
Operating Systems B. RANDELL, Editor 

The Nucleus of a 
Multiprogramming System 

PIER BRINCIt HANSEN 
A /S  Regnecentralen, Copenhagen, Denmark 

This paper  describes the philosophy and structure of a multi- 
programming system that can be extended with a hierarchy of 
operating systems to suit diverse requirements of program 
scheduling and resource allocation. The system nucleus sim- 
ulates an environment in which program execution and input/  
output are handled uniformly as parallel ,  cooperating proc- 
esses. A fundamental set of primitives allows the dynamic 
creation and control of a hierarchy of processes as well as the 
communication among them. 
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l ,  In troduct ion  

The multiprogramming system developed by Regnecen- 
tralen for the RC 4000 computer is a general tool for the 
design of operating systems. I t  allows the dynamic creation 
of a hierarchy of processes in which diverse strategies of 
program scheduling and resource allocation can be imple- 
mented. 

For  the designer of advanced information systems, a. 
vital requirement of any operating system is tha t  it allow 
him to change the mode of operation it controls; otherwise. 
his freedom of design can be seriously limited. Unfortu-  
nately, this is precisely what  present operating systems do, 
not allow. Most  of them are based exclusively on a single, 
mode of operation, such as batch processing, priori ty 
scheduling, real-time scheduling, or conversational access. 

When the need arises, the user often finds it hopeless to, 
modify an operating system that  has made rigid assump- 
tions in its basic design about a specific mode of operation. 
The al ternat ive-- to  replace the original operating system 
with a new one--is  in most computers a serious, if not im- 
possible, mat ter  because the rest of the software is inti- 
mately bound to the conventions required by the origina~ 
system. 

This unfortunate situation indicates tha t  the mairr. 
problem in the design of a multiprogiramming system is not. 
to define functions tha t  satisfy specJ.fie operating needs, but~ 
rather to supply a system lmeleus that  can be extended: 
with new operating systems i~ an orderly manner. This is: 
the primary objective of the RC 4000 system. 

In the following, the philosophy and structure of the 
RC 4000 multiprogramming system is explained. The dis- 
cussion does not include details of implementation; size 
and performance are presented, however, to give an idea of 
the feasibility of this approach. The functional specifica- 
tions of the multiprogramming system are described in 
detail in a report  [1] available from Regnecentralen. 

2. Sys tem Nucleus  

Our basic at t i tude during the designing was to make no 
assumptions about the particular strategy needed to 
optimize a given type of installation, but  to concentrate on 
the fundamental aspects of the control of an environment 
consisting of parallel, cooperating processes. 

Our first task was to assign a precise meaning to the 
process concept, i.e. to introduce an unambiguous ter- 
minology defining what a process is and how it is imple- 
mented on the actual computer. 

The next step was to select primitives for the synchro- 
nization and transfer of information among parallel 
processes. 

Our final decisions concerned the rules for the dynamic 
creation, control, and removal of processes. 

The purpose of the system nucleus is to implement these 
fundamental concepts: simulation of processes; communi- 
cation among processes; creation, control, and removal of 
processes. 

3. Processes 

We distinguish between internal and external processes, 
roughly corresponding to program execution and input /  
output.  

More precisely, an internal process is the execution of one 
or more interruptable programs in a given storage area. An 
internal process is identified by  a unique process name. 
Thus other processes need not  be aware of the actual loca- 
tion of an internal process in the store, but  can refer to it by 
name. 

A sharp distinction is made between the concepts pro- 
gram and internal process. A program is a collection of 
instructions describing a computational process, whereas 
an internal process is the execution of these instructions in 
a given storage area. 

In  connection with input /output ,  the system distin- 
guishes between peripheral devices, documents, and ex- 
ternal processes. 

A peripheral device is an item of hardware connected to 
the data channel and identified by a device number. A 
document is a collection of data  stored on a physical 
medium, such as a deck of punched cards, a printer form, a 
reel of magnetic tape, or a file on the backing store. 

