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ABSTRACT

Fast-growing Internet applications like streaming media and
telephony prefer timeliness to reliability, making TCP a poor
fit. Unfortunately, UDP, the natural alternative, lacks con-
gestion control. High-bandwidth UDP applications must im-
plement congestion control themselves—a difficult task—or
risk rendering congested networks unusable. We set out to
ease the safe deployment of these applications by designinga
congestion-controlled unreliable transport protocol. The out-
come, the Datagram Congestion Control Protocol or DCCP,
adds to a UDP-like foundation the minimum mechanisms nec-
essary to support congestion control. We thought those mech-
anisms would resemble TCP’s, but without reliability and, es-
pecially, cumulative acknowledgements, we had to reconsider
almost every aspect of TCP’s design. The resulting protocol
sheds light on how congestion control interacts with unreli-
able transport, how modern network constraints impact proto-
col design, and how TCP’s reliable bytestream semantics in-
tertwine with its other mechanisms, including congestion con-
trol.
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1 INTRODUCTION

Selecting the right set of functionality for a network protocol
is subtle and touches on issues of modularity, efficiency, flex-
ibility, and fate-sharing. One of the best examples of getting
this right is the split of the original ARPAnet NCP functional-
ity into TCP and IP. We might argue about a few details, such
as whether the port numbers should have been in IP rather than
TCP, but the original functional decomposition looks remark-
ably good even 25 years later. The key omission from both
TCP and IP was congestion control, which was retrofitted to
TCP, the main bandwidth consumer, in 1988 [22]. Protocols
other than TCP were appropriately left alone: TCP conges-
tion control curbs the bandwidth usage of long-lived sessions,
such as file transfers, and is bound up with TCP’s flow control
and reliable bytestream semantics; the TCP congestion control
mechanisms are thus irrelevant for connectionless, unreliable
applications such as DNS over UDP.

However, recent years have seen a large increase in appli-
cations using UDP for long-lived flows. These applications,
which include streaming media, Internet telephony, videocon-
ferencing, and games, all share a preference for timeliness
over reliability. That is, given a chance to retransmit an old
packet or to transmit a new packet, they often choose the
new packet. By the time the old packet arrived, it would have
been useless anyway: in media applications, users often prefer
bursts of static to choppy rebuffering delay; in games, onlythe
latest position information matters. TCP’s reliable bytestream
delivery can introduce arbitrary delay and cannot be told to
forget old data. An unreliable protocol is clearly more like
what these applications want.

Applications generally donot want to implement TCP-
friendly congestion control themselves. This is not only be-
cause congestion control can constrain performance, but also
because properly implementing congestion control is very
hard, as the long history of buggy TCP implementations
makes clear [33, 34]. Applications might be willing to sub-
ject themselves to congestion control, not least for the good of
the network, as long as it was easy to use and met their needs.
A modular congestion control framework would also make it
easier to develop new applications, and to deploy congestion
control advances across many applications at once.

After analyzing several alternatives [17], and motivated
mostly by keeping the basic API as simple as UDP’s, we set
out to design a new transport protocol providing a congestion-
controlled flow of unreliable datagrams. The goal was a sim-
ple, minimal protocol upon which other higher-level protocols



could be built—UDP, plus just those mechanisms necessary
to support congestion control. The result, the Datagram Con-
gestion Control Protocol (DCCP) [14, 18, 24], is currently an
IETF Proposed Standard.

We expected the design process to run smoothly: after all,
unreliability is simpler to provide than reliability, so surely
unreliable congestion control would be no harder to provide
than reliable congestion control. That naive expectation was
wrong, and a protocol that should have been simple to design
was not so simple after all. The development process helped
us appreciate the ways TCP’s reliability, acknowledgement,
flow control, and congestion control mechanisms intertwine
into an apparently seamless whole. In particular, DCCP’s lack
of retransmissions and cumulative acknowledgements forced
us to rethink almost every issue involving packet sequencing.
Of course, TCP appears seamless only when you ignore its ex-
tensive evolution, and we still believe that an unreliable pro-
tocol’s simpler semantics form a better base for layering func-
tionality. We therefore discuss many of the issues we faced
in designing a modern transport protocol, including some that
the TCP designers did not face as squarely, such as robustness
against attack.

Related Work In the early days of Internet multimedia the
research community naturally assumed that congestion con-
trol would be an integral part of UDP applications, although
much of this work targeted multicast [11, 29]. In the end,
commercial software vendors focused on unicast and omitted
congestion control. Recently, applications such as Skype [41]
have started to perform coarse-grained congestion adaptation
to allow the use of higher quality codecs when bandwidth per-
mits, but not in a form that encourages interoperability.

Systems such as Time-lined TCP [32] retrofit some sup-
port for time-sensitive data onto TCP, but do so using a spe-
cific deadline-based policy. Real applications often have more
complex policies. For example, application-level messages
may have different levels of importance and there may be in-
terdependencies between them, the canonical example being
MPEG’s key frames (I-frames) and incremental frames (B/P-
frames).

SCTP supports multiple datagram streams in a single con-
nection [46]. This improves timeliness for some applications,
since missing packets from one stream do not delay packets
from any other stream. Nevertheless, SCTP’s reliability, like
TCP’s, can introduce arbitrary delay. A partial reliability ex-
tension, PR-SCTP [45], attempts to overcome this by allowing
a sender to explicitly abandon outstanding messages. This re-
quires at least a round-trip time; the suggested API resembles
Time-lined TCP’s.

Another approach is to provide congestion control at a
layer below TCP or UDP, as with the Congestion Man-
ager [3, 6]. While this may have benefits for TCP, the benefits
for unreliable UDP applications are less clear. These applica-
tions must provide their own protocol mechanisms to detect
and acknowledge losses. This information is then fed to the
Congestion Manager, which determines when the application

can send. The necessarily tight coupling between feedback
style and the congestion control algorithm makes this module
breakdown rather unnatural. For example, adding smoother
rate-based algorithms such as TFRC [16] to the Congestion
Manager (as an alternative to the basic abruptly-changing
AIMD algorithm) would require different feedback from the
receiver; this would then require a new kernel API to supply
the necessary feedback to the new Congestion Manager mod-
ule.

Related work on architectural and technical issues in the
development of new transport protocols includes papers on
SCTP, RTP [39], RTSP [38], and UDP-Lite [26]. A periph-
erally related body of research on the development of new
congestion control mechanisms for high-bandwidth environ-
ments, or with more explicit feedback from routers, highlights
the need to be flexible to accommodate future innovation.

2 APPLICATION REQUIREMENTS

Any protocol designed to serve a specific group of applica-
tions should consider what those applications are likely to
need, although this needs to be balanced carefully against a
desire to be future-proof and general.

One of DCCP’s target applications isInternet telephony.
Interactive speech codecs act like constant-bit-rate sources,
sending a fixed number of frames per second. Users are ex-
tremely sensitive to delay and quality fluctuation—even more
so than to bursts of static—so retransmissions are often use-
less: the receiver will have passed the playback point before
the retransmission arrives. Quick adaptation to availableband-
width is neither necessary nor desired; telephony demands a
slower congestion response. The data rate is changed by ad-
justing the size of each compressed audio frame, either by ad-
justing codec parameters or by switching codecs altogether.
At the extreme, some speech codecs can compress 20 ms of
audio down to 64 bits of payload. (The packet rate, however,
is harder to adjust, as buffering multiple frames per packet
causes audible delay.) Such small payloads pressure the trans-
port layer to reduce its own header overhead, which becomes a
significant contributor to connection bandwidth. A codec may
also save bandwidth by sending no data during the silence pe-
riods when no one is talking, but expects to immediately re-
turn to its full rate as soon as speech resumes. Many of these
issues are common tointeractive videoconferencing as well,
although that involves much higher bandwidth.

Streaming media introduces a different set of tradeoffs. Un-
like interactive media, several seconds of buffer can be used
to mask some rate variation, but since users prefer temporary
video artifacts to frequent rebuffering, even streaming media
generally prefers timeliness to absolute reliability. Video en-
coding standards often lead to application datagrams of widely
varying size. For example, MPEG’s key frames are many
times larger than its incremental frames. An encoder may thus
generate packets at a fixed rate, but with orders-of-magnitude
size variation.

