
Network Coordinates in the Wild

Jonathan Ledlie, Paul Gardner, and Margo Seltzer
Harvard School of Engineering and Applied Sciences and Aelitis
{jonathan,margo}@eecs.harvard.edu, pgardner@aelitis.com

Abstract
Network coordinates provide a mechanism for select-

ing and placing servers efficiently in a large distributed
system. This approach works well as long as the coordi-
nates continue to accurately reflect network topology. We
conducted a long-term study of a subset of a million-plus
node coordinate system and found that it exhibited some
of the problems for which network coordinates are fre-
quently criticized, for example, inaccuracy and fragility
in the presence of violations of the triangle inequality.
Fortunately, we show that several simple techniques rem-
edy many of these problems. Using the Azureus BitTor-
rent network as our testbed, we show that live, large-scale
network coordinate systems behave differently than their
tame PlanetLab and simulation-based counterparts. We
find higher relative errors, more triangle inequality viola-
tions, and higher churn. We present and evaluate a number
of techniques that, when applied to Azureus, efficiently
produce accurate and stable network coordinates.

1 Introduction
The performance of many Internet applications, such

as distributed hash tables, web caches, and overlay net-
works, relies on accurate latency estimation between par-
ticipants (e.g., [10, 27]). Researchers propose acquiring
these measurements using various techniques, from proxy
measurement [13, 26] to landmark binning [23] to decen-
tralized network embeddings (e.g., [11, 19, 21, 24, 28]).
In a network embedding, a subset of inter-node latency
measurements is embedded into a low-dimensional metric
space. Each node maintains a network coordinate, such
that the metric distance between two coordinates in the
abstract space predicts real-world latencies. This paper
examines the performance of Internet-scale network em-
beddings through the study of a subset of a million-node
live coordinate system.

Although network coordinates have attractive proper-
ties for latency prediction on the Internet, they have been
criticized for requiring expensive maintenance and having
prediction accuracy significantly worse than direct mea-
surement methods such as Meridian [29]. At the very
least, critics say that network coordinates are an unproven
idea and unlikely to work in practice because Internet

routing policies cause too many triangle inequality viola-
tions [31]. Supporters respond with claims that accuracies
are reasonable (8−15%), and they have demonstrated that
coordinate maintenance can be built on top of existing ap-
plication communication. They support these claims with
simulations and small-scale live deployments on Planet-
Lab [8, 16, 20, 24].

This paper provides the missing piece of the debate:
data and analysis of a truly large-scale and long-running
network coordinate system. The Azureus file-sharing net-
work [1], which runs a million-node network coordinate
system, is the main artifact for our analysis and experi-
mentation. This work is the result of a collaboration be-
tween the Azureus team (Gardner) and a team from Har-
vard (Ledlie, Seltzer). Gardner contacted the Harvard
team because Azureus was exhibiting some of the difficul-
ties that Ledlie et al. had addressed in earlier work with
a PlanetLab-based coordinate system [16]. We merged
the techniques from Ledlie’s previous work into the test
branch of the Azureus code, used by approximately ten
thousand clients.

While our previous techniques did work “in the wild,”
Azureus continued to experience unsatisfactorily high er-
rors. This occurred because its gossip pattern stifled
convergence: as all coordinate maintenance is “piggy-
backed” on other traffic, each coordinate became heav-
ily skewed to small segments of the network and failed
to become globally accurate. We created a simple new
technique called neighbor decay that smoothly manages
these skewed neighbor sets while retaining the appealing
zero-maintenance property of Azureus’ coordinates. With
these techniques in place, Azureus’ coordinates and, by in-
ference, Internet-scale coordinate systems in general, can
now tackle a basic goal: quickly and efficiently optimiz-
ing anycast decisions based on correct latency estimates.
Because even with these approaches Internet-scale coordi-
nates are still partially untamed, we isolated and analyzed
a set of major remaining impediments.

The contributions of this work are:

• Improvements to the live Azureus coordinate sys-
tem, producing a 43% improvement in accuracy and
a four order-of-magnitude improvement in stability.
The new coordinates optimize DHT traversal, help-

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 299

ing the application pick physically close nodes; this
trims lookup delay by 33% compared to the most di-
rect logical path.

• A new technique for managing neighbors in coordi-
nate systems where all gossip is “piggybacked” on
existing traffic — i.e. where there are zero mainte-
nance messages.

• A new, large-scale latency matrix providing a valu-
able new portal into Internet behavior. Previous large
matrices were between DNS servers and did not cap-
ture latencies between actual nodes [8, 29].

