when found on a Data

at guessing sequence numbers. If an attacker seratsack 5 cyet |n retrospect, these modifications accord with e T
packets distributed evenly over a spaceLafequence num- g isiness Principle, “be conservative in what you serdi, an

bers (the best strategy), then the probability that one@seh o) in what you accept”. Although careful validity chec

attack packets will hit a windoW sequence numbers wide ing with harsh consequences for deviations may seem appro-

is WN/L; if the attacker must guess both a sequence NUMy iate for 4 hostile network environment, attackers carnaip
ber and an acknowledgement number, with validity windows 5+ checking to cause denial-of-service attacks. It iEebéo

- 2
Wi andWp, the success probability W WaN/L=. IN TCP, data  aen tg the principle and ignore any deviations that attacke
injection attacks require guessing both sequence and atkno might cause.

edgement numbers, but connection reset attacks are easier—
SYN packet will cause connection reset if its sequence num-,
ber falls within the relevant window. (A similar, recently-
publicized attack with RST packets is somewhat easier to de€Congestion control requires loss detection, which in ten r
fend against.) Recent measurements report a median advegjuires sequence numbers. An unreliable protocol uses-appli
tised window of approximately 32 kB [30]; wit/ = 32768  cation data units, so DCCP sequence numbers rzaciets
bytes, this attack will succeed with more than 50% probabil-rather than bytes. Several reasons, including our preferen
ity when N = 65536. This isn’t very high, and as networks for minimal mechanism, led us to assigvery packet a new
grow faster, receive window widths are keeping pace, lepdin sequence number.
to easier attacks. The semantics of acknowledgement are very different for an
DCCP’s 48-bit sequence numbers and support for explicitunreliable protocol than for TCP, as there is no succinchequ
synchronization make reset attacks much harder to execut@lent to TCP’s cumulative ackno. DCCP acknowledges the
For example, DCCP is immune to TCP’s SYN attack; if a most recently received packet. Options such as Ack Vector in-
Request packet hits the sequence window of an active condicate precisely which packets have been received; sonte suc
nection, the receiving endpoint simply responds with a Sync options may grow without bound, requiring tfaknowl edge-
The easiest reset-like attack is to send a Sync packet with ra ments be acknowledged from time to time.
dom sequence and acknowledgement numbers. If the ackno Providing robustness via sequence number validity checks
by chance hits the relevant window, the receiver will updateis harder for an unreliable protocol, since absent flow aintr
its other window to the attacker’s random sequence numberthe two endpoints can get out of sync. DCCP thus provides
In many cases another round of synchronization with the trueanexplicit synchronization mechanism. This has some advan-
endpoint will restore connectivity, but lucky attacks wéhd  tages even over TCP’s design, since unexpected events can
to long-term loss of connectivity, since the attacked emuipo trigger synchronization rather than connection reset.
will think all of its true partner’s packets are old. But even  |ong sequence numbers are preferred to short ones, since
given a large window ofV = 2000 packets (nearly 3 MB they cleanly avoid wrapping issues and frustrate attack, bu
worth of 1500-byte packets), an attacker must send more thawhere space is at a premium, short sequence numbers can be
10 packets to get 50% chance of success. extended to long ones on the fly. Care should be taken to en-
Unfortunately, the goal of reducing overhead conflicts with sure that any easily-attacked points in the protocol, sich a
security. DCCP Data packets may use 24-bit sequence nunwpportunities for data injectiorcannot escalate to denial-of-
bers, and contain no acknowledgement number. As a result, iservice attacks.