Finally, interactive games use unreliable transport to com-
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municate position information and the like. Since they can
quickly make use of available bandwidth, games may prefer a
TCP-like sawtooth congestion response to the slower response
desired by multimedia.

Since retransmissions are not necessarily useful for these
time-sensitive applications, they have a great deal to gainfrom
the use of Explicit Congestion Notification [35], which lets
congested routers mark packets instead of dropping them.
However, ECN capability must only be turned on for flows
that react to congestion, which requires a negotiation between
the two endpoints to establish. Most of these applications cur-
rently use UDP, but UDP’s lack of explicit connection setup
and teardown presents unpleasant difficulties to network ad-
dress translators and firewalls and complicates session estab-
lishment protocols such as SIP. Any new protocol should im-
prove on UDP’s friendliness to middleboxes.

2.1 Goals

Considering these requirements, the evolution of modern
transport, and our desire for protocol generality and minimal-
ity, we eventually arrived at the following primary goals for
DCCP’s functionality.

1. Minimalism. We prefer a protocol minimal in both func-
tionality and mechanism. Minimalfunctionality means that, in
line with the end-to-end argument and prior successful trans-
port protocols in the TCP/IP suite, DCCP should not provide
functionality that can successfully be layered above it by the
application or an intermediate library. This helped determine
what to leave out of the protocol; for instance, applications
can easily layer multiple streams of data over a single unreli-
able connection. Minimalmechanism means that DCCP’s core
protocol features should be few in number, but rich in impli-
cation. Rather than solve protocol problems one at a time, we
prefer to design more general mechanisms, such as the de-
tails of sequence numbering, that can solve several problems
at once. We intended to design a simple protocol, but there
are many kinds of simplicity: minimal mechanism defines the
type of simplicity we sought in DCCP. Minimal mechanism
also helps us achieve a secondary goal, namely minimal (or at
least small)header size. To be adopted for small-packet ap-
plications such as Internet telephony, DCCP headers should
be reasonably compact even in the absence of header com-
pression techniques. For example, eight bytes is unacceptable
overhead for reporting a one-bit ECN Nonce. Header over-
head isn’t critical for well-connected hosts, but we want to
support DCCP on ill-connected, low-powered devices such as
cell phones.

2. Robustness.The network ecosystem has grown rich and
strange since the basic TCP/IP protocols were designed. A
modern protocol must behave robustly in the presence of at-
tackers as well as network address translators, firewalls, and
other middleboxes. First, DCCP should be robust against data
injection, connection closure, and denial-of-service attacks.
Robustness does not, however, require cryptographic guaran-
tees; as in TCP, we considered it sufficient to protect against

third-party attackswhere the attacker cannot guess valid con-
nection sequence numbers [31]. If initial sequence numbers
are chosen sufficiently randomly [8], attackers must snoop
data packets to achieve any reasonable probability of suc-
cess. However, we found a number of subtleties in applying
sequence number security to an unreliable protocol; security
conflicts directly with some of our other goals, requiring a
search for reasonable middle ground. Middlebox robustness
and transparency led us to introduce explicit connection setup
and teardown, which ease the implementation burden on fire-
walls and NATs, and required the disciplined separation of
network-level information from transport information. For ex-
ample, our mobility design never includes network addresses
in packet payloads or cryptographically-signed data.

3. A framework for modern congestion control. DCCP
should support many applications, including some whose
needs differ radically from file transfer (telephony, streaming
media). To attract developers, DCCP should aim to meet ap-
plication needs as much as possible without grossly violating
TCP friendliness. Clearly DCCP should support all the fea-
tures of modern TCP congestion control, including selective
acknowledgements, explicit congestion notification (ECN),
acknowledgement verification, and so forth, as well as obvi-
ous extensions hard to port to TCP, such as congestion control
of acknowledgements. More importantly, congestion control
algorithms continue to evolve to better support application
needs. DCCP should encourage this evolution. Applications
can thus choose among varieties of congestion control: DCCP
provides aframework for implementing congestion control,
not a single fixed algorithm. Currently, the choice is between
TCP-like, whose sawtooth rates quickly utilize available band-
width, and TFRC [16], which achieves a steadier long-term
rate. In future, DCCP will support experimentation with new
congestion control mechanisms, from low-speed TFRC vari-
ants to more radical changes such as XCP [23]. Each of these
variants may require different acknowledgement mechanisms;
for instance, TFRC’s acknowledgements are much more par-
simonious than TCP’s. Thus, DCCP supports a range of ac-
knowledgement types, depending on the selected congestion
control method.

Another aspect concerns challenging links where loss and
corruption unrelated to congestion are common, such as cel-
lular and wireless technologies. Although there is no wide
agreement on how non-congestion loss and corruption should
affect send rates, DCCP should allow endpoints to declare
when appropriate that packets were lost for reasons unrelated
to network congestion, and even to declare that delivery of
corrupt data is preferred to loss.

4. Self-sufficiency.DCCP should provide applications with
an API as simple as that of UDP. Thus, as in TCP, a DCCP
implementation should be able to manage congestion control
without application aid. DCCP receivers must detect conges-
tion events without application intervention; DCCP senders
must calculate and enforce fair sending rates without applica-
tion cooperation. Furthermore, congestion control parameters
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must be negotiated in-band.
5. Support timing–reliability tradeoffs. Any API for

sending DCCP packets will support some buffering, allow-
ing the operating system to smooth out scheduling bumps.
However, when the buffer overflows—the application’s send
rate is more than congestion control allows—a smart appli-
cation may want to decide exactly which packets should be
sent. Some packets might be more valuable than others (au-
dio data might be preferred to video, for example), or newer
packets preferred to older ones. DCCP should support not only
naive applications, but also advanced applications that want
fine-grained control over buffers and other tradeoffs between
timing and reliability.

2.2 Deliberate omissions

Any design is determined as much by what is left out as by
what is included. During the lengthy DCCP design process,
many suggestions were made to add functionality; most did
not make the cut. In some cases it is interesting to note why
not.

Flow control. In a reliable protocol it makes no sense
to transmit packets that the receiver may discard. However,
timing-critical applications may, under some circumstances,
be unable to avoid doing so. Receivers may prefer to drop old
data from their buffers in favor of new data as it arrives, or
may prefer an application-specific policy difficult to express
at the transport level. Flow control is also nontrivial to get
right: likely-mistaken flow control limits have been observed
to lower peak transfer rates [1, 48]. Thus, we decided that
DCCP should not impose any flow control limitation separate
from congestion control. This essentially extends supportfor
timing–reliability tradeoffs to its logical endpoint. Of course,
optional flow control could easily be layered on top of DCCP
if desired.

Selective reliability. Prioritizing timeliness over reliabil-
ity does not preclude retransmitting data, so long as the re-
transmissions reach the receiver in time. Transport-layerse-
lective reliability might be convenient for applications,but
we’ve found no obviously preferable API for identifying those
datagrams that should be retransmitted; retransmission dead-
lines [32], maximum retransmission counts, and buffer-based
strategies all have advantages and disadvantages. Since re-
transmissions are easily layered above DCCP, selective reli-
ability was left out of the protocol itself for now.

Streams.SCTP [46] provides applications with astream
abstraction: sub-connection flows with independent sequence
spaces. The benefit is that head-of-line blocking between
streams is eliminated. For an unreliable protocol, though,
there is no blocking problem, as neither reliable nor in-order
delivery is guaranteed. It is trivial to layer streams over DCCP
where they are required.

Multicast. It would have been nice to support multi-party
delivery in DCCP, but there doesn’t appear to be any simple
common ground between the different possible uses of mul-
ticast, let alone between unicast and multicast. None of the
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Data
Transfer

Connection
Termination

Figure 1: DCCP packet exchange overview.

main DCCP mechanisms, be it connection setup, acknowl-
edgements, or even congestion control, apply naturally to mul-
ticast, and even among multicast applications one size does
not fit all [21]. We resisted the temptation to generalize be-
yond what we believed we could do well.

