
Operating Systems B. RANDELL, Editor

The Nucleus of a
Multiprogramming System

PIER BRINCIt HANSEN
A /S Regnecentralen, Copenhagen, Denmark

This paper describes the philosophy and structure of a multi-
programming system that can be extended with a hierarchy of
operating systems to suit diverse requirements of program
scheduling and resource allocation. The system nucleus sim-
ulates an environment in which program execution and input/
output are handled uniformly as parallel , cooperating proc-
esses. A fundamental set of primitives allows the dynamic
creation and control of a hierarchy of processes as well as the
communication among them.

KEY WORDS AND PHRASES: multiprogramming, operating systems, paralle I
processes, process concept, process communication, message buffering, process
hierarchy, process creation, process removal
CR CATEGORIES: 4.30, 4.31, 4.32, 4.41

l , In troduct ion

The multiprogramming system developed by Regnecen-
tralen for the RC 4000 computer is a general tool for the
design of operating systems. I t allows the dynamic creation
of a hierarchy of processes in which diverse strategies of
program scheduling and resource allocation can be imple-
mented.

For the designer of advanced information systems, a.
vital requirement of any operating system is tha t it allow
him to change the mode of operation it controls; otherwise.
his freedom of design can be seriously limited. Unfortu-
nately, this is precisely what present operating systems do,
not allow. Most of them are based exclusively on a single,
mode of operation, such as batch processing, priori ty
scheduling, real-time scheduling, or conversational access.

When the need arises, the user often finds it hopeless to,
modify an operating system that has made rigid assump-
tions in its basic design about a specific mode of operation.
The al ternat ive-- to replace the original operating system
with a new one--is in most computers a serious, if not im-
possible, mat ter because the rest of the software is inti-
mately bound to the conventions required by the origina~
system.

This unfortunate situation indicates tha t the mairr.
problem in the design of a multiprogiramming system is not.
to define functions tha t satisfy specJ.fie operating needs, but~
rather to supply a system lmeleus that can be extended:
with new operating systems i~ an orderly manner. This is:
the primary objective of the RC 4000 system.

In the following, the philosophy and structure of the
RC 4000 multiprogramming system is explained. The dis-
cussion does not include details of implementation; size
and performance are presented, however, to give an idea of
the feasibility of this approach. The functional specifica-
tions of the multiprogramming system are described in
detail in a report [1] available from Regnecentralen.

2. Sys tem Nucleus

Our basic at t i tude during the designing was to make no
assumptions about the particular strategy needed to
optimize a given type of installation, but to concentrate on
the fundamental aspects of the control of an environment
consisting of parallel, cooperating processes.

Our first task was to assign a precise meaning to the
process concept, i.e. to introduce an unambiguous ter-
minology defining what a process is and how it is imple-
mented on the actual computer.

The next step was to select primitives for the synchro-
nization and transfer of information among parallel
processes.

Our final decisions concerned the rules for the dynamic
creation, control, and removal of processes.

The purpose of the system nucleus is to implement these
fundamental concepts: simulation of processes; communi-
cation among processes; creation, control, and removal of
processes.

3. Processes

We distinguish between internal and external processes,
roughly corresponding to program execution and input /
output.

More precisely, an internal process is the execution of one
or more interruptable programs in a given storage area. An
internal process is identified by a unique process name.
Thus other processes need not be aware of the actual loca-
tion of an internal process in the store, but can refer to it by
name.

A sharp distinction is made between the concepts pro-
gram and internal process. A program is a collection of
instructions describing a computational process, whereas
an internal process is the execution of these instructions in
a given storage area.

In connection with input /output , the system distin-
guishes between peripheral devices, documents, and ex-
ternal processes.

A peripheral device is an item of hardware connected to
the data channel and identified by a device number. A
document is a collection of data stored on a physical
medium, such as a deck of punched cards, a printer form, a
reel of magnetic tape, or a file on the backing store.

An external process is the inpu t /ou tpu t of a given docu-
ment identified by a unique process name. This concept

238 Comxnuuieatton~ ~f the~ACM Volume 13 / Number 4 / April, 1970

implies tha t internal processes can refer to documents by
name without knowing the actual devices on which they
are mounted.

Mult iprogramming and communication between inter-
nal and external processes are coordinated by the system
nucleus--an interrupt response program with complete
control of input /output , storage protection, and the inter-
rupt system. We do not regard the system nucleus as an
independent process, but rather as a software extension of
the hardware structure, which makes the computer more
at t ract ive for mu]tiprogramming. I t s function is to imple-
ment our process concept and primitives tha t processes can
invoke to create and control other processes and communi-
cate with them.