An external process is the inpu t /ou tpu t  of a given docu- 
ment identified by a unique process name. This concept 
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implies tha t  internal processes can refer to documents by 
name without  knowing the actual devices on which they 
are mounted. 

Mult iprogramming and communication between inter- 
nal and external processes are coordinated by  the system 
nucleus--an interrupt  response program with complete 
control of input /output ,  storage protection, and the inter- 
rupt  system. We do not regard the system nucleus as an 
independent process, but  rather  as a software extension of 
the hardware structure, which makes the computer  more 
at t ract ive for mu]tiprogramming. I t s  function is to imple- 
ment  our process concept and primitives tha t  processes can 
invoke to create and control other processes and communi- 
cate with them. 

So far we have described the mult iprogramming system 
as a set of independent, parallel processes identified by  
names. The emphasis has been on a clear understanding of 
relationships among resources (store and peripherals), data  
(programs and documents), and processes (internal and 
external). 

4. Process  C o m m u n i c a t i o n  

In  a system of parallel, cooperating processes, mecha- 
nisms must  be provided for the synchronization of two 
processes during a transfer of information. 

Di jks t ra  has demonstrated tha t  indivisible lock and 
unlock operations operating on binary semaphores are 
sufficient primitives from a logical point of view [3]. We 
have been forced to conclude, however, tha t  the semaphore 
concept alone does not  fulfill our requirements of safety 
and efficiency in a dynamic environment in which some 
processes may  turn out to be black sheep and break the 
rules of the game. 

Ins tead we have introduced message buffering within the 
system nucleus as the basic means of process communica- 
tion. The system nucleus administers a common pool of 
message buffers and a message queue for each process. 

The following primitives are available for the communi- 
tion between internal processes: 

send message (receiver, message, buffer), 
wait  message (sender, message, buffer), 
send answer (result, answer, buffer), 
wait  answer (result, answer, buffer). 

Send message copies a message into the first available 
buffer within the pool and delivers it in the queue of a 
named receiver. The receiver is act ivated if it is waiting for 
a message. The  sender continues after being informed of 
the identi ty of the message buffer. 

Wai t  message delays the requesting process until a mes- 
sage arrives in its queue. When the process is allowed to 
proceed, i t  is supplied with the name of the sender, the 
contents of the message, and the identi ty of the message 
buffer. The  buffer is removed from the queue and made 
ready to t ransmit  an answer. 

Send answer copies an answer into a buffer in which a 
message has been received and delivers it in the queue of 
the original sender. The  sender of the message is act ivated 

if it is waiting for the answer. The  answering process con- 
tinues immediately.  

W a i t  answer delays the requesting process until an 
answer arrives in a given buffer. On arrival, the answer is 
copied into the process and the buffer is returned to the 
pool. Th6 result specifies whether  the answer is a response 
from another process or a dummy answer generated by  the 
system nucleus in response to a message addressed to a 
nonexisting process. 

The  procedure wait  message forces a process to serve its 
queue on a first-come, first-served basis. The system, how- 
ever, also includes two primitives tha t  enable a process to 
wait  for the arrival of the next message or answer and serve 
its queue in any order. 

This communication scheme has the following advan- 
tages. 

The mult iprogramming system is dynamic in the sense 
tha t  processes can appear  and disappear at  any time. 
Therefore a process does not in general have a complete 
knowledge of the existence of other processes. This is 
reflected in the procedure wait  message, which makes it 
possible for a process to be unaware of the existence of 
other processes until i t  receives messages from them. 

On the other hand, once a communication has been 
established between two processes (i.e. by means of a 
message) they need a common identification of it in order 
to agree on when it is terminated (i.e. by  means of an 
answer). Thus  we can properly regard the selection of a 
buffer as the creation of an identification of a conversation. 
A happy consequence of this is tha t  it enables two processes 
to exchange more than  one message at  a time. 