3 DCCP OVERVIEW

DCCP is a unicast, connection-oriented protocol with bidi-
rectional data flow. Connections start and end with three-way
handshakes, as shown in Figure 1; datagrams begin with the
16-byte generic header shown in Figure 2. The Port fields
resemble those in TCP and UDP. Data Offset measures the
offset, in words, to the start of packet data. Since this field
is 8 bits long, a DCCP header can contain more than 1000
bytes of option. The Type field gives the type of packet,
and is somewhat analogous to parts of the TCP flags field.
The names in Figure 1 correspond to packet types, of which
DCCP specifies ten. Many packet types require additional in-
formation after the generic header, but before options begin;
this design choice avoids cluttering the universal header with
infrequently-used fields. Even the acknowledgement number
is optional, potentially reducing header overhead for unidi-
rectional flows of data. There are no equivalents to TCP’s
receive window and urgent pointer fields or its PUSH and
URG flags, and TCP has no equivalent to CCVal (Section 6.2)
or CsCov/Checksum Coverage (Section 6.5). Sequence and
acknowledgement numbers are 48 bits long, although some
packet types also permit a compact form to be used (see Sec-
tion 4.5).

4 SEQUENCE NUMBERS

DCCP’s congestion control methods are modularly separated
from its core, allowing each application to choose a method
it prefers. The core itself is largely focused on connection
management—setup, teardown, synchronization, feature ne-
gotiation, and so forth.

The simplicity of this core functionality turned out to be a
distinctly mixed blessing. TCP, for example, is able to sim-
plify some aspects of connection management by leveraging
the very semantics of reliability that it aims to provide. TCP’s
flow control means that two live endpoints always remain syn-
chronized, and TCP’s reliability means a single cumulativeac-
knowledgement number suffices to describe a stream’s state.
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More generally, TCP combines reliability, conciseness of ac-
knowledgement, and bytestream semantics in a tightly unified
whole; when we tried to separate those properties, its mech-
anisms fell apart. Sometimes the solutions we developed in
response seem as simple as TCP’s and sometimes they don’t,
but they are almost always different.

DCCP’s core connection management features all depend
on the most fundamental tool available, namelysequence
numbers. We now know to consider sequence numbers care-
fully: seemingly small changes to sequence number semantics
have far-reaching effects, changing everything up to the pro-
tocol state machine. The interlocking issues surrounding se-
quence numbers collectively form the most surprising source
of complexity in DCCP’s design, so we explore them in some
depth.

4.1 TCP sequence numbers

TCP uses 32-bit sequence numbers representing application
data bytes. Each packet carries a sequence number, or seqno,
and a cumulative acknowledgement number, or ackno.

A cumulative ackno indicates that all sequence numbers up
to, but not including, that ackno have been received. The re-
ceiver guarantees that, absent a crash or application interven-
tion, it will deliver the corresponding data to the application.
Thus, the ackno succinctly summarizes the entire history of
a connection. This succinctness comes at a price, however:
the ackno provides no information about whetherlater data
was received. Several interlocking algorithms, includingfast
retransmit, fast recovery, NewReno, and limited transmit [5],
help avoid redundant retransmissions by inferring or tenta-
tively assuming that data has been received. Such assumptions
can be avoided if the sender is told exactly what data was re-
ceived, a more explicit approach implemented by TCP selec-
tive acknowledgements (SACK) [10].

TCP sequence numbers generally correspond to individual
bytes of application data, and variables measured in sequence
numbers, such as receive and congestion windows, use units
of data bytes. Thus, an endpoint may acknowledgepart of a
packet’s contents (for instance, when a sender overflows the
receiver’s receive window), although this happens rarely in
practice and may indicate an attempt to subvert congestion
control [37]. TCP’s congestion control algorithms generally
operate on these byte-oriented variables in units of theex-
pected packet size, which can lead to anomalies [2].

TCP connections contain other features that must be ac-
knowledged, including connection setup and teardown, time-
stamps, ECN reports, and optional features like SACK. Con-
nection setup and teardown is handled elegantly: SYN and
FIN bits occupy sequence space, and are thus covered by the
ackno. Each other feature, though, needs its own acknowl-
edgement mechanism. Each timestamp option contains an ac-
knowledgement; a TCP header bit (CWR) acknowledges ECN
congestion reports; support for optional features is acknowl-
edged via options like SACK-Permitted.

Pure acknowledgements, which contain neither data nor

Reserved Acknowledgement Number
(b)

Acknowledgement Number (low bits)

Source Port Destination Port

Data Offset CCVal CsCov Checksum

Type 1 Sequence NumberReservedRes

Sequence Number (low bits)

(a)

0 8 16 24

Figure 2: DCCP packet header. The generic header (a) begins every DCCP
datagram. Individual packet types may add additional information, such as
(b) an acknowledgement number. The packet header is followed by DCCP
options, then payload; payload starts Data Offset words into the datagram.

SYN or FIN bits, do not occupy sequence space, and thus can-
not be acknowledged conventionally. As a result, TCP cannot
easily evaluate the loss rate for pure acknowledgements or de-
tect or react to reverse-path congestion, except as far as high
acknowledgement loss rates reduce the forward path’s rate as
well.

4.2 DCCP sequence numbers

DCCP must be able to detect loss without application support.
Inevitably, then, DCCP headers must include sequence num-
bers. Those sequence numbers should measure datagrams, not
bytes, since in accordance with the principles of Application
Layer Framing [13], unreliable applications generally send
and receive datagrams rather than portions of a byte stream.
This also simplifies the expression of congestion control algo-
rithms, which generally work in units of packets. (Some care
is required to calculate congestion control using the average
packet size.)

What, though, should be done with packets that don’t carry
application data? DCCP’s goals include applying congestion
control to acknowledgements, negotiating congestion control
features in band, and supporting explicit connection setupand
teardown. The first goal requires detecting acknowledgement
loss; the second requires acknowledging each feature negoti-
ation. A single minimalist choice, motivated by TCP’s inclu-
sion of SYN and FIN in sequence space, seemed to address
all three goals at once: In DCCP,every packet, including pure
acknowledgements, occupies sequence space and uses a new
sequence number.

This choice had several unintended consequences. (For ex-
ample, a single sequence space now contains both data packets
and acknowledgements. Often this should be separated: TCP
does not reduce a sender’s rate when an acknowledgement it
sends is lost, so neither should DCCP.) The obvious TCP-
like choice would have been to assign pure acknowledge-
ments the same sequence numbers as preceding data pack-
ets; only connection handshakes and data would gain new se-
quence numbers. Of course, feature negotiation and connec-
tion synchronization would then require ad hoc acknowledge-
ment mechanisms. Another alternative would be to introduce
a secondary sequence number space for non-data packets. In
the end, though, we believe that despite its warts, the min-
imalist path we chose is as simple as or simpler than these
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Figure 3: Recovering synchronization after bursts of loss.

alternatives.
Most DCCP packets carry an acknowledgement number as

well as a sequence number. This led to another critical de-
sign decision: To which packet should the ackno correspond?
Cumulative acknowledgements don’t make sense in an un-
reliable protocol where the transport layer never retransmits
data. DCCP’s ackno thus reports thelatest packet received,
rather than the earliest not received. This decision, whichstill
seems inevitable, has tremendous consequences, since with-
out a cumulative acknowledgement, there is no succinct sum-
mary of a connection’s history. Additional congestion control-
specific options provide information about packets preceding
the ackno. The most detailed option, Ack Vector, reports ex-
actly which packets were received, and exactly which packets
were received ECN-marked, using a run-length-encoded byte
array; each Ack Vector byte represents up to 64 packets.

4.3 Synchronization

When a TCP connection is interrupted by network failure, its
probe packets are retransmissions, and use expected sequence
numbers. But in retransmissionless DCCP, each packet sent
during an outage uses a new sequence number. When con-
nectivity is restored, each endpoint might have reached a se-
quence number wildly different from what the other expects.
Thus, large bursts of loss can force endpoints out of sync, a
problem surprisingly difficult to solve.

We cannot eliminate expected-sequence-number windows,
as they are the main line of defense protecting connections
from attack (see Section 4.6). Instead, DCCP supportsex-
plicit synchronization. An endpoint receiving an unexpected
sequence or acknowledgement number sends a Sync packet
asking its partner to validate that sequence number. (TCP in
this situation would send a reset.) The other endpoint pro-
cesses the Sync and replies with a SyncAck packet. When the
original endpoint receives a SyncAck with a valid ackno, it
updates its expected sequence number windows based on that
SyncAck’s seqno; see Figure 3(a) for an example.