.7 Summary and discussion



A Data © a Data G which might for example require detailed Ack Vector infor-
Ack DataAck mation. But a half-connection that has sent no data packets
Data N _ DataAck | for some time (0.2 seconds or 2 RTTs, whichever is greater),
Ack DataAck and that has no outstanding acknowledgements, is said to be
[ Ack | quiescent. There is no need to send acknowledgements on a
(@) (b) ©) quiescent half-connection. When the B-to-A half-conraecti

goes quiescent (B stops sending data), A can also stop ac-

Figure 5: (a) An A-to-B half-connection and (b) a B-to-A half-contiea knowledging B’s packets, except as necessary to prune B’s
combine into (c) a full connection with piggybacked data askinowledge-
acknowledgement state.

ments.
Half-connections turned out to be an extremely useful ab-
Not all comparisons between TCP sequence numbers anstraction for managing connection state. It makes sense con
DCCP-style unreliable, packet-oriented sequence numberseptually and in the implementation to group information re
come out in favor of TCP. For example, TCP’s bytestreamlated to a data stream with information about its reversk.pat
sequence numbers make it ambiguous whether an acknowDCCP runs with this idea: each half-connection has an inde-
edgement refers to a packet or its retransmission, which hapendent set of variables and features, including a coragesti
led to a cottage industry in acknowledgement disambigoatio control method. Thus, a single DCCP connection could con-

and recovery from spurious retransmissions [27, 36]. sist of two TFRC half-connections with different paramster
or even one half-connection using TCP-like congestion con-
5 CONNECTION MANAGEMENT trol and one using TFRC.

This section describes DCCP properties, including several
with interesting differences from TCP, that do not directly
concern sequence numbers. 5.2 Feature negotiation

5.1 Asymmetric communication DCCP’s connection endpoints must agree on a set of param-

DCCP, like TCP, provides a single bidirectional connection gters, the most obvious of Wh'Ch. is the choice of conges-
tion control methods the connection should use. Both end-

data and acknowledgements flow in both directions. However, . e . )
many DCCP applications will have fundamentally asymmet- points have capabilities—the mechanisms they implement—

ric data flow. For example, in streaming media almost all data"fmOI application requirements—the mechanisms the applica-

flows from server to client; after the initial connectionget tion wou_ld prefer. Since the appllqanon canncl)(t bel relle_dn.tl)p q
the client's packets are all acknowledgements. to negotiate agreement, negotiation must take place in.ban

TCP devolves naturally into unidirectional communication TCP has a similar problem, applying at least to ECN, SACK,

Since TCP acknowledgements occupy no sequence Space'\éx{indow scal_ing, and _tim_estamps, which it solves_ ad hoc with
is neither useful nor possible to acknowledge them; sintz da . ifferent options or b_|ts n each_case. The resulting compl_e
retransmissions clean up old ack state, a unidirection& TC ity would onIy. growin an unreliable protocol. Therefqre, n
flow in which all data has been acknowledged occupies min—DC.CP we bu!lt ha single general-purpose mecham;m for
imal state on both endpoints. We aim for a similar property reliably negotiating the values géatures. A feature is sim-

from DCCP: a DCCP connection with unidirectional data flow ply atl per-encépomt ||or0per|tydon Wh;)ﬁeh:/alue bott_h e:ndpomts
should spend little time, space, or bandwidth on the inactiv must agree. Examples include each hafl-conneéction's cenge

direction. In a bidirectional DCCP connection, howeveciea tion control mechanism, and whether or not short sequence
endpoint may need to keep detailed SACK-like acknowledge—numbers are allowed.
ment information about its partner’s data packets. Whea dat Feature negotiation involves two option types: Change op-
flows unidirectionally, this overhead is largely a wastetfer ~ tions open feature negotiation, and Confirm options, which
inactive direction. If B is sending only acknowledgements t are sent in response, name the new values. Change options
A, then A should acknowledge B’s packets only as neces-2re retransmitted as necessary for reliability. Each feate-
sary to clear B's acknowledgement state; these acks-af-ackgotiation takes place in a single option exchange; our ini-
are minimal and need not contain detailed loss reports (Sectial design involved multiple back-and-forth rounds, bt
tion 4.4). proved fragile. A single exchange isn't overly constragjin