So far we have described the mult iprogramming system
as a set of independent, parallel processes identified by
names. The emphasis has been on a clear understanding of
relationships among resources (store and peripherals), data
(programs and documents), and processes (internal and
external).

4. Process C o m m u n i c a t i o n

In a system of parallel, cooperating processes, mecha-
nisms must be provided for the synchronization of two
processes during a transfer of information.

Di jks t ra has demonstrated tha t indivisible lock and
unlock operations operating on binary semaphores are
sufficient primitives from a logical point of view [3]. We
have been forced to conclude, however, tha t the semaphore
concept alone does not fulfill our requirements of safety
and efficiency in a dynamic environment in which some
processes may turn out to be black sheep and break the
rules of the game.

Ins tead we have introduced message buffering within the
system nucleus as the basic means of process communica-
tion. The system nucleus administers a common pool of
message buffers and a message queue for each process.

The following primitives are available for the communi-
tion between internal processes:

send message (receiver, message, buffer),
wait message (sender, message, buffer),
send answer (result, answer, buffer),
wait answer (result, answer, buffer).

Send message copies a message into the first available
buffer within the pool and delivers it in the queue of a
named receiver. The receiver is act ivated if it is waiting for
a message. The sender continues after being informed of
the identi ty of the message buffer.

Wai t message delays the requesting process until a mes-
sage arrives in its queue. When the process is allowed to
proceed, i t is supplied with the name of the sender, the
contents of the message, and the identi ty of the message
buffer. The buffer is removed from the queue and made
ready to t ransmit an answer.

Send answer copies an answer into a buffer in which a
message has been received and delivers it in the queue of
the original sender. The sender of the message is act ivated

if it is waiting for the answer. The answering process con-
tinues immediately.

W a i t answer delays the requesting process until an
answer arrives in a given buffer. On arrival, the answer is
copied into the process and the buffer is returned to the
pool. Th6 result specifies whether the answer is a response
from another process or a dummy answer generated by the
system nucleus in response to a message addressed to a
nonexisting process.

The procedure wait message forces a process to serve its
queue on a first-come, first-served basis. The system, how-
ever, also includes two primitives tha t enable a process to
wait for the arrival of the next message or answer and serve
its queue in any order.

This communication scheme has the following advan-
tages.

The mult iprogramming system is dynamic in the sense
tha t processes can appear and disappear at any time.
Therefore a process does not in general have a complete
knowledge of the existence of other processes. This is
reflected in the procedure wait message, which makes it
possible for a process to be unaware of the existence of
other processes until i t receives messages from them.

On the other hand, once a communication has been
established between two processes (i.e. by means of a
message) they need a common identification of it in order
to agree on when it is terminated (i.e. by means of an
answer). Thus we can properly regard the selection of a
buffer as the creation of an identification of a conversation.
A happy consequence of this is tha t it enables two processes
to exchange more than one message at a time.

We must be prepared for the occurrence of erroneous or
malicious processes in the system (e.g. undebugged pro-
grams). This is tolerable only if the system nucleus
ensures tha t no process can interfere with a conversation
between two other processes. This is done by storing the
identi ty of the sender and receiver in each buffer and check-
ing it whenever a process a t tempts to send or wait for an
answer in a given buffer.

Efficiency is obtained by the queueing of buffers, which
enables a sending process to continue immediately after
delivery of a message or an answer, regardless of whether
or not the receiver is ready to process it.

To make the system dynamic, i t is vi tal tha t a process
can be removed at any time, even if it is engaged in one or
more conversations. In this case, the system nucleus leaves
all messages from the removed process undisturbed in the
queues of other processes. When these processes answer
them, the system nucleus returns the buffers to the com-
mon pool.

The reverse situation is also possible: during the removal
of a process, the system nucleus finds unanswered messages
sent to the process. These are returned as dummy answers
to the senders.

The main drawback of message buffering is tha t it intro-
duces yet another resource problem, since the common
pool contains a finite number of buffers. I f a process were

V o l u m e 13 / N u m b e r 4 / Apr i l , 1970 C o m m u n i c a t i o n s o f t h e ACM 239

allowed to empty the pool by sending messages to igno-
rant processes, which do not respond with answers, further
communication within the system would be blocked. Con-
sequently a limit is set to the number of messages a process
can send simultaneously. By doing this, and by allowing a
process to transmit an answer in a received buffer, we have
placed the entire risk of a conversation on the process tha t
opens it.

5. External Processes

Originally the communication primitives were designed
for the exchange of messages between internal processes.
Later we also decided to use send message and wait answer
for communication between internal and external processes.