Some early versions of this mechanism synchronized using
existing packet types, namely pure acknowledgements. How-
ever,mutually unsynchronized endpoints can never resync in
such a design, as there is no way to distinguish normal out-
of-sync traffic from resynchronization attempts—both types
of packet have either an unexpected seqno or an unexpected
ackno. We considered using special options to get back into

sync, but endpoints would have to partially parse options on
possibly-invalid packets, a troublesome requirement. We con-
sidered preventing endpoints from sending data when they
were at risk of getting out of sync, but this seemed fragile,
imposed an artificial flow control limitation, and, since even
probe packets occupy sequence space, would not have helped.
Explicit synchronization with unique packet types seems now
like the only working solution.

The details are nevertheless subtle, and formal modeling re-
vealed problems even late in the process. For example, con-
sider the ackno on a Sync packet. In the normal case, this
ackno should equal the seqno of the out-of-range packet, al-
lowing the other endpoint to recognize the ackno as in its
expected range. However, the situation is different when the
out-of-range packet is a Reset, since after a Resetthe other
endpoint is closed. If a Reset had a bogus sequence number
(due maybe to an old segment), and the resulting Sync echoed
that bogus sequence number, then the endpoints would trade
Syncs and Resets until the Reset’s sequence number rose into
the expected sequence number window (Figure 3(b)). Instead,
a Sync sent in response to a Reset must set its ackno to the
seqno of the latest valid packet received; this allows the closed
endpoint to jump directly into the expected sequence number
window (Figure 3(c)). As another example, an endpoint in the
initial REQUESTstate—after sending the connection-opening
Request packet, but before receiving the Response—responds
to Sync packets with Reset, not SyncAck. This helps clean up
half-open connections, where one endpoint closes and reopens
a connection without the other endpoint’s realizing.

TCP senders’ natural fallback to the known-synchronized
cumulative ackno trivially avoids many of these problems, al-
though subtlety is still required to deal with half-open connec-
tions.

4.4 Acknowledgements

A TCP acknowledgement requires only a bounded amount of
state, namely the cumulative ackno. Although other SACK
state may be stored, that state is naturally pruned by suc-
cessful retransmissions. On the other hand, a DCCP acknowl-
edgement contains potentially unbounded state. Ack Vector
options can report every packet back to the beginning of the
connection, bounded only by the maximum header space al-
located for options. Since there are no retransmissions, the
receiver—the endpoint reporting these acknowledgements—
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Figure 4: DCCP header with short sequence numbers. See also Fig. 2.

needs explicit help to prune this state. Thus,pure acknowl-
edgements must occasionally be acknowledged. Specifically,
the sender must occasionally acknowledge its receipt of an ac-
knowledgement packet; at that point, the receiver can discard
the corresponding acknowledgement information.

We seem to be entering an infinite regression—must ac-
knowledgements of acknowledgements themselves be ac-
knowledged? Luckily, no: an acknowledgement number in-
dicating that a particular acknowledgement was received suf-
fices to clean up state at the receiver, and this, being a single
sequence number, uses bounded state at the sender. Further-
more, some types of acknowledgements use bounded state,
and thus never need to be acknowledged.

Unreliability also affects the semantics of acknowledge-
ment. In DCCP, an acknowledgementnever guarantees that
a packet’s data will be delivered to the application. This sup-
ports trading off timeliness against reliability (Goal 5).Con-
sider a streaming media receiver that prefers new data to old. If
the receiver blocks for a while, it may find on resuming com-
putation that more packets are locally enqueued than it can
handle in the allotted time. It is desirable for the application,
as part of the timeliness–reliability tradeoff, to be able to drop
the old data.

For many reasons, however, this data should have been ac-
knowledged already. Acknowledging packets only on appli-
cation delivery would distort round-trip time measurements
and unacceptably delay option processing; acknowledgement
options should, for congestion control purposes, report only
losses and marks that happened in the network proper. To
avoid muddying the semantics, we separate these concerns
at the expense of a little efficiency. DCCP acknos and ac-
knowledgement options reportheader acknowledgement: a
packet was received, processed, and found valid, its options
were processed, and its data was enqueued for possible fu-
ture delivery to the application. A separate option called Data
Dropped indicates when an acknowledged packet’s data was
not delivered—for example, when that data was dropped in
the receive buffer.

4.5 Sequence number length

How big should the sequence space be? Short sequence num-
bers lead to smaller headers, less bandwidth, and less endpoint
state. On the other hand, they wrap more frequently—that is,
long-lived connections must quickly reuse sequence numbers,
running the risk that old delayed packets might be accepted as
new—and make connections more vulnerable to attack.

TCP’s 32-bit per-byte sequence numbers already have

wrapping problems at gigabit network speeds (a problem ad-
dressed by the timestamp option). Despite this, DCCP origi-
nally used short 24-bit sequence numbers. We reasoned that
fast connections would favor fewer large packets over many
small packets, leaving packet rates low. This was, of course,
a mistake. A datagram protocol cannot force its users to use
large packet sizes, but absent packet length restrictions,24 bits
are too few: a 10 Gb/s flow of 1500-byte packets will send 224

packets in just 20 seconds.
We considered several solutions. The header could be rear-

ranged, albeit painfully, to allow 32-bit sequence numbers, but
this doesn’t provide enough cushion to avoid the issue. TCP’s
timestamp option is a bad model—verbose, complex, and still
vulnerable to attack. Even a more concise and consistent time-
stamp would force implementations to parse the options area
before determining whether the packet had a valid sequence
number.

The simplest and best solution was simply to lengthen se-
quence numbers to 48 bits (64 would have crowded out other
header fields). A connection using 1500-byte packets would
have to send more than 14 petabits a second before wrapping
48-bit sequence numbers unsafely fast (that is, in under 2 min-
utes).

However,forcing the resulting overhead on all packets was
considered unacceptable; consider speech codecs, in which8-
byte payloads are not atypical. Endpoints should be able to
choose between short and long sequence numbers.

The solution, once found, was relatively clean. Although
DCCP sequence numbers are 48 bits long, some packet types
may leave off the upper 24 bits (Figure 4). The receiver will in-
fer those bits’ values using an expected 48-bit sequence num-
ber. The following procedure takes a 24-bit values and an
expected sequence numberr and returnss’s 48-bit extension.
It includes two types of comparison, absolute (written<) and
circular mod 224 (written©< ).

rlow := r mod 224; rhigh := ⌊r/224⌋;
if (rlow ©< s < rlow) // s incremented past 224−1

return((rhigh+1) mod 224)×224+ s;
else if (s ©< rlow < s) // s decremented past 0 (reordering)

return((rhigh+224−1) mod 224)×224+ s;
else

returnrhigh×224+ s;

Connection initiation, synchronization, and teardown pack-
ets always use 48-bit sequence numbers. This ensures that
the endpoints agree on sequence numbers’ full values, and
greatly reduces the probability of success for some seriousat-
tacks. But data and acknowledgement packets—exactly those
packets that will make up the bulk of the connection—may, if
the endpoints approve, use 24-bit sequence numbers instead,
trading maximum speed and incremental attack robustness for
lower overhead. Although a single sequence number length
would be cleaner, we feel the short sequence number mecha-
nism is one of DCCP’s more successful features. Good control
over overhead is provided at moderate complexity cost with-
out opening the protocol unduly to attack.

7



4.6 Robustness against attack

Robustness against attack is now a primary protocol design
goal. Attackers should find it no easier to violate a new proto-
col’s connection integrity—by closing a connection, injecting
data, moving a connection to another address, and so forth—
than to violate TCP’s connection integrity. Unfortunately, this
is not a high bar.

TCP guaranteessequence number security. Successful con-
nection attacks require that the attacker know (1) each end-
point’s address and port and (2) valid sequence numbers for
each endpoint. Assuming initial sequence numbers are chosen
well (that is, randomly) [8], reliably guessing sequence num-
bers requires snooping on traffic. Snooping also suffices: any
eavesdropper can easily attack a TCP connection [31]. Appli-
cations desiring protection against snooping attacks mustuse
some form of cryptography, such as IPsec or TCP’s MD5 op-
tion.