To solve these issues cleanly, DCCP logically divides eachSince complex preferences can be described in the options
connection into twdalf-connections. A half-connection con-  themselves. Change and Confirm options can contain prefer-
sists of data packets from one endpoint plus the correspgndi €nce lists, which the endpoints analyze to find a best match.
acknowledgements from the other. When communication is With hindsight, generic reliable feature negotiation hlas a
bidirectional, both half-connections are active, and agkn lowed us to easily add additional functionality without dee
edgements can often be piggybacked on data packets (Figng to consider interactions between feature negotiation;
ure 5). The format for acknowledgements is determined bygestion control, reliability, and the differing acknowtggiment
the governing half-connection’s congestion control mdtho styles required by each congestion control mechanism.



5.3 Mobility and muItihoming Client Server Client Server
Close CloseReq

Server closes

Mobility and multihoming, which cut across the network and
transport layers, are different from most functionalityttiat
they cannot be layered on top of an unreliable protocol. Mo-
bility could be implemented entirely at the network layes, a
with Mobile IP, but choosing the transport layer has advan- Client closes
tages [42]: the transport layer is naturally aware of addres
shifting, so its congestion control mechanism can resppnd a

propriately, and transport-layer mobility avoids tria@gbut-  pections. Generally these attacks are executed againstser
ing issues. We were thus directed to develop a mobility andyather than clients. Any modern transport protocol mustdse d
multihoming mechanism for DCCP. signed from the outset to resist such attacks, which may even

Happily, mobility and multihoming are among the few jyyolye changes to the design of the protocol state machine
cases where unreliability makes a problem easier. Reliablggg|f.

Time-Wait
—

Figure 6: Shutdown handshakes push Time-Wait state to the client.

Time-Wait

transport must maintain in-order delivgry even acrogsimalt The basic strategy is to push state to the client whenever
addresses. As a consequence, changing a connection'saddrgyossiple. In DCCP, for example, a server responding to a Re-
set requires tight integration with the transport layef [h-  qest packet can encapsulate all of its connection stataint

reliable transport, however, doesn't guarantee in-orétivd  |njt Cookie option, which the client must echo when it com-
ery, or any delivery at all, and coordination can therefae b p|etes the three-way handshake. Like TCP’s SYN cookies [9]
quite loose. DCCP's mobility and multihoming mechanism ang SCTP's initialization cookies [46], this lets the serve
simply joins a set ofomponent connections, each of which  ay4id keeping any information about half-open connections
may have different endpoint addresses, ports, sequence numinjike SYN cookies, which were retrofitted, Init Cookies can
bers, and even connection features, into a sisgfgonentity.  encapsulate lots of state. Another state-holding issuarecc
This is done in the simplest possible way: to add a new ad-yring connection shutdown where, as with TCP, Time-Wait
dress, an endpoint opens a new DCCP connection, includingtate needs to remain at an endpoint for at least two minaites t
in its Request an option for attaching to an existing sessionprevent confusion in case the network delivers packets late
This means that most DCCP and middlebox code can treagnjike TCP, DCCP servers can shift Time-Wait state onto
component connections as independent; for instance, eacjjjling clients. This is accomplished by introducing asymm
connection has its own congestion control state. The ordgco - ry into the shutdown state machine. All DCCP connections
that differs involves the socket layer, where transpoeratts  end with a single Reset packet, and only the receiver of that
with the application. Most transport state is unique per om Reset packet holds Time-Wait state. Normal connections end
ponent connection, but all components in a session share gty a Close-Reset handshake, but the server (and only the
single socket. Data written to the socket can be distributedseryer) can initiate shutdown with a CloseReq packet, which
arbitrarily among component connections, and data redeive effectively asks the client to accept Time-Wait state (Fégu
from any component connection is enqueued on the shareg)_