For each kind of external process, the system nucleus
contains a piece of code that interprets a message from an
internal process and initiates inpu t /ou tpu t using a storage
area specified in the message. When inpu t /ou tpu t is termi-
nated by an interrupt, the nucleus generates an answer to
the internal process with information about actual block
size and possible error conditions. This is essentially the
implementation of the external process concept.

We consider it to be an important aspect of the system
tha t internal and external processes are handled uniformly
as independent, self-contained processes. The difference
between them is merely a mat ter of processing capability.
A consequence of this is tha t any external process can be
replaced by an internal process of the same name if more
complex criteria of access and response become desirable.

External processes are created on request from internal
processes. Creation is simply the assignment of a name to a
particular peripheral device. To guarantee internal proc-
esses exclusive access to sequential documents, primitives
are available for the reservation and release of external
processes.

Typewri ter consoles are the only external processes tha t
can send messages to internal processes. The operator
opens a conversation by pushing an interrupt key and
typing the name of the internal receiver followed by a line
of text.

A file on the backing store can be used as an external
process by copying a description of the file from a catalog
on the backing store into the system nucleus; following
this, internal processes can initiate inpu t /ou tpu t by send-
ing messages to the file process.

Real-time synchronization of internal processes is ob-
tained by sending messages to a clock process. After the
elapse of a time interval specified in the message, the clock
returns an answer to the sending process.

In general, external processes can be used to obtain
synchronization between internal processes and any signal
from the external world. For example, an internal process
may send a message to a watchdog process and receive an
answer when a magnetic tape is mounted on a station. In
response, the internal process can give the station a tem-
porary name, identify the tape by reading its label, and
rename the station accordingly.

6. I n t e r n a l Processes

A final set of primitives in the system nucleus allows the
creation, control, and removal of internal processes.

Internal processes are created on request from other
internal processes. Creation involves the assignment of a
name to a contiguous storage area selected by the parent
process. The storage area must be within the parent 's own
area.

After creation, the parent process can load a program
into the child process and start it. The child process now
shares computing time with other active processes includ-
ing the parent process.

On request from a parent process, the system nucleus
waits for the completion of all inpu t /ou tpu t initiated by a
child process and stops it. In the stopped state, the process
can still receive messages and answers in its queue. These
can be served when the process is restarted.

Finally, a parent process can remove a child process in
order to assign its storage area to other processes.

According to our philosophy, processes should have
complete freedom to choose their own strategy of program
scheduling. The system nucleus only supplies the essential
primitives for initiation and control of processes. Conse-
quently, the concepts of program loading and swapping are
not par t of the nucleus. Time-sharing of a common storage
area among child processes on a swapping basis is possible,
however, because the system does not check whether inter-
nal processes overlap each other as long as they remain
within the storage areas of their parents. Swapping from
process A to process B can be implemented in a parent
process as follows: stop(A) ; output(A); input(B) ; start(B).

7. Process Hierarchy

The idea of the system nucleus has been described as the
simulation of an environment in which program execution
and inpu t /ou tpu t are handled uniformly as parallel, co-
operating processes. A fundamental set of primitives allows
the dynamic creation and control of processes as well as
communication among them.

For a given installation we still need, as par t of the sys-
tem, programs that control strategies of operator com-
munication, program scheduling, and resource allocation;
but it is essential for the orderly growth of the system that
these operating systems be implemented as other programs.
Since the difference between operating systems and pro-
duction programs is one of jurisdiction only, this problem
is solved by arranging the internal processes in a hierarchy
in which parent processes have complete control over child
processes.

After initial loading, the internal store contains the sys-
tem nucleus and a basic operating system, S, which can
create parallel processes, A, B, C, etc., on request from
consoles. The processes can in turn create other processes,
D, E, F, etc. Thus while S acts as a primitive operating
system for A, B, and C, these in turn act as operating sys-
tems for their children, D, E, and F. This is illustrated by
Figure 1, which shows a family tree of processes on the left

240 Communications of the ACM Volume 13 / Number 4 / April, 1970

and the corresponding storage allocation on the right. This
family tree of processes can be extended to any level, sub-
ject only to a limitation of the total number of processes.

In this multiprogramming system, all privileged func-
tions are implemented in the system nucleus, which has no
built-in strategy. Strategies can be introduced at the var-
ious higher levels, where each process has the power to
control the scheduling and resource allocation of its
children. The only rules enforced by the nucleus are the
following: a process can only allocate a subset of its own
resources (including storage and message buffers) to its
children; a process can only start, stop, and remove its own
children (including their descendants). After removal of a
process, its resources are returned to the parent process.