Of course, a non-snooping attacker can always try their luck
at guessing sequence numbers. If an attacker sendsN attack
packets distributed evenly over a space ofL sequence num-
bers (the best strategy), then the probability that one of these
attack packets will hit a windowW sequence numbers wide
is W N/L; if the attacker must guess both a sequence num-
ber and an acknowledgement number, with validity windows
W1 andW2, the success probability isW1W2N/L2. In TCP, data
injection attacks require guessing both sequence and acknowl-
edgement numbers, but connection reset attacks are easier—a
SYN packet will cause connection reset if its sequence num-
ber falls within the relevant window. (A similar, recently-
publicized attack with RST packets is somewhat easier to de-
fend against.) Recent measurements report a median adver-
tised window of approximately 32 kB [30]; withW = 32768
bytes, this attack will succeed with more than 50% probabil-
ity when N = 65536. This isn’t very high, and as networks
grow faster, receive window widths are keeping pace, leading
to easier attacks.

DCCP’s 48-bit sequence numbers and support for explicit
synchronization make reset attacks much harder to execute.
For example, DCCP is immune to TCP’s SYN attack; if a
Request packet hits the sequence window of an active con-
nection, the receiving endpoint simply responds with a Sync.
The easiest reset-like attack is to send a Sync packet with ran-
dom sequence and acknowledgement numbers. If the ackno
by chance hits the relevant window, the receiver will update
its other window to the attacker’s random sequence number.
In many cases another round of synchronization with the true
endpoint will restore connectivity, but lucky attacks willlead
to long-term loss of connectivity, since the attacked endpoint
will think all of its true partner’s packets are old. But even
given a large window ofW = 2000 packets (nearly 3 MB
worth of 1500-byte packets), an attacker must send more than
1011 packets to get 50% chance of success.

Unfortunately, the goal of reducing overhead conflicts with
security. DCCP Data packets may use 24-bit sequence num-
bers, and contain no acknowledgement number. As a result, it

is quite easy to inject data into a connection that allows 24-
bit sequence numbers: given the default window ofW = 100
packets, an attacker must sendN ≈ 83000 Data packets to get
50% chance of success. An application can reduce this risk
simply by not asking for short sequence numbers, and data
injection attacks seem less dangerous than connection reset
attacks; the attacker doesn’t know where in the stream their
data will appear, and DCCP applications must already deal
with loss (and, potentially, corruption).

Unless we are careful, though, data injection might cause
connection reset. For example, certain invalid options might
cause the receiver to reset the connection; an injected Data
packet might include such an option. Several aspects of the
protocol were modified to prevent this kind of attack escala-
tion. At this point, no Data packet, no matter how malformed
its header or options, should cause a DCCP implementation to
reset the connection, or to perform transport-level operations
that might eventually lead to resetting the connection. Forin-
stance, many options must be ignored when found on a Data
packet. In retrospect, these modifications accord with the TCP
Robustness Principle, “be conservative in what you send, and
liberal in what you accept”. Although careful validity check-
ing with harsh consequences for deviations may seem appro-
priate for a hostile network environment, attackers can exploit
that checking to cause denial-of-service attacks. It is better to
keep to the principle and ignore any deviations that attackers
might cause.

4.7 Summary and discussion

Congestion control requires loss detection, which in turn re-
quires sequence numbers. An unreliable protocol uses appli-
cation data units, so DCCP sequence numbers namepackets
rather than bytes. Several reasons, including our preference
for minimal mechanism, led us to assignevery packet a new
sequence number.

The semantics of acknowledgement are very different for an
unreliable protocol than for TCP, as there is no succinct equiv-
alent to TCP’s cumulative ackno. DCCP acknowledges the
most recently received packet. Options such as Ack Vector in-
dicate precisely which packets have been received; some such
options may grow without bound, requiring thatacknowledge-
ments be acknowledged from time to time.

Providing robustness via sequence number validity checks
is harder for an unreliable protocol, since absent flow control,
the two endpoints can get out of sync. DCCP thus provides
anexplicit synchronization mechanism. This has some advan-
tages even over TCP’s design, since unexpected events can
trigger synchronization rather than connection reset.

Long sequence numbers are preferred to short ones, since
they cleanly avoid wrapping issues and frustrate attack, but
where space is at a premium, short sequence numbers can be
extended to long ones on the fly. Care should be taken to en-
sure that any easily-attacked points in the protocol, such as
opportunities for data injection,cannot escalate to denial-of-
service attacks.
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Figure 5: (a) An A-to-B half-connection and (b) a B-to-A half-connection
combine into (c) a full connection with piggybacked data andacknowledge-
ments.

Not all comparisons between TCP sequence numbers and
DCCP-style unreliable, packet-oriented sequence numbers
come out in favor of TCP. For example, TCP’s bytestream
sequence numbers make it ambiguous whether an acknowl-
edgement refers to a packet or its retransmission, which has
led to a cottage industry in acknowledgement disambiguation
and recovery from spurious retransmissions [27, 36].

5 CONNECTION M ANAGEMENT

This section describes DCCP properties, including several
with interesting differences from TCP, that do not directly
concern sequence numbers.

5.1 Asymmetric communication

DCCP, like TCP, provides a single bidirectional connection:
data and acknowledgements flow in both directions. However,
many DCCP applications will have fundamentally asymmet-
ric data flow. For example, in streaming media almost all data
flows from server to client; after the initial connection setup,
the client’s packets are all acknowledgements.

TCP devolves naturally into unidirectional communication.
Since TCP acknowledgements occupy no sequence space, it
is neither useful nor possible to acknowledge them; since data
retransmissions clean up old ack state, a unidirectional TCP
flow in which all data has been acknowledged occupies min-
imal state on both endpoints. We aim for a similar property
from DCCP: a DCCP connection with unidirectional data flow
should spend little time, space, or bandwidth on the inactive
direction. In a bidirectional DCCP connection, however, each
endpoint may need to keep detailed SACK-like acknowledge-
ment information about its partner’s data packets. When data
flows unidirectionally, this overhead is largely a waste forthe
inactive direction. If B is sending only acknowledgements to
A, then A should acknowledge B’s packets only as neces-
sary to clear B’s acknowledgement state; these acks-of-acks
are minimal and need not contain detailed loss reports (Sec-
tion 4.4).

To solve these issues cleanly, DCCP logically divides each
connection into twohalf-connections. A half-connection con-
sists of data packets from one endpoint plus the corresponding
acknowledgements from the other. When communication is
bidirectional, both half-connections are active, and acknowl-
edgements can often be piggybacked on data packets (Fig-
ure 5). The format for acknowledgements is determined by
the governing half-connection’s congestion control method,

which might for example require detailed Ack Vector infor-
mation. But a half-connection that has sent no data packets
for some time (0.2 seconds or 2 RTTs, whichever is greater),
and that has no outstanding acknowledgements, is said to be
quiescent. There is no need to send acknowledgements on a
quiescent half-connection. When the B-to-A half-connection
goes quiescent (B stops sending data), A can also stop ac-
knowledging B’s packets, except as necessary to prune B’s
acknowledgement state.

Half-connections turned out to be an extremely useful ab-
straction for managing connection state. It makes sense con-
ceptually and in the implementation to group information re-
lated to a data stream with information about its reverse path.
DCCP runs with this idea: each half-connection has an inde-
pendent set of variables and features, including a congestion
control method. Thus, a single DCCP connection could con-
sist of two TFRC half-connections with different parameters,
or even one half-connection using TCP-like congestion con-
trol and one using TFRC.

5.2 Feature negotiation

DCCP’s connection endpoints must agree on a set of param-
eters, the most obvious of which is the choice of conges-
tion control methods the connection should use. Both end-
points have capabilities—the mechanisms they implement—
and application requirements—the mechanisms the applica-
tion would prefer. Since the application cannot be relied upon
to negotiate agreement, negotiation must take place in band.
TCP has a similar problem, applying at least to ECN, SACK,
window scaling, and timestamps, which it solves ad hoc with
different options or bits in each case. The resulting complex-
ity would only grow in an unreliable protocol. Therefore, in
DCCP we built in a single general-purpose mechanism for
reliably negotiating the values offeatures. A feature is sim-
ply a per-endpoint property on whose value both endpoints
must agree. Examples include each half-connection’s conges-
tion control mechanism, and whether or not short sequence
numbers are allowed.