socket. This design resembles previous work on sessi@T-lay  pccp also allows rate limits whenever an attacker might
mobility management [25, 43], but thanks to unreliabiMg  force an endpoint to do work. For example, there are optional
can add multihoming support while simplifying the basic ab- ate |imits on the generation of Reset and Sync packets. Fi-

stractions. o _ nally, as described above, the DCCP state machine itself and
The mobility and multihoming mechanism also prevents the explicit synchronization mechanism have both been-engi

connection hijacking, where an attacker moves one endpOingeered to resist blind reset attacks on existing connes:tion
of a victim’s connection to its own |IP address. We reason that

hijacking is fundamentally more serious than data injectio 5.5 Formal modeling

or connection reset, so hijacking should be prevemeth g jnitial DCCP design was completed without benefit of for-
when the attacker can passively snoop the connection. Thus, 5 modeling. As our work progressed, however, we made use
the DCCP options that manage sessions are protected againsf 5 semi-formal exhaustive state search tool and two formal
forgery and replay by nonces and digital signatures. OfSBUr s, a labeled transition system (LTSA, [28]) model and an
an on-path active attacker, such as a compromised router, cg,jependently-developed colored Petri net (CPN) modehfro
still hijack a connection with or without mobility. the University of South Australia [47]. These tools, and-par
ticularly the colored Petri net model, were extremely ukefu
revealing several subtle problems in the protocol as we had
In atransport-level denial-of-service attack, an attatkes to  initially specified it.

break a victim’s network stack by overwhelming it with data  The most important tool was simply shifting from reason-
or calculations. For example, the attacker might send thouing via state diagrams to detailed pseudocode that defined
sands of TCP SYN packets from fake (or real) addresseshow packets should be processed. The resulting precision re
filling up the victim's memory with useless half-open con- vealed several places where our design could lead to dead-

5.4 Denial-of-service attacks
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lock, livelock, or other confusion. An ad hoc exhaustivaesta reverse-path congestion slows down the forward path, and
space exploration tool was then developed to verify that themedium reverse-path congestion may not even be detected,
pseudocode worked as expected; examining its output led talthough it can be particularly important for bandwidth-
further refinements, especially to the mechanism for recov-asymmetric networks or packet radio subnetworks [7]. Mod-
ering from half-open connections. The LTSA model—which ern protocols should ideally detect and act on reverse-path
included states, packets, timers, and a network with lods ancongestion. Thus, CCID 2 maintains a feature called Ack Ra-
duplication, but not sequence numbers—was used to mor&o that controls the rough ratio of data packets per acknowl
formally examine the specification for progress and deddloc edgement. TCP-like delayed-ack behavior is provided by the
freedom. It found a deadlock in connection initiation, whic default Ack Ratio of two. As a CCID 2 sender detects lost ac-
we fixed. The CPN model went into more depth, in particu- knowledgements, it manipulates the Ack Ratio so as to reduce
lar by including sequence numbers, with impressive resultsthe acknowledgement rate in a very roughly TCP-friendly
This model found the half-open connection recovery problemway.
described in Figure 3(b), a similar problem with conneddion  Ack Ratio is an integer. To reduce ack load, it is set to at
in Time-Wait state, and a problem with the short-sequenceieast two for a congestion window of four or more packets.
number extension code in Section 4.5 (we initially forget re However, to ensure that feedback is sufficiently timelysit i
ordering). These problems involved chatter, rather thadde capped at cwn®, rounded up. Within these constraints, the
lock: a connection would eventually recover, but only after sender changes Ack Ratio as follows. Re¢qual the current
sending many messages and causing the verification tool'&\.ck Ratio.
generalized state space to explode in size. Thus, as the pro- ) ,
tocol improved the verifier ran more quickly! e For each congestion window of data where at least one of
Our experience with formal modeling was quite positive, the corresponding acks was lost or markeds doubled;
especially combined with clear explanation in pseudocodes For each cwng(R? — R) consecutive congestion windows
Next time, we would seek out modeling experts earlier in the 0f data whose acks were not lost or markRds decreased

design process. by 1.
This second formula comes from wanting to increase the num-
6 CONGESTION CONTROL ber of acks per congestion window, namely cwRgdby one