• Evidence why Internet-scale latency estimation with
coordinates works. We find the intrinsic dimension-
ality of large-scale systems to be less than previ-
ous work, which studied smaller networks [28], and
we show why the world flattens into near-planar Eu-
clidean coordinates.

• Analysis of five major barriers to accuracy: churn,
drift, intrinsic error, corruption, and latency variance.
We present techniques for lowering these barriers and
show how latency variance requires a fundamentally
new approach to latency prediction.

In Section 2, we explain why practitioners, such as
the Azureus developers, use network coordinates in large-
scale deployments and review Azureus’ network coordi-
nate algorithm. In Section 3, we use a dense latency matrix
to analyze the characteristics of the Azureus’ latency dis-
tribution, determining its intrinsic dimensionality and the
extent of its triangle inequality violations. In Section 4,
we describe three techniques integrated into the Azureus
code. In Section 5 we review metrics for evaluating co-
ordinate systems. In Section 6, we examine the live per-
formance of Azureus through three methods: (a) Azureus
clients we ran on PlanetLab, (b) crawling instrumented
clients run by approximately ten thousand Azureus users,
and (c) an application-level benchmark: using coordinates
to optimize DHT hop selection. In Section 7, we examine
five primary causes of the remaining difference between
the current live accuracy and what appears to be achiev-
able based on simulation results. In Section 8, we review
the approaches for estimating latencies in large distributed
systems. In Section 9, we conclude.

2 Background
Azureus is currently one of the most popular clients for

BitTorrent, a file sharing protocol [6]. For a given file, the
protocol embodies four main roles: an initial seeder, new
seeders, a tracker, and peers. Initial seeders, new seed-
ers, and peers are all transient clients; trackers are typi-
cally web servers. The initial seeder is the source of the
file. It divides the file into small pieces, creates a meta-
data description of the file and sends this description to the
tracker. Peers discover this file description through some

out-of-band mechanism (e.g., a web page) and then begin
looking for pieces of the file. Peers contact the tracker
to bootstrap their knowledge of other peers and seeds.
The tracker returns a randomized subsets of other peers
and seeds. Initially, only the initial seeder has pieces, but
soon peers are able to exchange missing pieces with each
other, typically using a tit-for-tat scheme. Once a peer ac-
quires all of the pieces for a file, it becomes a new seeder.
This collection of clients actively sharing a file is called a
swarm. In Azureus, file descriptors and other metadata are
stored in a DHT, in which all clients participate, and any
node can be assigned the role of tracker if it is or is near
the root of the hash of a given file’s descriptor. In practice,
there can be many possible trackers from which to choose
for a particular file and even more possible clients for a
given piece. A key challenge in efficiently implementing
this protocol is providing a simple method for node selec-
tion, an example of anycast.

Distributed systems developers are beginning to use
network coordinates as a mechanism to support anycast.
The Azureus developers use them for two distinct pur-
poses: (a) to optimize DHT traversal and (b) to select
nearby nodes for application-level congestion monitoring.
We are currently testing another coordinate-based opti-
mization: biasing the set of nodes the tracker returns to
be nearby the caller. Bindal et al. show in simulation how
these locally-biased swarms reduce download times and
inter-ISP traffic [3]. Future plans call for using network
coordinates to optimize media streaming over Azureus.

We worked with the Azureus developers to analyze
and improve the coordinates maintained by their system,
which contains more than a million clients. We were able
to modify the Azureus code internals and watch its be-
havior on a subset of the network because approximately
ten thousand Azureus users run a plugin that automatically
upgrades their version to the latest CVS release. Accord-
ing to the Azureus developers, the clients who use the lat-
est release exhibit normal user characteristics, so we ex-
pect that our results generalize to the larger system.

2.1 Vivaldi
Azureus uses the Vivaldi network coordinate update al-

gorithm [8]. The Vivaldi algorithm calculates coordinates
as the solution to a spring relaxation problem. The mea-
sured latencies between nodes are modeled as the exten-
sions of springs between massless bodies. A network em-
bedding with a minimum error is found as the low-energy
state of the spring system.