Feature negotiation involves two option types: Change op-
tions open feature negotiation, and Confirm options, which
are sent in response, name the new values. Change options
are retransmitted as necessary for reliability. Each feature ne-
gotiation takes place in a single option exchange; our ini-
tial design involved multiple back-and-forth rounds, but this
proved fragile. A single exchange isn’t overly constraining,
since complex preferences can be described in the options
themselves. Change and Confirm options can contain prefer-
ence lists, which the endpoints analyze to find a best match.

With hindsight, generic reliable feature negotiation has al-
lowed us to easily add additional functionality without need-
ing to consider interactions between feature negotiation,con-
gestion control, reliability, and the differing acknowledgement
styles required by each congestion control mechanism.
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5.3 Mobility and multihoming

Mobility and multihoming, which cut across the network and
transport layers, are different from most functionality inthat
they cannot be layered on top of an unreliable protocol. Mo-
bility could be implemented entirely at the network layer, as
with Mobile IP, but choosing the transport layer has advan-
tages [42]: the transport layer is naturally aware of address
shifting, so its congestion control mechanism can respond ap-
propriately, and transport-layer mobility avoids triangle rout-
ing issues. We were thus directed to develop a mobility and
multihoming mechanism for DCCP.

Happily, mobility and multihoming are among the few
cases where unreliability makes a problem easier. Reliable
transport must maintain in-order delivery even across multiple
addresses. As a consequence, changing a connection’s address
set requires tight integration with the transport layer [42]. Un-
reliable transport, however, doesn’t guarantee in-order deliv-
ery, or any delivery at all, and coordination can therefore be
quite loose. DCCP’s mobility and multihoming mechanism
simply joins a set ofcomponent connections, each of which
may have different endpoint addresses, ports, sequence num-
bers, and even connection features, into a singlesession entity.
This is done in the simplest possible way: to add a new ad-
dress, an endpoint opens a new DCCP connection, including
in its Request an option for attaching to an existing session.
This means that most DCCP and middlebox code can treat
component connections as independent; for instance, each
connection has its own congestion control state. The only code
that differs involves the socket layer, where transport interacts
with the application. Most transport state is unique per com-
ponent connection, but all components in a session share a
single socket. Data written to the socket can be distributed
arbitrarily among component connections, and data received
from any component connection is enqueued on the shared
socket. This design resembles previous work on session-layer
mobility management [25, 43], but thanks to unreliability,we
can add multihoming support while simplifying the basic ab-
stractions.

The mobility and multihoming mechanism also prevents
connection hijacking, where an attacker moves one endpoint
of a victim’s connection to its own IP address. We reason that
hijacking is fundamentally more serious than data injection
or connection reset, so hijacking should be preventedeven
when the attacker can passively snoop the connection. Thus,
the DCCP options that manage sessions are protected against
forgery and replay by nonces and digital signatures. Of course,
an on-path active attacker, such as a compromised router, can
still hijack a connection with or without mobility.

5.4 Denial-of-service attacks

In a transport-level denial-of-service attack, an attacker tries to
break a victim’s network stack by overwhelming it with data
or calculations. For example, the attacker might send thou-
sands of TCP SYN packets from fake (or real) addresses,
filling up the victim’s memory with useless half-open con-
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Figure 6: Shutdown handshakes push Time-Wait state to the client.

nections. Generally these attacks are executed against servers
rather than clients. Any modern transport protocol must be de-
signed from the outset to resist such attacks, which may even
involve changes to the design of the protocol state machine
itself.

The basic strategy is to push state to the client whenever
possible. In DCCP, for example, a server responding to a Re-
quest packet can encapsulate all of its connection state into an
Init Cookie option, which the client must echo when it com-
pletes the three-way handshake. Like TCP’s SYN cookies [9]
and SCTP’s initialization cookies [46], this lets the server
avoid keeping any information about half-open connections;
unlike SYN cookies, which were retrofitted, Init Cookies can
encapsulate lots of state. Another state-holding issue occurs
during connection shutdown where, as with TCP, Time-Wait
state needs to remain at an endpoint for at least two minutes to
prevent confusion in case the network delivers packets late.
Unlike TCP, DCCP servers can shift Time-Wait state onto
willing clients. This is accomplished by introducing asymme-
try into the shutdown state machine. All DCCP connections
end with a single Reset packet, and only the receiver of that
Reset packet holds Time-Wait state. Normal connections end
with a Close–Reset handshake, but the server (and only the
server) can initiate shutdown with a CloseReq packet, which
effectively asks the client to accept Time-Wait state (Figure
6).

DCCP also allows rate limits whenever an attacker might
force an endpoint to do work. For example, there are optional
rate limits on the generation of Reset and Sync packets. Fi-
nally, as described above, the DCCP state machine itself and
the explicit synchronization mechanism have both been engi-
neered to resist blind reset attacks on existing connections.

5.5 Formal modeling

The initial DCCP design was completed without benefit of for-
mal modeling. As our work progressed, however, we made use
of a semi-formal exhaustive state search tool and two formal
tools, a labeled transition system (LTSA, [28]) model and an
independently-developed colored Petri net (CPN) model from
the University of South Australia [47]. These tools, and par-
ticularly the colored Petri net model, were extremely useful,
revealing several subtle problems in the protocol as we had
initially specified it.

The most important tool was simply shifting from reason-
ing via state diagrams to detailed pseudocode that defined
how packets should be processed. The resulting precision re-
vealed several places where our design could lead to dead-
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lock, livelock, or other confusion. An ad hoc exhaustive state
space exploration tool was then developed to verify that the
pseudocode worked as expected; examining its output led to
further refinements, especially to the mechanism for recov-
ering from half-open connections. The LTSA model—which
included states, packets, timers, and a network with loss and
duplication, but not sequence numbers—was used to more
formally examine the specification for progress and deadlock
freedom. It found a deadlock in connection initiation, which
we fixed. The CPN model went into more depth, in particu-
lar by including sequence numbers, with impressive results.
This model found the half-open connection recovery problem
described in Figure 3(b), a similar problem with connections
in Time-Wait state, and a problem with the short-sequence-
number extension code in Section 4.5 (we initially forgot re-
ordering). These problems involved chatter, rather than dead-
lock: a connection would eventually recover, but only after
sending many messages and causing the verification tool’s
generalized state space to explode in size. Thus, as the pro-
tocol improved the verifier ran more quickly!

Our experience with formal modeling was quite positive,
especially combined with clear explanation in pseudocode.
Next time, we would seek out modeling experts earlier in the
design process.

6 CONGESTION CONTROL

As a congestion control framework, DCCP gives the appli-
cation a choice of congestion control mechanisms. Some ap-
plications might prefer TFRC congestion control, avoiding
TCP’s abrupt halving of the sending rate in response to con-
gestion, while others might prefer a more aggressive TCP-like
probing for available bandwidth. The choice is made via Con-
gestion Control IDs (CCIDs), which name standardized con-
gestion control mechanisms. A connection’s CCIDs are ne-
gotiated at connection startup. This section describes thetwo
CCIDs that have currently been developed, congestion control
issues exposed by DCCP’s target applications that remain to
be solved, and more general problems relating to congestion
control, including misbehaving receivers and non-congestion
loss.

6.1 CCID 2: TCP-like Congestion Control

DCCP’s CCID 2 provides a TCP-like congestion control
mechanism, including the corresponding abrupt rate changes
and ability to take advantage of rapid fluctuations in avail-
able bandwidth. CCID 2 acknowledgements use the Ack Vec-
tor option, which is essentially a version of TCP’s SACK. Its
congestion control algorithms likewise follow those of SACK
TCP, and maintain similar variables: a congestion window
“cwnd”, a slow-start threshold, and an estimate of the num-
ber of data packets outstanding [10].