We must  be prepared for the occurrence of erroneous or 
malicious processes in the system (e.g. undebugged pro- 
grams). This is tolerable only if the system nucleus 
ensures tha t  no process can interfere with a conversation 
between two other processes. This is done by  storing the 
identi ty of the sender and receiver in each buffer and check- 
ing it whenever a process a t tempts  to send or wait  for an 
answer in a given buffer. 

Efficiency is obtained by  the queueing of buffers, which 
enables a sending process to continue immediately after 
delivery of a message or an answer, regardless of whether 
or not the receiver is ready to process it. 

To make the system dynamic, i t  is vi tal  tha t  a process 
can be removed at  any time, even if it is engaged in one or 
more conversations. In  this case, the system nucleus leaves 
all messages from the removed process undisturbed in the 
queues of other processes. When these processes answer 
them, the system nucleus returns the buffers to the com- 
mon pool. 

The reverse situation is also possible: during the removal 
of a process, the system nucleus finds unanswered messages 
sent to the process. These are returned as dummy answers 
to the senders. 

The  main drawback of message buffering is tha t  it intro- 
duces yet  another resource problem, since the common 
pool contains a finite number  of buffers. I f  a process were 
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allowed to empty the pool by sending messages to igno- 
rant  processes, which do not respond with answers, further 
communication within the system would be blocked. Con- 
sequently a limit is set to the number of messages a process 
can send simultaneously. By  doing this, and by allowing a 
process to transmit an answer in a received buffer, we have 
placed the entire risk of a conversation on the process tha t  
opens it. 

5. External  Processes  

Originally the communication primitives were designed 
for the exchange of messages between internal processes. 
Later we also decided to use send message and wait answer 
for communication between internal and external processes. 

For  each kind of external process, the system nucleus 
contains a piece of code that  interprets a message from an 
internal process and initiates inpu t /ou tpu t  using a storage 
area specified in the message. When inpu t /ou tpu t  is termi- 
nated by an interrupt, the nucleus generates an answer to 
the internal process with information about actual block 
size and possible error conditions. This is essentially the 
implementation of the external process concept. 

We consider it to be an important  aspect of the system 
tha t  internal and external processes are handled uniformly 
as independent, self-contained processes. The difference 
between them is merely a mat ter  of processing capability. 
A consequence of this is tha t  any external process can be 
replaced by an internal process of the same name if more 
complex criteria of access and response become desirable. 

External processes are created on request from internal 
processes. Creation is simply the assignment of a name to a 
particular peripheral device. To guarantee internal proc- 
esses exclusive access to sequential documents, primitives 
are available for the reservation and release of external 
processes. 

Typewri ter  consoles are the only external processes tha t  
can send messages to internal processes. The  operator 
opens a conversation by pushing an interrupt  key and 
typing the name of the internal receiver followed by a line 
of text. 

A file on the backing store can be used as an external 
process by copying a description of the file from a catalog 
on the backing store into the system nucleus; following 
this, internal processes can initiate inpu t /ou tpu t  by send- 
ing messages to the file process. 

Real-time synchronization of internal processes is ob- 
tained by sending messages to a clock process. After the 
elapse of a time interval specified in the message, the clock 
returns an answer to the sending process. 

In  general, external processes can be used to obtain 
synchronization between internal processes and any signal 
from the external world. For example, an internal process 
may send a message to a watchdog process and receive an 
answer when a magnetic tape is mounted on a station. In  
response, the internal process can give the station a tem- 
porary name, identify the tape by reading its label, and 
rename the station accordingly. 

6. I n t e r n a l  Processes  

A final set of primitives in the system nucleus allows the 
creation, control, and removal of internal processes. 

Internal  processes are created on request from other 
internal processes. Creation involves the assignment of a 
name to a contiguous storage area selected by the parent  
process. The storage area must be within the parent 's  own 
area. 

After creation, the parent  process can load a program 
into the child process and start it. The  child process now 
shares computing time with other active processes includ- 
ing the parent  process. 

On request from a parent  process, the system nucleus 
waits for the completion of all inpu t /ou tpu t  initiated by a 
child process and stops it. In  the stopped state, the process 
can still receive messages and answers in its queue. These 
can be served when the process is restarted. 