Figure 1 shows how a new observation, consisting of
a remote node’s coordinate −→xj , its confidence wj , and a
latency measurement lij between the two nodes, i and j,
is used to update a local coordinate. The confidence, wi,
quantifies how accurate a coordinate is believed to be.
Note that confidence increases as it approaches 0. The al-

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association300

VIVALDI(−→xj , wj , lij)
1 ws = wi

wi+wj

2 ε = |‖−→xi−
−→xj‖−lij |
lij

3 α = ce × ws

4 wi = (α × ε) + ((1 − α) × wi)
5 δ = cc × ws

6 −→xi = −→xi + δ × (‖−→xi −−→xj‖ − lij) × u(−→xi −−→xj)

Figure 1: Vivaldi update algorithm.

gorithm first calculates the sample confidence ws (Line 1)
and the relative error ε (Line 2). The relative error ε ex-
presses the accuracy of the coordinate in comparison to
the true network latency. Second, node i updates its confi-
dence wi with an exponentially-weighted moving average
(EWMA) (Line 4). The weight α for the EWMA is set ac-
cording to the sample confidence ws (Line 3). Also based
on the sample confidence, δ dampens the change applied
to the coordinate (Line 5). As a final step, the coordinate is
updated in Line 6 (u is the unit vector). Constants ce and
cc affect the maximum impact an observation can have on
the confidence and the coordinate, respectively.

Height is an alternative to a purely Euclidean distance
metric. With height, the distance between nodes is mea-
sured as their Euclidean distance plus a height “above” the
hypercube that models the latency penalty of network ac-
cess links, such as DSL lines [8].

Each node successively refines its coordinate through
periodic updates with other nodes in its neighbor set. In
Azureus, the information used to maintain the network co-
ordinate system is entirely piggybacked on existing mes-
sages, such as routing table heartbeats. While this does
mean the coordinates induce no additional overhead (be-
yond 24 bytes per message for four dimensions, height,
and confidence), it also means that the algorithm needed
to be modified to function passively. In Section 4.2, we
describe a technique we developed to incorporate infor-
mation from highly transient neighbors.

3 Latencies in the Wild
Before we examine the accuracy with which Internet-

scale latencies can be embedded into a coordinate space,
we compare latencies in Azureus to those in other net-
works to gain insight into the causes of error in Internet-
scale embeddings. We generate a dense latency matrix of
a subset of Azureus and compare it to PlanetLab and to the
MIT King data set, a square matrix containing the median
latencies between 1740 DNS servers collected using the
King method [8, 13]. Researchers found PlanetLab and
MIT King can be reduced to low dimensional coordinates
with ≤ 10% median error [8, 16]. We examine three char-
acteristics: inter-node round trip times, violations of the
triangle inequality, and intrinsic dimensionality.

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000 100000

C
D

F

Round Trip Time (ms)

MIT King
PlanetLab

Azureus

Figure 2: A comparison of round-trip times shows that
Azureus spreads across a range one order-of-magnitude
larger than MIT King, based on inter-DNS latencies. This
larger spread tends to lead to lower accuracy embeddings.

3.1 Collection
We instrumented clients that we ran on PlanetLab to

record the application-level latency between them and the
rest of the network creating a dense latency matrix. These
clients ran on 283 PlanetLab nodes for 24 days starting
on July 19th 2006, collecting 9.5 × 107 latency measure-
ments to 156, 658 Azureus nodes. To reduce these raw
measurements into a dense latency matrix, we used the
following process: first, we summarized each edge with
the median round trip time for this edge, discarding edges
with fewer than a minimum number of samples (4); sec-
ond, we discarded all nodes that had fewer than half of the
maximum number of edges (280). This process resulted
in a 249 × 2902 matrix with 91% density, where 83% of
the entries were the median of at least ten samples. We
derived the PlanetLab data set from the Azureus matrix by
simply selecting out its subset of hosts.

3.2 Round Trip Times
In Figure 2, we illustrate the distribution of inter-node

round trip times between nodes in the three data sets.
The King measurements were limited to a maximum of
800ms. The data exhibit one important characteristic:
spread. The application-level, Azureus round trip times
spread across four orders-of-magnitude, while the inter-
DNS, King data set spreads across three. In theory, this
is not a harbinger of higher embedding error; in practice,
however, as Hong et al. have shown, the error between
nodes whose distance is near the middle of the latency dis-
tribution tends to be the lowest [30]: with longer tails to
this distribution, there are more edges to be inaccurate.
(We found ICMP measurements exhibit a similarly wide
distribution; see § 7.5.) This wide spread is a warning sign
that Azureus will have higher error than a system with a
narrower round trip time distribution.

3.3 Violations of the Triangle Inequality
Network coordinate embeddings that use Euclidean dis-

tances make the assumption that the triangle inequality is

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 301

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

Fr
ac

tio
n

of
Pa

ir
s

Relative Path Length

MIT King
PlanetLab

Azureus

Figure 3: In all three data sets, over half of all node
pairs fail the Tang/Crovella triangle inequality test, be-
cause there exists a third node between the nodes in the
pair that produces a shorter path than the direct path be-
tween the two nodes. A large fraction of these violating
pairs have paths that are significantly faster.

not violated to a great extent by a large fraction of pairs
of nodes. The triangle inequality states that for any trian-
gle the length of a given side must be less than the sum of
the other two sides but greater than the difference between
the two sides, i.e., the sides must be able to form a trian-
gle. When the latencies between node triples cannot form
a triangle, they are said to violate the triangle inequality.
Nodes with large and frequent violations tend to be the
ones with the largest individual prediction error and their
existence decreases overall accuracy (see [16] and § 7.3).