Fro. 1

SYSTEM NUCLEUS

A D

E
S

B
F G

H

Initially all system resources are owned by the basic
operating system S. For details of process control and re-
source allocation, the reader should consult the manual of
the system [1].

We emphasize that the only function of the family tree
is to define the rules of process control and resource alloca-
tion. Computing time is shared by round-robin scheduling
among active processes regardless of their position in the
hierarchy, and each process can communicate with all
other processes.

Regarding the future development of operating systems,
the most important characteristics of the system can now
be seen as the following.

1. New operating systems can be implemented as other
programs without modification of the system nucleus. In
this connection, we should mention that the ALGOL and
FORTRAN languages for the RC 4000 contain facilities for
calling the nucleus and initiating parallel processes. Thus
it is possible to write operating systems I in high-level lan-
guages.

2. Operating systems can be replaced dynamically, thus
enabling an installation to switch among various modes of
operation; several operating systems can, in fact, be active
simultaneously.

3. Standard programs and user programs can be
executed under different operating systems without modi-
fication, provided there is common agreement on the possi-
ble communication between parents and children.

8. I m p l e m e n t a t i o n

The RC 4000 is a 24-bit, binary computer with typical
instruction execution times of 4 microseconds [2]. I t per-
mits practically unlimited expansion of the internal store
and standardized connection of all kinds of peripherals.
Multiprogramming is facilitated by program interruption,
storage protection, and privileged instructions.

The present implementation of the system makes multi-
programming feasible with a minimum store of 16K-32K
words backed by a fast drum or disk. The system nucleus
includes external processes for a real-time clock, type-
writers, paper tape input /output , line printer, magnetic
tape, and files on the backing store. The size of the nucleus
and the basic operating system is as follows:

words
primitives 2400
code for external processes 1150
process descriptions and buffers 1250

system nucleus 4800
basic operating system 1400

6200

The communication primitives are executed in the un-
interruptable mode within the system nucleus. The execu-
tion times of these set a limit to the system's response to
real-time events:

msec
send message 0.6
wait answer 0.4
wait message 0.4
send answer 0.6

An analysis shows tha t the 2 milliseconds required by a
complete conversation (the sum of the four primitives) are
used as follows:

percent
validity checking 25
process activation 45
message buffering 30

This distribution is so even that one cannot hope to in-
crease the speed of the system by introducing additional,
ad hoc machine instructions. The only realistic solution is
to make the hardware faster.

The primitives for creation, start, stop, and removal of
processes are implemented in an anonymous internal
process within the system nucleus to avoid intolerably long
periods in the uninterruptable mode. Typical execution
times for these are:

msec
create process 3
start process 26
stop process 4
remove process 30

(Continued on page 250)

Volume 13 / Number 4 / April, 1970 Communications of the ACM 241

The analysis presented here suggests that spatial domains
are the primitive element of this particular graphic
language. In this light, the common assumption that line
segments are the primitives of many graphic languages
may require revision.

RECEIVED JUNE, 1969; REVISED OCTOBER, 1969

REFERENCES
1. GRoss, MAURICE, AND NIVAT, MAURICE. A command

language for visualization and articulated movements. In
Computer and Information Sciences II, Julius T. Tou (Ed),
Academic Press, New York, 1967.

2. NILSSON, NILS J. A mobile automaton: An application of
artificial intelligence techniques. Proc. Int. Joint Conf.
Artificial Intelligence, May 1969, Washington, D. C.

3. EASTMAN, CHARLES M. Explorations of the cognitive proc-
esses of design, Dep. of Comput. Sci., Carnegie-Mellon U.,
Feb. 1968, ARPA Rep. DDC No. AD671158, Clearinghouse,
Springfield, VA 22151.

4. EASTMAN, CHARLES M. Cognitive processes and ill-defined
problems: A case study from design, Proc. Int . Joint Conf.
Artificial Intelligence, May 1969, Washington, D. C.

5. HOWDEN, W. E. The sofa problem. Comput. 3". 11, 3 (Nov.
19687, 299-301.

6. SUTHERLAND, I. E. Sketchpad: a man-machine graphical
communication system. Prec. AFIPS 1963 Spring Joint
Comput. Conf., Vol. 23, Spartan Books, New York, pp. 329-
346.

7. GRAY, J. C. Compound data structure for computer aided
design: a survey, Proc. ACM 22nd Nat. Conf. 1967, Thomp-
son Book Co., Washington, D. C., pp. 355--365.

8. THOMAS, E. M. GRASP--~ graphic service program. Proc.
ACM 22nd Nat. Conf., 1967, MDI Publications, Wayne, Pa.,
pp. 395-402.