Finally, a parent  process can remove a child process in 
order to assign its storage area to other processes. 

According to our philosophy, processes should have 
complete freedom to choose their own strategy of program 
scheduling. The  system nucleus only supplies the essential 
primitives for initiation and control of processes. Conse- 
quently, the concepts of program loading and swapping are 
not  par t  of the nucleus. Time-sharing of a common storage 
area among child processes on a swapping basis is possible, 
however, because the system does not check whether inter- 
nal processes overlap each other as long as they remain 
within the storage areas of their parents. Swapping from 
process A to process B can be implemented in a parent  
process as follows: stop(A) ; output(A);  input(B) ; start(B). 

7. Process  Hierarchy  

The  idea of the system nucleus has been described as the 
simulation of an environment in which program execution 
and inpu t /ou tpu t  are handled uniformly as parallel, co- 
operating processes. A fundamental  set of primitives allows 
the dynamic creation and control of processes as well as 
communication among them. 

For  a given installation we still need, as par t  of the sys- 
tem, programs that  control strategies of operator com- 
munication, program scheduling, and resource allocation; 
but  it is essential for the orderly growth of the system that  
these operating systems be implemented as other programs. 
Since the difference between operating systems and pro- 
duction programs is one of jurisdiction only, this problem 
is solved by arranging the internal processes in a hierarchy 
in which parent  processes have complete control over child 
processes. 

After initial loading, the internal store contains the sys- 
tem nucleus and a basic operating system, S, which can 
create parallel processes, A, B, C, etc., on request from 
consoles. The  processes can in turn create other processes, 
D, E, F, etc. Thus while S acts as a primitive operating 
system for A, B, and C, these in turn act as operating sys- 
tems for their children, D, E, and F. This is illustrated by 
Figure 1, which shows a family tree of processes on the left 
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and the corresponding storage allocation on the right. This 
family tree of processes can be extended to any level, sub- 
ject only to a limitation of the total number of processes. 

In  this multiprogramming system, all privileged func- 
tions are implemented in the system nucleus, which has no 
built-in strategy. Strategies can be introduced at the var- 
ious higher levels, where each process has the power to 
control the scheduling and resource allocation of its 
children. The only rules enforced by the nucleus are the 
following: a process can only allocate a subset of its own 
resources (including storage and message buffers) to its 
children; a process can only start, stop, and remove its own 
children (including their descendants). After removal of a 
process, its resources are returned to the parent  process. 

Fro. 1 

SYSTEM NUCLEUS 

A D 

E 
S 

B 
F G 

H 

Initially all system resources are owned by the basic 
operating system S. For details of process control and re- 
source allocation, the reader should consult the manual of 
the system [1]. 

We emphasize that  the only function of the family tree 
is to define the rules of process control and resource alloca- 
tion. Computing time is shared by round-robin scheduling 
among active processes regardless of their position in the 
hierarchy, and each process can communicate with all 
other processes. 

Regarding the future development of operating systems, 
the most important  characteristics of the system can now 
be seen as the following. 

1. New operating systems can be implemented as other 
programs without modification of the system nucleus. In  
this connection, we should mention that  the ALGOL and 
FORTRAN languages for the RC 4000 contain facilities for 
calling the nucleus and initiating parallel processes. Thus 
it is possible to write operating systems I in high-level lan- 
guages. 

2. Operating systems can be replaced dynamically, thus 
enabling an installation to switch among various modes of 
operation; several operating systems can, in fact, be active 
simultaneously. 

3. Standard programs and user programs can be 
executed under different operating systems without modi- 
fication, provided there is common agreement on the possi- 
ble communication between parents and children. 

8.  I m p l e m e n t a t i o n  

The RC 4000 is a 24-bit, binary computer with typical 
instruction execution times of 4 microseconds [2]. I t  per- 
mits practically unlimited expansion of the internal store 
and standardized connection of all kinds of peripherals. 
Multiprogramming is facilitated by program interruption, 
storage protection, and privileged instructions. 