We use a method from Tang and Crovella to examine
the severity of triangle inequality violations [28]. This
method normalizes the severity of each violation, permit-
ting an all-pairs comparison. For each node pair, we find
the shortest path between the two that passes through a
third node. Thus, for all pairs of nodes i and j, we find
the best alternative path through a node k and normalize
by the latency between i and j:

rpl = mink

(
d(i, k) + d(k, j)

d(i, j)

)

Figure 3 illustrates the cumulative distribution of this
quantity, the relative path length. Note that any fraction
below 1 is a violation: there exists a path through an al-
ternative node that is faster than the direct path. 83% of
the Azureus pairs, 85% of MIT King, and 68% of the
PlanetLab subset violate the triangle inequality. In con-
trast to earlier work that examined several small-scale data
sets [28], we find the fraction of pairs with the largest vi-
olations to be quite large: Tang and Crovella found only
10% of nodes had an alternative path that is ≥ 20% faster;
here 37% of Azureus pairs and 22% of MIT King pairs
exhibit this large level of violation.

We examined the cause of the large fraction of pairs
with very low rpl (< 0.1) in Azureus. We found that only
a few nodes were members of many of these low rpl pairs.
What distinguished these nodes — and what was the cause

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

M
ag

ni
tu

de

Singular Values

Azureus
MIT
PlanetLab
Synthetic 5-d
Synthetic 10-d

Figure 4: Scree plots suggest the inherent dimensionality
of MIT King, PlanetLab, and Azureus datasets is small.
Two synthetic matrices of five and ten dimensions are in-
cluded for comparison.

of their frequent participation in triangle inequality viola-
tions — was that their delay to non-PlanetLab nodes was
atypically large, on the order of seconds, while their delay
to other PlanetLab nodes remained typical (less than a sec-
ond). In effect, this extended one side of the triangles these
nodes participated in: d(i, j) became large while d(i, k)
and d(k, j) did not. Because PlanetLab nodes that ex-
hibited this behavior were co-located, we conjecture that
the Azureus traffic to non-PlanetLab sites was being arti-
ficially limited at site gateways, while traffic to PlanetLab
nodes avoided this traffic shaping. Rather than being a
construct of the PlanetLab environment, this effect, lead-
ing to bi- or multi-modal latency distributions, will be the
norm for at least some participants in Internet-scale ap-
plications that use well-known ports and consume a large
amount of bandwidth, such as Azureus, because some
sites will limit traffic and some will not. Like the round
trip time spread, Azureus’ violations foreshadow a higher
embedding error.

3.4 Dimensionality
Network coordinates would be less useful if a large

number of dimensions were needed to capture the inter-
node latencies of the Internet. Tang and Crovella used
Principal Component Analysis (PCA) to hint at the num-
ber of dimensions required to encompass this information
for several small data sets [28]. Because we wanted to
know if few dimensions would be sufficient for a large,
broad spectrum of endpoints, we used the same method to
examine the intrinsic dimensionality of Azureus.

PCA is a linear transformation from one coordinate sys-
tem to a new, orthogonal coordinate system. The new sys-
tem is chosen such that each subsequent axis captures the
maximum possible remaining variance in projections from
points in the old system to points in the new: the first new
axis captures the most variance, the second less, and so
on. While an input system of k elements will produce an
output system also of k elements, often only the first sev-
eral dimensions of the output system will summarize all
or part of the same distance information of the original set

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association302

Figure 5: Intercontinental Latency Distributions illustrate why a Euclidean distance metric works for network coordinates
on the Internet: messages from Asia to Europe (and from Europe to Asia) go through North America.

of points. Singular values are a result of the PCA transfor-
mation: each new axis has a corresponding singular value
that describes the amount of variance captured by this axis.
Thus, if a singular value is very small or zero, this suggests
that this axis is unnecessary in describing the variance in
a particular data set.

Because PCA requires a full matrix, we first used the
following two techniques to fill in the remaining 9% of
the Azureus matrix and the missing 0.4% of the MIT ma-
trix. We filled half of the missing Azureus values with
the King technique [13] (King fails in certain cases, e.g.,
when the endpoint cannot be resolved). We interpolated
the remaining values in both matrices by embedding each
matrix and extracting the missing values.