9. ARMOUR, GORDON C., AND BUFFA, Elwoov. A heuristic
algorithm and simulation approach to relative location of
facilities. Man. Sci. (Jan. 1963), 244-309.

10. LEE, R. B. AND MOORE, J. M. CORELAP--computerized
relationship layout planning, J . Indust. Eng., 18, 3 (Mar.
1967) 195-200.

11. SIMPSON, M. G., ET AL. The planning of multi-storybuildings:
a systems analysis and simulation approach. Proc. European
Meeting on Statistics, Econometrics and Management
Science, Amsterdam, Sept. 1968.

12. BARKEN, ROBERT. A set of algorithms for automatically
laying out hybrid integrated circuits. Internal working doc.,
Bell Telephone Lab., Holmdel, N. J., Aug. 1968.

13. NILSSON, N. J., AND RAPHAEL, B. Preliminary design of an
intelligent robot. In Computer and Information Sciences II,
Julius T. Tou (Ed.), Academic Press, New York, 1967.

14. ROSEN, C. A., AND NILSSON, N. J. Application of intelligent
automata to reconnaisance. SRI Project 5953, Third Interim
Report, Rome Air Develop. Center, Rome, N. Y., Dec. 1967.

15. FAIR, G. R., FLOWERDEW, ET AL. Note on the computer as
an aid to the architect. Comput. J . 9, 1 (June 1966).

16. GRISWOLD, R., POAGE, J., AND POLONSKY, I. The SNOBOIA
programming language. Bell Telephone Lab., Holmdel,
N. J., Aug., 1968.

17. McCARTHY, JOHN, ET AL. LISP1.5 Programmer's Manual.
MIT Press, Cambridge, Mass., 1965.

18. MORAN, THOMAS. Structuring three-dimensional space for
computer manipulation. Dep. Comput. Sci. working
paper, Carnegie-Mellon U., Pittsburgh, Pa., June, 1968.

19. MORAN, THOMAS. A model of a multi-lingual designer. In
Emerging Methods in Environmental Design and Planning,
G. Moore (Ed.), MIT Press, Cambridge, Mass. (in press).

20. WYLIE, C. ROMNEY, ET AL. Halftone perspective drawings by
computer. Teeh. Rep. 4-2, Comput. Sci. Dep., U. of Utah,
Salt Lake City, Utah, Feb. 1968.

T

Hansen--cont'd from page 241

The excessive times for the start and removal of an internal
process are due to the peculiar storage protection system of
the RC 4000, which requires the setting of a protection key
in every storage word of a process.

9. Conc lus ion

Ideas similar to those described here have been sug-
gested by others [4-6]. We have presented our system
because we feel that, taken as a whole, it represents a sys-
tematic and practical approach to the design of replaceable
operating systems. As an inspiration to other designers, it
is perhaps most important that it illustrates a sequence of
design steps leading to a general system nucleus, namely,
the definition of the process concept, the communication
scheme, and the dynamic creation and structuring of
processes.

We realize, of course, that a final evaluation of the sys-
tem can only be made after it has been used to design a
number of operating systems.

250 Communicat ions of the ACM

Acknowledgments. The design philosophy was de-
veloped by J~rn 5ensen, S~ren Lauesen, and the author.
Leif Svalgaard participated in the implementation and
testing of the final product.

Regarding fundamentals, we have benefited greatly from
Dijkstra's analysis of cooperating sequential processes.

RECEIVED JULY, 1969; REVISED JANUARY, 1970

REFERENCES

1. RC $000 Soflware: Multiprogramming System. P. Brinch Hansen
(Ed.). A/S Regnecentralen, Copenhagen, 1969.

2. RC 4000 Computer: Reference Manual. P. Brinch Hansen (Ed.).
A/S Regnecentralen, Copenhagen, 1969.

3. DIJKSTRA, E. W. Cooperating Sequential Processes. Math.
Dep., Technological U., Eindhoven, Sept. 1965.

4. I'IARRISON, M. C., AND SCHWARTZ, J. W. SHARER, a time
sharing system for the CDC 6600. Comm. ACM 10, (Oct. 1967),
659.

5. I'IUXTABLE, D. H. R., AND WARWICK, M. T. Dynamic super-
visors--their design and construction. Proc. ACM Syrup. on
Operating System Principles, Gatlinburg, Tenn., Oct. 1--4,
1967.

6. WICHMANN, B. A. A modular operating system. Proc. I F I P
Cong. 1968, North Holland Pub. Co., Amsterdam, p. C48.

Volume 13 / Number 4 / Apri|,r1970