One difference from TCP is CCID 2’s reaction to reverse-
path congestion. TCP doesn’t enforce any congestion con-
trol on acknowledgements, except trivially via flow control.
This is simultaneously too harsh and not harsh enough: high

reverse-path congestion slows down the forward path, and
medium reverse-path congestion may not even be detected,
although it can be particularly important for bandwidth-
asymmetric networks or packet radio subnetworks [7]. Mod-
ern protocols should ideally detect and act on reverse-path
congestion. Thus, CCID 2 maintains a feature called Ack Ra-
tio that controls the rough ratio of data packets per acknowl-
edgement. TCP-like delayed-ack behavior is provided by the
default Ack Ratio of two. As a CCID 2 sender detects lost ac-
knowledgements, it manipulates the Ack Ratio so as to reduce
the acknowledgement rate in a very roughly TCP-friendly
way.

Ack Ratio is an integer. To reduce ack load, it is set to at
least two for a congestion window of four or more packets.
However, to ensure that feedback is sufficiently timely, it is
capped at cwnd/2, rounded up. Within these constraints, the
sender changes Ack Ratio as follows. LetR equal the current
Ack Ratio.

• For each congestion window of data where at least one of
the corresponding acks was lost or marked,R is doubled;

• For each cwnd/(R2−R) consecutive congestion windows
of data whose acks were not lost or marked,R is decreased
by 1.

This second formula comes from wanting to increase the num-
ber of acks per congestion window, namely cwnd/R, by one
for every congestion-free window that passes. However, since
R is an integer, we instead find ak so that, afterk congestion-
free windows, cwnd/R + k = cwnd/(R−1).

6.2 CCID 3: TFRC Congestion Control

TFRC congestion control in DCCP’s CCID 3 uses a differ-
ent approach. Instead of a congestion window, a TFRC sender
uses a sending rate. The receiver sends feedback to the sender
roughly once per round-trip time reporting the loss event rate
it is currently observing. The sender uses this loss event rate
to determine its sending rate; if no feedback is received for
several round-trip times, the sender halves its rate.

This is reasonably straightforward, and does not require re-
liable delivery of feedback packets, as long as the sender trusts
the receiver’s reports of the loss event rate. Since acknowl-
edgements are so limited—to one per round-trip time—there
is no need for acknowledgement congestion control. However,
a mere loss event rate is ripe for abuse by misbehaving re-
ceivers. Thus, CCID 3 requires instead that the receiver report
a set ofloss intervals, the quantities from which TFRC cal-
culates a loss event rate. Each loss interval contains a maxi-
mal tail of non-dropped, non-marked packets. The Loss Inter-
vals option reports each tail’s ECN nonce echo, allowing the
sender to verify the acknowledgement; see Section 6.4 below.
The receiver need never report more than the nine most re-
cent Loss Intervals. Since this bounds acknowledgement state,
CCID 3 acknowledgements need not be acknowledged. Loss
Intervals resembles TCP’s SACK option even more closely
than does Ack Vector, except that unlike SACK, Loss Intervals
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Figure 7: Send rate for given packet drop rates using TCP, standard TFRC,
and small-packet TFRC. TCP uses bulk transfer and 1460-bytesegments;
TFRC uses 14-byte segments and has an application-limited maximum send
rate of 12 kbps including headers.

can group several distinct losses into a single range represent-
ing a congestion event. This feedback information is substan-
tially different from CCID 2’s Ack Vector, but DCCP supports
both mechanisms equally well. A less flexible protocol might
have difficulties supporting future congestion control methods
as the state of the art evolves.

TFRC also requires that data senders attach to each data
packet a coarse-grained “timestamp” that increments every
quarter-round-trip time. This timestamp allows the receiver to
group losses and marks that occurred during the same round-
trip time into a single congestion event. Such a timestamp
could obviously be included as an option, but at the cost of
4 bytes per packet. Instead, CCID 3 attaches the timestamp to
a 4-bit protocol header field, CCVal, reserved for use by the
sender’s congestion control mechanism. Such a small field re-
quires care to avoid wrapping problems; we considered this
worth it to avoid the overhead.

6.3 Future congestion control issues

Many open issues remain for designing congestion control
suitable for unreliable timing-critical applications. Examples
of currently-problematic application desires include:

• Sending many small packets rather than fewer large ones.
• Rapid startup after idle periods, such as in interactive com-

munication where parties speak in turn.

• Abrupt changes in application data rate due to codec arti-
facts, such as MPEG I-frames vs. B/P-frames.

We don’t yet understand how far congestion control mecha-
nisms for best-effort traffic can be pushed to deal with these
application-level issues, or what the consequences might be
for aggregate traffic if congestion control mechanisms are
pushed too far. We expect DCCP to evolve as more is learned,
and modular CCIDs facilitate this evolution. As a concrete ex-
ample, we focus on the small packet issue, which casts light
on the fundamental difficulties faced in designing a protocol
that should work well for a wide range of applications in the
face of immense diversity of network constraints.

For a fixed packet loss rate, a TCP connection that uses
smaller packets will achieve a proportionally lower sending
rate in bytes per second than one sending larger packets. How-
ever, TCP’s bytestream semantics mean that it can generally
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Figure 8: Send rate for givenbyte drop rates using TCP, standard TFRC, and
small-packet TFRC. TCP uses bulk transfer and packet sizes that optimize
send rate; TFRC parameters are as in Figure 7.

assemble packets to be as large as possible. For unreliable ap-
plications, the story is rather different. Due to a combination
of application-level framing and tight delay constraints,ap-
plications such as telephony and gaming may sometimes find
it necessary to send frequent small packets. A good adaptive
multi-rate CELP speech codec such as AMR [19] can achieve
bitrates from 12 kbps down to less than 5 kbps. At 5.6 kbps,
a 20 ms audio frame requires only 14 bytes. Interactive me-
dia must react to congestion primarily by adapting the packet
size, keeping the rate constant; any additional latency would
introduce audible artifacts into the playout stream.

So how should such a low-bandwidth, small-packet flow
compete with a TCP flow sending 1500-byte packets? We ini-
tially hoped that standard TFRC would suit VoIP applications,
but in practice it competes poorly because it factors packet
size into its throughput equation. By default, a TFRC flow us-
ing small packets will achieve the same throughput as a TCP
flow using the same small packet size and seeing the same loss
rate. But most of the time TCP does not use small packets, so
a TFRC VoIP session will lose out badly to a file transfer. See,
for example, the simulation results in Figure 7: an application-
limited standard TFRC flow reduces its send rate with increas-
ing loss rates, even though it always sends far less data than
would a large-packet TCP flow.

Given these sensible application requirements—and the ap-
plications’ overall modest sending rates, in both packets and
bytes per second—it made sense to design a TFRC variant al-
lowing such a VoIP call to compete fairly with a large-packet
TCP flow. Our small-packet TFRC variant [15] does precisely
this by compensating for packet size. Figure 7 also shows that
the small-packet TFRC variant competes fairly for bandwidth
with a large-packet TCP flow.

Is small-packet TFRC safe to deploy? The issue is clouded
by questions about the bottleneck links. While the bottleneck
router’s forwarding limitation is commonly link capacity in
bytes per second, in some cases it may be router CPU cycles,
which constrain the forwarding rate inpackets per second.
Even if link capacity is the bottleneck, the queue at the bot-
tleneck router may be limited in packets or bytes. The former
will give both small and large packets the same drop proba-
bility, whereas the latter will preferentially drop large packets.
Furthermore, in some situations a flow might encountermul-
tiple bottlenecks with different characteristics.

12



If the bottleneck is in packets per second, an adaptation that
changes only the packet size while sending a constant packet
rate serves no purpose. However, most modern routers can
forward minimum sized packets at line speed, so it is prob-
ably reasonable to assume that changing the packet size is
worthwhile. But does a small-packet TFRC flow in fact see
the same loss rate as the large-packet TCP flow? If the bot-
tleneck router manages its flow in bytes, then the small pack-
ets are already less likely to be dropped. Figure 8 shows the
results of a simulation like Figure 7, but where eachbyte is
dropped with some probability; a packet is dropped if any of
its bytes are dropped. Here,standard TFRC competes fairly
with TCP. The small-packet variant gets too much bandwidth
at high byte drop rates, and can actually starve TCP flows in
extreme circumstances.