We use a scree plot to illustrate how much variance each
new singular value is capturing, which in turn hints at the
inherent dimensionality of the underlying data set. The
independent variables of a scree plot are the singular val-
ues, sorted by their magnitude; the dependent variables are
their corresponding magnitudes. At the point where the
magnitude of the singular values becomes zero or nearly
zero, the relative importance of this and subsequent sin-
gular values (i.e., dimensions) is low. Up to this point,
these dimensions are necessary to capture the values in
the original input matrix, which in this case is made up of
inter-node latency values.

We show the normalized singular values for the King,
PlanetLab, and Azureus data sets in Figure 4. For com-
parison, we created synthetic 5d and 10d systems each
containing 250 random points in a unit hypercube and
found their singular values. As one would expect, the syn-
thetic 5d and 10d data sets show a sharp knee soon after 5
and 10 singular values, respectively. In contrast, the bulk
of the inter-node latency information from two Internet-
based data sets requires very few dimensions. Azureus, in
particular, is dominated by a single dimension, and MIT
King by two. However, the next several dimensions re-
main significant for the few nodes that need to navigate
around the clusters of nodes that have found good posi-
tions. In the data, this is shown by the continued rele-
vance of singular values when compared to synthetic data
sets. To lower the error for these nodes, we find 4 − 5

dimensions is appropriate for Internet-scale network coor-
dinates. While the previous two characteristics, round trip
times and violations of the triangle inequality, suggest that
the Azureus latency distribution will experience higher er-
ror than MIT King, its intrinsic dimensionality does not
appear to be an additional impediment.

3.5 Intercontinental Latency Distributions
While the Azureus data set is clearly of low dimension-

ality, a more concrete way to examine the “flatness” of
this large-scale network is to look at its intercontinental
latency distribution. In a way, it is surprising that em-
bedding latencies found on a globe (the Earth) into a Eu-
clidean space works at all. If messages could be routed
in any direction of the Earth’s surface, using a Euclidean
metric would be a poor choice. Previous work on spherical
coordinates, however, found they had significantly larger
error than Euclidean ones [8]. Anecdotal evidence sug-
gested that the main reason why the Internet embeds into
a low dimensional Euclidean space is because the world is
flat: traffic between Asia and Europe flows through North
America [8].

An examination of our Azureus data set confirms that
this traffic flow is indeed the case. We mapped the IP
addresses in the data set to countries through their au-
tonomous system record and, in turn, mapped these coun-
tries to continents. As Figure 5 illustrates, no messages
from Asia to Europe were faster than those from Asia to
North America; the same holds in the other direction. All
paths between Asia and Europe appear to travel in a line
across two oceans. This trend continues until the speed
of the connection to ISPs or other coarse delays begin to
dominate.

This flatness suggests why hyperbolic coordinates [25]
also work well: North America maps to the center of the
hyperbolic space. Thus, because the distribution of laten-
cies is “flat” – at least at a high level – using a Euclidean
metric is sufficient. In the future, new direct transmission
lines between Europe and Asia may change the Internet’s
shape, perhaps driving a shift to spherical coordinates.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 303

4 Taming Live Coordinate Systems
From our experience tuning a network coordinate sys-

tem on PlanetLab, we developed two techniques that lead
to more stable and accurate coordinates on a small “live”
system [16]. The Azureus and Harvard teams worked
together to integrate these techniques into the Azureus
code. After confirming that these techniques worked as
expected, we found and resolved a new problem: skewed
neighbor sets. This problem particularly disrupts large-
scale, live coordinate systems like Azureus that rely solely
on other application communication for maintenance (i.e.
they have zero maintenance costs) and has has been sug-
gested as a goal for coordinate systems [8]. Through ex-
perimentation with these techniques in simulation and pe-
riodic measurement of the live system, we arrived at co-
ordinates that are not perfect, but are a satisfactory start.
We include a review of the techniques we developed as
part of our previous research (§ 4.1) and describe our new
technique, neighbor decay (§ 4.2).

4.1 Latency and Update Filters
In previous work, we developed two simple filters that

had distinct beneficial effects on a coordinate system run-
ning on PlanetLab [16]. The first type, which we call a
latency filter, takes the stream of latency measurements
from a remote node and turns these into an expected
latency value. For a stream of measurements between
nodes i and j, the goal of the latency filter is to summa-
rize the measurements, providing a current and stable de-
scription of the expected latency between i and j. Two
main considerations affect the value Ex[rtt(i, j)]. First,
anomalous measurements, sometimes several orders-of-
magnitude larger than the baseline, would appear in the
stream of measurements. For example, we would measure
a round-trip time of 1000ms when typical measurements
were 200ms. Although we were using application-level
UDP measurements, we found these anomalies also oc-
curred with ICMP. Second, the expected value could not
be fixed at a single value. Due to congestion and BGP
changes, the underlying latency between pairs of nodes
changes. We found that using a simple, short, moving
median worked as a latency filter compensating for both
anomalous measurements and plateau shifts.