The present implementation of the system makes multi- 
programming feasible with a minimum store of 16K-32K 
words backed by  a fast drum or disk. The system nucleus 
includes external processes for a real-time clock, type- 
writers, paper tape input /output ,  line printer, magnetic 
tape, and files on the backing store. The size of the nucleus 
and the basic operating system is as follows: 

words 
primitives 2400 
code for external processes 1150 
process descriptions and buffers 1250 

system nucleus 4800 
basic operating system 1400 

6200 

The communication primitives are executed in the un- 
interruptable mode within the system nucleus. The execu- 
tion times of these set a limit to the system's response to 
real-time events: 

msec 
send message 0.6 
wait answer 0.4 
wait message 0.4 
send answer 0.6 

An analysis shows tha t  the 2 milliseconds required by a 
complete conversation (the sum of the four primitives) are 
used as follows: 

percent 
validity checking 25 
process activation 45 
message buffering 30 

This distribution is so even that  one cannot hope to in- 
crease the speed of the system by introducing additional, 
ad hoc machine instructions. The only realistic solution is 
to make the hardware faster. 

The  primitives for creation, start, stop, and removal of 
processes are implemented in an anonymous internal 
process within the system nucleus to avoid intolerably long 
periods in the uninterruptable mode. Typical execution 
times for these are: 

msec 
create process 3 
start  process 26 
stop process 4 
remove process 30 

(Continued on page 250) 
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The analysis presented here suggests that spatial domains 
are the primitive element of this particular graphic 
language. In this light, the common assumption that line 
segments are the primitives of many graphic languages 
may require revision. 
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Hansen--cont'd from page 241 

The excessive times for the start and removal of an internal 
process are due to the peculiar storage protection system of 
the RC 4000, which requires the setting of a protection key 
in every storage word of a process. 

9. Conc lus ion  

Ideas similar to those described here have been sug- 
gested by others [4-6]. We have presented our system 
because we feel that, taken as a whole, it represents a sys- 
tematic and practical approach to the design of replaceable 
operating systems. As an inspiration to other designers, it 
is perhaps most important that it illustrates a sequence of 
design steps leading to a general system nucleus, namely, 
the definition of the process concept, the communication 
scheme, and the dynamic creation and structuring of 
processes. 

We realize, of course, that a final evaluation of the sys- 
tem can only be made after it has been used to design a 
number of operating systems. 

250 Communicat ions  of  the  ACM 

Acknowledgments. The design philosophy was de- 
veloped by J~rn 5ensen, S~ren Lauesen, and the author. 
Leif Svalgaard participated in the implementation and 
testing of the final product. 

Regarding fundamentals, we have benefited greatly from 
Dijkstra's analysis of cooperating sequential processes. 

RECEIVED JULY, 1969; REVISED JANUARY, 1970 

REFERENCES 

1. RC $000 Soflware: Multiprogramming System. P. Brinch Hansen 
(Ed.). A/S Regnecentralen, Copenhagen, 1969. 

2. RC 4000 Computer: Reference Manual. P. Brinch Hansen (Ed.). 
A/S Regnecentralen, Copenhagen, 1969. 

3. DIJKSTRA, E. W. Cooperating Sequential Processes. Math. 
Dep., Technological U., Eindhoven, Sept. 1965. 

4. I'IARRISON, M. C., AND SCHWARTZ, J. W. SHARER, a time 
sharing system for the CDC 6600. Comm. ACM 10, (Oct. 1967), 
659. 

5. I'IUXTABLE, D. H. R., AND WARWICK, M. T. Dynamic super- 
visors--their  design and construction. Proc. ACM Syrup. on 
Operating System Principles, Gatlinburg, Tenn., Oct. 1--4, 
1967. 

6. WICHMANN, B. A. A modular operating system. Proc. I F I P  
Cong. 1968, North Holland Pub. Co., Amsterdam, p. C48. 

Volume 13 / Number 4 / Apri|,r1970 


