
FLASH REPORT

When choosing a web server architecture there are many choices and each has its own
benefits and drawbacks. Probably the most simplistic architecture is the Multi-Process (MP)
model. According to this model every new request that the server receives causes a new process
to be instantiated. Each process is responsible for one particular client request and they are
independent of one another; that is, if one process happens to block (stall) the other processes are
not affected in anyway. Another benefit of this independence is not having to deal with
synchronization issues because each process has its own “private” address space. However, such
convenience has certain drawbacks. Due to the need for completely separate processes there is a
substantial amount of memory and kernel overhead. Although the execution of the processes can
be interleaved, there is an enormous cost associated with every context-switch that needs to be
made (which can be a lot considering there might be a hundred or so processes/requests). Also,
the MP model uses memory less efficiently assuming each process has its own cache.

On the other hand, the AMPED architecture does not exhibit such drawbacks. AMPED
follows an “event dispatcher” design pattern. Unlike MP, AMPED has one main process
running at all times that calls upon other functions to perform particular tasks. However, in the
case of a disk access operation, helper processes (or threads) are utilized to prevent the blocking
of the main process. By having a single process the AMPED architecture avoids the overhead
costs of context switching. And since it uses one single cache it does not have to deal with
synchronization issues. Since the model uses “helpers” there is an overhead associated with
maintaining them. In addition, since these processes are separate from the main process there is
a need for inter-process communication (so that the main process is notified once the file has
been retrieved from the disk). The IPC is one key cost associated with disk access in AMPED
which did not have to be dealt with in the MP architecture. But it must be noted that in MP IPC
would have to be used to consolidate data produced by the various processes.

In terms of simplicity of implementation, MP is the likely choice. MP's model is very
similar to the abstract model of a web server, with each process being an identical copy of the
other. So as long as a person could write procedures dealing with each task in the model, they
can be called sequentially in the main function. The only issue that would have to be dealt with
would be data consolidation.

On the other hand, AMPED has a much more “elegant” design which makes it more
difficult to program. The model resembles more of a state diagram than the “uniflow” diagram
of the abstract model. Since the server behaves like a state machine, the “state” of each request
has to be maintained in order to determine which task to perform next. The individual
operations/states would be programmed similar to those in MP since they are modular in nature.
Furthermore, the “helpers” need to be implemented along with some IPC protocol. The main
process would have to do a lot of maintenance work dealing with the various operations and
helpers. In some ways the AMPED implementation seems much more “customized” compared
to MP; that is a lot of the code has to be written from scratch and it cannot be reused anywhere
else.

No matter how cumbersome the implementation of AMPED might be, the increase in
efficiency and faster response time are well worth the effort. The web server, unlike the Therac-
25, is a time-critical system. The satisfaction of the customers is not determined by accuracy but
the responsiveness of the system. Although complex systems are more error prone than simple
ones, the speed gains of the AMPED model outweigh any “bugs” that might be introduced
during implementation.

Shaun Ahmadian
603-223-641