The second type of filter we developed on PlanetLab
focuses on making coordinates more stable, not more ac-
curate. These update filters tackle a problem shared across
many types of applications that use network coordinates:
discerning when a coordinate has changed “enough” to
potentially necessitate an application-level reaction (e.g.,
a service migration). In an early application we developed
that used network coordinates [22], we found it was hard
for the application to immediately determine if it should
react to coordinate updates, which were occurring sev-
eral times per minute. A single threshold (“react if moved

more than 50ms”) did not work for all nodes because the
volume through which each coordinate moved was node-
dependent. We developed a generic filtering technique to
allow applications to easily determine when to update co-
ordinates. Applications that find all updates useful can
bypass the filters.

Update filters make the distinction between con-
stantly evolving “system-level” coordinates and stable
“application-level” coordinates, providing a barrier be-
tween these two: system-level coordinates fine tune
the coordinate further with each measurement, while
application-level coordinates change only when the under-
lying coordinate has undergone a significant migration to
a new location relative to other coordinates. In our previ-
ous work, we examined several heuristics for distinguish-
ing between a system-level coordinate that was moving
around a single point (not requiring application-level noti-
fication) and one that had migrated to a new location (po-
tentially requiring application activity). We found heuris-
tics that compare windows of previous system-level coor-
dinates to one another, especially those that augment this
comparison with distances to other nodes in the system,
perform well. Applications can tune how much these win-
dows may differ before being notified.

4.2 Neighbor Decay
Researchers have posited that a network coordinate sub-

system could become a useful component of numerous
large-scale distributed applications, particularly if it could
perform its job passively, that is, without generating any
extra traffic. In our Azureus implementation, this passivity
was forced upon us: we had no control over the selection
of which nodes we gossipped with or when we gossipped
with them, because the information necessary for a coor-
dinate update was piggybacked on to other application-
level messages, e.g., DHT routing table maintenance. Due
to this passivity and to churn, nodes did not have fixed
sets of neighbors with which they could expect regular ex-
changes. In fact, nodes would frequently receive 1 − 3
updates from a remote node as that node was being tested
for entry into the routing table and then never hear from
that node again. The net effect of these limited exchanges
was that each node’s “working set” was much smaller than
the number of nodes with which it actually communicated.
Nodes were having blips of communication with many
nodes, but constant communication with few. The goal
of neighbor decay is to expand the size of the working set,
which in turn improves accuracy.

A standard, gossip-based coordinate update involves
taking new information from a single remote node and
optimizing the local coordinate with respect to that node.
If some set of remote nodes is sampled at approximately
the same frequency, a node’s coordinate will become op-
timized with respect to these remote coordinates (which

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association304

are in turn performing the same process with their neigh-
bors). However, if some remote nodes are sampled at a far
greater frequency than others, the local coordinate opti-
mization process will become skewed toward these nodes.
In the theoretical limit, the result would be the same, but in
practice, these skewed updates – a problem that could be
expected in any passive implementation – slow the global
optimization process.

Our solution to the problem of skewed neighbor updates
is simple. Instead of refining our coordinate with respect
to the remote node from which we just received new infor-
mation, we refine it with respect to all nodes from which
we have recently received an update. To normalize the
sum of the forces of this recent neighbor set, we scale the
force of each neighbor by its age: older information re-
ceives less weight. This allows nodes that we hear from
only a few times to have a lasting, smooth effect on our
coordinate. Algorithmically, we set the effect of a neigh-
bor j on the aggregate force −→

F to be:

−→
F = −→

F + −→
Fj ×

amax − aj∑
(amax − a)

where aj is the age of our knowledge of j and amax is the
age of the oldest neighbor.

This use of an expanded neighbor set that decays slowly
over time has two main benefits. First, because the force
from each update is effectively sliced up and distributed
over time, nodes’ coordinates do not jump to locations
where they have high error with respect to other members
of the neighbor set. Second, by keeping track of recent,
but not old, neighbors, neighbor decay acts to increase the
effective size of the neighbor set, which in turn leads to
higher global accuracy. In our implementation, nodes ex-
pired from the recent neighbor set after 30 minutes.