As a congestion control framework, DCCP gives the appli- for every congestion-free window that passes. Howevetgsin
cation a choice of congestion control mechanisms. Some apR is an integer, we instead findkeso that, aftek congestion-
plications might prefer TFRC congestion control, avoiding free windows, cwndR+ k= cwnd/(R—1).
TCP’s abrupt halving of the sending rate in response to con- )
gestion, while others might prefer a more aggressive Tk®-li 6.2 CCID 3: TFRC Congestion Control
probing for available bandwidth. The choice is made via Con-Tprc congestion control in DCCP’s CCID 3 uses a differ-
gestion Control IDs (CCIDs), which name standardized con-gnt approach. Instead of a congestion window, a TFRC sender
gestion control mechanisms. A connection’s CCIDs are ne-ses a sending rate. The receiver sends feedback to the sende
gotiated at connection startup. This section describeabe roughly once per round-trip time reporting the loss evetd ra
CCIDs that have currently been developed, congestion@ontr jt js currently observing. The sender uses this loss eveet ra
issues exposed by DCCP’s target applications that remain t¢, getermine its sending rate; if no feedback is received for
be solved, and more general problems relating to congestiogeyeral round-trip times, the sender halves its rate.
control, including misbehaving receivers and non-conigest s is reasonably straightforward, and does not require re
loss. liable delivery of feedback packets, as long as the seng&tstr
6.1 CCID 2: TCP-like Congestion Control the receiver's repor.ts .of the loss event rate. Sjnc_e acknowl
edgements are so limited—to one per round-trip time—there
DCCP’s CCID 2 provides a TCP-like congestion control is no need for acknowledgement congestion control. However
mechanism, including the corresponding abrupt rate cteingea mere loss event rate is ripe for abuse by misbehaving re-
and ability to take advantage of rapid fluctuations in avail- ceivers. Thus, CCID 3 requires instead that the receivartep
able bandwidth. CCID 2 acknowledgements use the Ack Vec-a set ofloss intervals, the quantities from which TFRC cal-
tor option, which is essentially a version of TCP’s SACK. Its culates a loss event rate. Each loss interval contains a-maxi
congestion control algorithms likewise follow those of SAC  mal tail of non-dropped, non-marked packets. The Loss-nter
TCP, and maintain similar variables: a congestion windowvals option reports each tail's ECN nonce echo, allowing the
“cwnd”, a slow-start threshold, and an estimate of the num-sender to verify the acknowledgement; see Section 6.4 below
ber of data packets outstanding [10]. The receiver need never report more than the nine most re-
One difference from TCP is CCID 2’s reaction to reverse- cent Loss Intervals. Since this bounds acknowledgemedst sta
path congestion. TCP doesn’t enforce any congestion con€CID 3 acknowledgements need not be acknowledged. Loss
trol on acknowledgements, except trivially via flow control Intervals resembles TCP’s SACK option even more closely
This is simultaneously too harsh and not harsh enough: highhan does Ack Vector, exceptthat unlike SACK, Loss Integval
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Figure 7: Send rate for given packet drop rates using TCP, standaRCTF  Figure 8: Send rate for givelbyte drop rates using TCP, standard TFRC, and
and small-packet TFRC. TCP uses bulk transfer and 1460-4sgenents; small-packet TFRC. TCP uses bulk transfer and packet shegsoptimize
TFRC uses 14-byte segments and has an application-limigednmim send send rate; TFRC parameters are as in Figure 7.

rate of 12 kbps including headers.