Internet router behavior is simply not well specified, so
there is no right answer for how congestion control should be
designed. What then should DCCP do? The question of appro-
priate congestion control for small packet flows is still open.
A pragmatic view is that applications will not choose between
standard TFRC and small-packet TFRC, but rather between
small-packet TFRC and no congestion control at all. If DCCP
only offered standard TFRC, with the likelihood of behavior
like that in Figure 7, many application writers would opt fora
fixed-rate UDP flow. The small-packet variant is never worse
for the network than this, and sometimes it is much better;
and, importantly, it may work for the application.

6.4 Misbehaving receivers

Internet congestion control is voluntary in the sense that few,
if any, routers actually enforce congestion control compliance.
Unfortunately, some endpoints, particularly receivers, have in-
centives to violate congestion control if that will get them
their data faster. For example, misbehaving receivers might
pretend that lost packets were received or that ECN-marked
packets were received unmarked, or even acknowledge data
before it arrives [37]. TCP’s semantics deter many of these
attacks, since missing data violates the expectation of relia-
bility and must therefore be handled by the application. How-
ever, DCCP applications generally tolerate loss to some de-
gree, making deliberate receiver misbehavior more likely.The
protocol must therefore be designed to allow the detection
of deliberate misbehavior. In particular, senders must be able
to verify that every acknowledged packet was received un-
marked. To do this the sender provides an unpredictable nonce
with each packet; the receiver echoes an accumulation of all
relevant nonces in each acknowledgement [37].

DCCP, like TCP, uses the ECN Nonce for this purpose. The
nonce encodes one bit of unpredictable information that is de-
stroyed by loss or ECN marking [44]. All acknowledgement
options contain a one-bit nonce echo set to the exclusive-orof
the nonces of those packets acknowledged as received non-
marked. However, unlike in TCP, calculating and verifying
this nonce echo presents no difficulties. The TCP nonce echo
applies to the cumulative ack, and thus covers every packet

sent in the connection; but in the presence of retransmission
and partial retransmission, a TCP sender can never be sure
exactly which packets were received, as retransmissions have
the same sequence numbers as their originals. Thus, the TCP
nonce echo and verification protocol must specially resyn-
chronize after losses and marks. None of this is necessary
in DCCP, where there are no retransmissions—every packet
has its own sequence number—and no cumulative ack: op-
tions such as Ack Vector explicitly declare the exact packets
to which they refer.

An endpoint that detects egregious misbehavior on its part-
ner’s part should generally slow down its send rate in re-
sponse. An “Aggression Penalty” connection reset is also pro-
vided, but we recommend against its use except for apocalyp-
tic misbehavior. After all, if short sequence numbers are used,
an attacker may be able to confuse an endpoint’s nonce echo
through data injection attacks.

Several other DCCP features present opportunities for re-
ceiver misbehavior. For example, Timestamp and Elapsed
Time options let a receiver declare how long it held a packet
before acknowledging it, thus separating network round-trip
time from end host delay. The sender can’t fully verify this
interval, and the receiver has reason to inflate it, since shorter
round-trip times lead to higher transfer rates. Thus far we have
addressed such issues in an ad hoc manner.

6.5 Partial checksums and non-congestion loss

Several of our target applications, particularly audio and
video, not only tolerate corrupted data, but prefer corruption
to loss. Passing corrupt data to the application may improve
its performance as far as the user is concerned [20, 40]. While
some link layers essentially never deliver corrupt data, others,
such as cellular technologies GSM, GPRS, and CDMA2000,
often do. Furthermore, link-layer mechanisms for coping with
corruption, such as retransmission (ARQ), can introduce de-
lay and rate variability that applications want even less than
corruption [12]. DCCP therefore follows the UDP-Lite proto-
col [26] in allowing its checksum to cover less than an entire
datagram. Specifically, its checksum coverage (CsCov) field
allows the sender to restrict the checksum to cover just the
DCCP header, or both the DCCP header and some number of
bytes from the payload. A restricted checksum coverage indi-
cates to underlying link layers that corrupt datagrams should
be forwarded on rather than dropped or retransmitted, as long
as the corruption takes place in the unprotected area.

The motivation for partial checksums follows that of UDP-
Lite, but is perhaps more compelling in DCCP because of con-
gestion control. Wireless link technologies often exhibitan
underlying level of corruption uncorrelated with congestion,
but endpoints treat all loss as indicative of congestion. Vari-
ous mechanisms have been proposed for differentiating types
of loss, or for using local retransmissions to compensate [4].
It isn’t yet clear how oneshould respond to different types
of loss—our current congestion control mechanisms treat cor-
ruption as they would treat ECN marking, that is, as conges-
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tion indications. However, protocols should at least allowre-
ceivers to distinguish between types of loss, allowing incre-
mental deployment of alternative responses as experience is
gained.

To enable this, DCCP allows receivers to report corruption
separately from congestion, when the corruption is restricted
to packet payload. (Payload corruption may be detected with
a separate CRC-based Payload Checksum option; all packets
with corrupt headers must be dropped and reported as lost.)
This uses the same mechanism as other types of non-network-
congestion loss, such as receive buffer drops: the packet is
reported as received, and its ECN Nonce is included in the
relevant acknowledgement option’s nonce echo, but a separate
Data Dropped option reports the corruption.

6.6 Summary and discussion

DCCP was designed from the outset to supportmodular con-
gestion control. In part, this is because the state of the art
is still advancing, both algorithmically and in the proper re-
sponse tonon-congestion loss. Supporting this evolution in
a transport protocol avoids the need to rewrite thousands of
applications with every update to congestion control seman-
tics. Furthermore, time-sensitive applications can have widely
varying needs, as illustrated by small-packet TFRC. It seems
unlikely that any one algorithm will suit them all, so allowing
applications to choose the dynamics they prefer is essential for
success.

This choice has consequences, though. Congestion control
algorithms form a control loop; the dynamics of the algorithm
and the nature of the feedback information are tightly coupled.
Thus, selecting a specific algorithm also dictates theacknowl-
edgement format.

The need to be robust in the face of attack also weighs heav-
ily on the design of a modern protocol. Issues such as denial-
of-service attacks, misbehaving receivers, and sequence num-
ber validity affect many small details. Robustness is actually
very hard to get right—only formal modeling revealed some
subtle flaws in our earlier designs. To expect every application
designer to do such modeling is asking too much; when this
work is done for a transport protocol a whole range of differ-
ent applications can then reap the benefits.

7 CONCLUSIONS

It might reasonably be assumed that designing an unreliable
alternative to TCP would be a rather simple process; indeed
we made this assumption ourselves. However, TCP’s conges-
tion control is so tightly coupled to its reliable semanticsthat
few TCP mechanisms are directly applicable without substan-
tial change.

TCP manages such a beautifully integrated design for two
main reasons. First, the bytestream abstraction is very simple.
With the exception of the urgent pointer, TCP does not need to
consider detailed application semantics. Second, TCP is able
to bootstrap off its own reliability; for example, the cumula-
tive acknowledgement in TCP serves many purposes, includ-

ing reliability, liveness, flow control, and congestion control.
An unreliable protocol has neither luxury, and there does not
appear to be a simple unifying mechanism equivalent to the
cumulative acknowledgement.

Nevertheless, it is possible to design a relatively simple
protocol that robustly manages congestion-controlled connec-
tions without reliability. Explicit synchronization and new ac-
knowledgement formats even have some advantages over their
TCP equivalents. Modular congestion control mechanisms
make it possible to adapt congestion control within a fixed
protocol framework as network and application constraints
change. Robustness against attack is addressed in a more thor-
ough way.

It is too early to tell whether DCCP will succeed in wide
deployment. Only recently have implementations started to
appear (in Linux and FreeBSD); NATs and firewalls do not
yet understand it; no application yet uses DCCP as its primary
transport. Because it was designed for applications, and with
feedback from application designers, we hope and believe it
will be useful anyway. Regardless, our design experience cast
well-known issues of reliability and protocol design in what
seemed to us a valuable new light.

Although it may not seem like it, we have deliberately
avoided describing all the details of DCCP. The interested
reader is referred to the specifications [14, 18, 24].
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