Note the distinct effects of neighbor decay from both
latency and update filters. Latency filters generate a cur-
rent, expected round trip time to a remote node and update
filters prevent system-level coordinate updates from spu-
riously affecting application behavior. Neighbor decay, in
contrast, handles the problem of skewed updates that can
occur when network coordinates are maintained as a pas-
sive subsystem. It allows the smooth incorporation of in-
formation from a wider range of neighbors, particularly
in a system where contact between nodes is highly tran-
sient. In simulation, we confirmed that neighbor decay
substantially increased stability and moderately improved
continuous relative error.

5 Measuring Coordinate Systems
In this section, we review metrics used to evaluate co-

ordinate systems and other latency services.
Relative Error. Relative error, the most basic and intu-
itive measure of accuracy, is the difference between the

expected and actual latencies between two nodes:

e =
| ‖−→xi −−→xj‖ − lij |

lij

Relative error comes in three forms: global, continuous,
and neighbor. Global relative error is the accuracy from
the viewpoint of an omniscient external viewer: at one in-
stant, the metric is computed for all links. With the simu-
lations that use a latency matrix, this is what we compute
because we do indeed have this viewpoint. Continuous er-
ror is what a node computes on-the-fly as it receives new
observations from remote notes. This error is added to a
statistic, such as an EWMA, as in Vivaldi’s confidence.
Two disadvantages to continuous error are (a) a single
measurement may result in a large change in value and (b)
it can become skewed by a handful of remote nodes if the
“working set” of active gossip is small. Instead of contin-
uous error, we use neighbor error as a proxy for global er-
ror when live nodes are performing the computation them-
selves, e.g., within live Azureus clients. Neighbor error is
the distribution of relative errors for a set of recently con-
tacted nodes. With a large number of neighbors, neighbor
error generally provides a close approximation to global.
Stability. Stable coordinates are particularly important
when a coordinate change triggers application activity.
In our distributed streaming query system, for example,
a coordinate change could initiate a cascade of events,
culminating in one or more heavyweight process migra-
tions [22]. If the systems’ coordinates have not changed
significantly, there is no reason to begin this process. A
stable coordinate system is one in which coordinates are
not changing over time, assuming that the network itself
is unchanging. We use the rate of coordinate change

s =
∑

∆−→xi

t

to quantify stability. The units for stability are ms/sec.
Descriptions of and results from other metrics are in-

cluded in technical report version of this paper [15].

6 Internet-Scale Network Coordinates
Using a latency matrix can only tell part of the story

of an Internet coordinate system. It helps describe the
network’s characteristics, e.g., its intrinsic dimensional-
ity, but misses out on problems that may occur only in
a running system, such as churn, changes in latencies over
time, and measurement anomalies. We used three dis-
tinct methods to understand the online performance of
Azureus’ coordinates: (a) on PlanetLab, we ran instru-
mented Azureus clients that recorded the entirety of their
coordinate-related behavior (§ 6.2), (b) we crawled ap-
proximately ten thousand Azureus clients that internally
tracked the performance of their coordinates using statis-
tics we inserted into the Azureus code (§ 6.3), and (c) we

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 305

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 7 15 30 60

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Dimensions

Azureus, No Height
Azureus, with Height
MIT King, No Height

MIT King, with Height

Figure 6: Because height had a major, positive impact on
Azureus in simulation, we returned it to the 4d+h version.

ran a benchmark to determine the effectiveness of the co-
ordinates on application-level decisions (§ 6.4).

6.1 Refining Azureus’ Coordinates
Because updates to the CVS tree could take weeks to

proliferate to a majority of users, changing single variables
or techniques was not feasible. Instead we relied on simu-
lations and on-going measurement to guide the roll-out of
two major coordinate versions.

Azureus’ coordinates originally used two dimensions,
height, and none of the three filtering techniques we de-
scribed in Section 4. We call this version 2D+H. To cre-
ate version 5D, we incorporated the two techniques from
our previous research, latency and update filters, into the
code. Based on our on-going PlanetLab coordinate ser-
vice, which did not use height and reliably exhibited low
error, we also dropped height and added three more di-
mensions. Unfortunately, removing height proved to be a
mistake. Through simulations of the Azureus latency ma-
trix (see Figure 6), we realized we could expect a substan-
tial improvement in accuracy by converting the last dimen-
sion of the 5d implementation to height without chang-
ing the gossip packet structure. We also found the highly
skewed neighbor sets slowed convergence and developed
the neighbor decay technique to compensate. We com-
bined these changes and rolled out version 4D+H.