assemble packets to be as large as possible. For unrel@ble a
plications, the story is rather different. Due to a comhorat
of application-level framing and tight delay constrairdp:-
plications such as telephony and gaming may sometimes find
it necessary to send frequent small packets. A good adaptive
multi-rate CELP speech codec such as AMR [19] can achieve
as the state of the grt evolves. bitrates from 12 kbps down to less than 5 kbps. At 5.6 kbps,
TFRC also requires the}F_data sengers attach to each datd > ms audio frame requires only 14 bytes. Interactive me-
packet a coarse-grained “timestamp” that increments everyjis must react to congestion primarily by adapting the packe

quarter-round-rip time. This timestamp allows the reeeto g6 Keeping the rate constant; any additional latency would
group losses and marks that occurred during the same roundiroduce audible artifacts into the playout stream.

trip time into a single congestion event. Such a timestamp So how should such a low-bandwidth, small-packet flow

could obviously be included as an option, but at _the cost Ofcompete with a TCP flow sending 1500-byte packets? We ini-
4 byte_s per packet. Inste_ad, CCID 3 attaches the timestamp tf?ally hoped that standard TFRC would suit VoIP applicasion
a 4-bit protocol header field, CCVal, reserved for use by the

sender’s congestion control mechanism. Such a small field rebUt in practice it competes poorly because it factors packet
9 ) size into its throughput equation. By default, a TFRC flow us-

quires care to- avoid wrapping problems; we considered thlsing small packets will achieve the same throughput as a TCP
worth it to avoid the overhead. : ; ;
flow using the same small packet size and seeing the same loss

rate. But most of the time TCP does not use small packets, so
a TFRC VolP session will lose out badly to a file transfer. See,
Many open issues remain for designing congestion controfor example, the simulation results in Figure 7: an appilicat
suitable for unreliable timing-critical applications. &xrples  limited standard TFRC flow reduces its send rate with increas
of currently-problematic application desires include: ing loss rates, even though it always sends far less data than
would a large-packet TCP flow.

Given these sensible application requirements—and the ap-
plications’ overall modest sending rates, in both packats a
) o _bytes per second—it made sense to design a TFRC variant al-
e Abrupt changes in application data rate due to codec art"lowing such a VoIP call to compete fairly with a large-packet

facts, such as MPEG I-frames vs. B/P-frames. TCP flow. Our small-packet TFRC variant [15] does precisely
We don'’t yet understand how far congestion control mecha-this by compensating for packet size. Figure 7 also showvis tha
nisms for best-effort traffic can be pushed to deal with thesethe small-packet TFRC variant competes fairly for bandividt
application-level issues, or what the consequences might bwith a large-packet TCP flow.
for aggregate traffic if congestion control mechanisms are Is small-packet TFRC safe to deploy? The issue is clouded
pushed too far. We expect DCCP to evolve as more is learnedyy questions about the bottleneck links. While the bottiéne
and modular CCIDs facilitate this evolution. As a concrete e router's forwarding limitation is commonly link capacitp i
ample, we focus on the small packet issue, which casts lighbytes per second, in some cases it may be router CPU cycles,
on the fundamental difficulties faced in designing a protoco which constrain the forwarding rate ipackets per second.
that should work well for a wide range of applications in the Even if link capacity is the bottleneck, the queue at the bot-
face of immense diversity of network constraints. tleneck router may be limited in packets or bytes. The former

For a fixed packet loss rate, a TCP connection that usesvill give both small and large packets the same drop proba-
smaller packets will achieve a proportionally lower segdin bility, whereas the latter will preferentially drop largagkets.
rate in bytes per second than one sending larger packets. Howurthermore, in some situations a flow might encountelr
ever, TCP’s bytestream semantics mean that it can generalliiple bottlenecks with different characteristics.

can group several distinct losses into a single range reptres
ing a congestion event. This feedback information is substa
tially different from CCID 2’s Ack Vector, but DCCP supports
both mechanisms equally well. A less flexible protocol might
have difficulties supporting future congestion control nogts

6.3 Future congestion control issues

e Sending many small packets rather than fewer large ones.

e Rapid startup after idle periods, such as in interactive-com
munication where parties speak in turn.
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If the bottleneck is in packets per second, an adaptatidn thasent in the connection; but in the presence of retransnmissio
changes only the packet size while sending a constant packeind partial retransmission, a TCP sender can never be sure
rate serves no purpose. However, most modern routers caexactly which packets were received, as retransmissiores ha
forward minimum sized packets at line speed, so it is prob-the same sequence numbers as their originals. Thus, the TCP
ably reasonable to assume that changing the packet size isonce echo and verification protocol must specially resyn-
worthwhile. But does a small-packet TFRC flow in fact see chronize after losses and marks. None of this is necessary
the same loss rate as the large-packet TCP flow? If the botin DCCP, where there are no retransmissions—every packet
tleneck router manages its flow in bytes, then the small packhas its own sequence number—and no cumulative ack: op-
ets are already less likely to be dropped. Figure 8 shows théions such as Ack Vector explicitly declare the exact pagket
results of a simulation like Figure 7, but where edogke is to which they refer.
dropped with some probability; a packet is dropped if any of  An endpoint that detects egregious misbehavior on its part-
its bytes are dropped. Hersiandard TFRC competes fairly  ner's part should generally slow down its send rate in re-
with TCP. The small-packet variant gets too much bandwidthsponse. An “Aggression Penalty” connection reset is alee pr
at high byte drop rates, and can actually starve TCP flows invided, but we recommend against its use except for apocalyp-
extreme circumstances. tic misbehavior. After all, if short sequence numbers aeslyus

Internet router behavior is simply not well specified, so an attacker may be able to confuse an endpoint’s nonce echo
there is no right answer for how congestion control should bethrough data injection attacks.
designed. What then should DCCP do? The question of appro- Several other DCCP features present opportunities for re-
priate congestion control for small packet flows is still bpe ceiver misbehavior. For example, Timestamp and Elapsed
A pragmatic view is that applications will not choose betwee Time options let a receiver declare how long it held a packet
standard TFRC and small-packet TFRC, but rather betweemefore acknowledging it, thus separating network rouil-tr
small-packet TFRC and no congestion control at all. If DCCPtime from end host delay. The sender can'’t fully verify this
only offered standard TFRC, with the likelihood of behavior interval, and the receiver has reason to inflate it, sincetsho
like that in Figure 7, many application writers would opt éor  round-trip times lead to higher transfer rates. Thus far axesh
fixed-rate UDP flow. The small-packet variant is never worseaddressed such issues in an ad hoc manner.
for the network than this, and sometimes it is much better;

and, importantly, it may work for the application. 6.5 Partial checksums and non-congestion loss

Several of our target applications, particularly audio and
video, not only tolerate corrupted data, but prefer coitumpt
Internet congestion control is voluntary in the sense teat f  to loss. Passing corrupt data to the application may improve
if any, routers actually enforce congestion control coampdie. its performance as far as the user is concerned [20, 40].eWhil
Unfortunately, some endpoints, particularly receiveasgin- some link layers essentially never deliver corrupt datagst,
centives to violate congestion control if that will get them such as cellular technologies GSM, GPRS, and CDMA2000,
their data faster. For example, misbehaving receivers mighoften do. Furthermore, link-layer mechanisms for copinthwi
pretend that lost packets were received or that ECN-markedorruption, such as retransmission (ARQ), can introduee de
packets were received unmarked, or even acknowledge datay and rate variability that applications want even lesmth
before it arrives [37]. TCP’s semantics deter many of thesecorruption [12]. DCCP therefore follows the UDP-Lite preto
attacks, since missing data violates the expectation @-rel col [26] in allowing its checksum to cover less than an entire
bility and must therefore be handled by the application. How datagram. Specifically, its checksum coverage (CsCov) field
ever, DCCP applications generally tolerate loss to some deallows the sender to restrict the checksum to cover just the
gree, making deliberate receiver misbehavior more likete DCCP header, or both the DCCP header and some number of
protocol must therefore be designed to allow the detectiorbytes from the payload. A restricted checksum coverage indi
of deliberate misbehavior. In particular, senders mustide a cates to underlying link layers that corrupt datagrams khou
to verify that every acknowledged packet was received un-be forwarded on rather than dropped or retransmitted, &g lon
marked. To do this the sender provides an unpredictablemoncas the corruption takes place in the unprotected area.
with each packet; the receiver echoes an accumulation of all The motivation for partial checksums follows that of UDP-
relevant nonces in each acknowledgement [37]. Lite, but is perhaps more compelling in DCCP because of con-
DCCP, like TCP, uses the ECN Nonce for this purpose. Thegestion control. Wireless link technologies often exhéit
nonce encodes one bit of unpredictable information thagis d underlying level of corruption uncorrelated with congesti
stroyed by loss or ECN marking [44]. All acknowledgement but endpoints treat all loss as indicative of congestiomi-Va
options contain a one-bit nonce echo set to the exclusie$-or ous mechanisms have been proposed for differentiatingtype
the nonces of those packets acknowledged as received nowf loss, or for using local retransmissions to compensdte [4
marked. However, unlike in TCP, calculating and verifying It isn’t yet clear how oneshould respond to different types
this nonce echo presents no difficulties. The TCP nonce echof loss—our current congestion control mechanisms treat co
applies to the cumulative ack, and thus covers every packetuption as they would treat ECN marking, that is, as conges-

6.4 Misbehaving receivers
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tion indications. However, protocols should at least allew  ing reliability, liveness, flow control, and congestion tmh
ceivers to distinguish between types of loss, allowingénacr An unreliable protocol has neither luxury, and there dods no
mental deployment of alternative responses as experiance appear to be a simple unifying mechanism equivalent to the
gained. cumulative acknowledgement.

To enable this, DCCP allows receivers to report corruption Nevertheless, it is possible to design a relatively simple
separately from congestion, when the corruption is résttic  protocol that robustly manages congestion-controlleshecn
to packet payload. (Payload corruption may be detected withtions without reliability. Explicit synchronization an@w ac-
a separate CRC-based Payload Checksum option; all packekniowledgement formats even have some advantages over their
with corrupt headers must be dropped and reported as lostJCP equivalents. Modular congestion control mechanisms
This uses the same mechanism as other types of non-networlkaake it possible to adapt congestion control within a fixed
congestion loss, such as receive buffer drops: the packet iprotocol framework as network and application constraints
reported as received, and its ECN Nonce is included in thechange. Robustness against attack is addressed in a mpre tho
relevant acknowledgement option’s nonce echo, but a separaough way.

Data Dropped option reports the corruption. It is too early to tell whether DCCP will succeed in wide
) ) deployment. Only recently have implementations started to
6.6 Summary and discussion appear (in Linux and FreeBSD); NATs and firewalls do not

DCCP was designed from the outset to suppatiular con- yet understand it; no application yet uses DCCP as its pyimar
gestion control. In part, this is because the state of the arfransport. Because it was designed for applications, atftl wi
is still advancing, both algorithmically and in the proper r  feedback from application designers, we hope and believe it
sponse tanon-congestion loss. Supporting this evolution in Wil be useful anyway. Regardless, our design experiense ca
a transport protocol avoids the need to rewrite thousands ofvell-known issues of reliability and protocol design in wha
applications with every update to congestion control semansSeemed to us a valuable new light.
tics. Furthermore, time-sensitive applications can haidely Although it may not seem like it, we have deliberately
varying needs, as illustrated by small-packet TFRC. It seem avoided describing all the details of DCCP. The interested
unlikely that any one algorithm will suitthem all, so allowgy ~ reader is referred to the specifications [14, 18, 24].
applications to choose the dynamics they prefer is es$émtia
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