6.2 PlanetLab Snapshots
We took snapshots of each version by running clients

on approximately 220 PlanetLab nodes. Each snapshot
lasted for at least three days, and logged updates with
approximately 10, 000 Azureus nodes. We collected a
snapshot for each of the three versions in March, July,
and September 2006, respectively. Note that these instru-
mented clients never stored or transferred any content that
travels over the Azureus network.

We compare data gathered from the different versions in
Figure 7. Because the data are aggregated across roughly
the same source PlanetLab nodes, the three snapshots pro-
vide a reasonable, though imperfect, way to isolate the ef-
fects of the different techniques. In all cases, we find 4D+H

is more accurate and stable than both the original 2D+H

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

C
D

F

Median Relative Error

4d+h
5d
2d+h

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 100 1000 10000

C
D

F

Stability

4d+h
5d
2d+h

Figure 7: The combination of filtering, neighbor decay,
and height lead to substantially more accurate coordinates
on PlanetLab nodes participating in the Azureus network
coordinate system. Comparing 2D+H to 4D+H, the data
show a 43% improvement in relative error and a four
orders-of-magnitude improvement in stability.

and our initial rollout of 5D.
Our first revision had mixed results. Based on this data

and on simulations with and without height, the data con-
vey that the removal of height damaged accuracy more
than the filters aided it. In retrospect, given the Azureus
round trip time distribution (see § 3.2), in which 7.6% of
the node pairs exhibit round trip times ≥ 1 second, it is not
surprising that using height helped many nodes find a low
error coordinate. In addition, given that two dimensions
are enough to capture much of Azureus’ inherent dimen-
sionality, it is also not surprising that the addition of three
dimensions did not radically improve accuracy. Although
the 5D coordinates are less accurate, they are more than
2 1

2 orders-of-magnitude more stable because the latency
filters prevent anomalous measurements from reaching the
update algorithm.

Our second change was more successful. The introduc-
tion of neighbor decay and the re-introduction of height in
4D+H create a much more accurate coordinate space than
either of the previous two snapshots. This increase in ac-
curacy occurs because neighbor decay enables nodes to
triangulate their coordinates with a larger fraction of the
network (and their neighbors are doing the same) and be-
cause height supplies the numerous nodes on DSL and ca-
ble lines with the additional abstract distance over which
all their physical communication must travel.

We first evaluated neighbor decay in simulation. To
confirm its continued effectiveness in a live system, we

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association306

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

C
D

F

Median Relative Error

Simulation
Live (All)
Live (PlanetLab)

Figure 8: Reality does not live up to expectations: a com-
parison of probed statistics from live Azureus nodes to
those from simulation suggests that accuracy could be im-
proved by as much as 45%. Section 7 explores the major
remaining impediments.

performed an experiment where we monitored the conver-
gence of a node with and without neighbor decay enabled
as part of the 4D+H coordinate system. In an average of
three trials, we found neighbor decay improved median
accuracy by 35%, 40% and 54% at the 15, 30, and 60
minute marks respectively.

6.3 End-Host Live Coordinates
The logs from our Azureus clients running on Planet-

Lab nodes provide a detailed view of a narrow slice of
the system. To obtain a picture of the broader system, we
inserted online statistics collection into the Azureus CVS
tree. Using its recent neighbor set, each node computed
its neighbor error and stability statistics on demand when
probed. We present results from Azureus end-hosts run-
ning version 4D+H.

Figure 8 “live (all)” illustrates the data from a crawl of
9477 end-hosts. We exclude live nodes with fewer than
10% of the maximum 512 neighbors because their metrics
are skewed to a very small percentage of the network. The
data show that the bulk of the Azureus system experiences
accuracy similar to clients running on PlanetLab. How-
ever, the error on the greater Azureus network has a long
tail: at the 95th percentile, its accuracy is 76% worse. As
we discuss in Section 7.1, we conjecture that the high rate
of churn causes much of this difference in the tail.

In order to hint at the exigencies caused by running “in
the wild” as opposed to safely in the lab, we compared
the statistics from live Azureus nodes to those from our
simulated embeddings of the Azureus latency matrix. In
Figure 8, we compare live and simulated relative error.
The data show a significant gap between live and simu-
lated performance. (Prior work using the same simulator
found simulations of PlanetLab mirrored live results [16].)
The medians of the relative error distributions are 26% and
14% for live and simulated coordinates, respectively, a dif-
ference of 45%.

The data suggest that network coordinates have been
partially tamed, but can be made substantially more accu-

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

C
D

F

Lookup Delay (ms)

4d+h
2d+h
XOR
Random

Figure 9: By choosing paths that are small detours in the
logical space but lower latency, network coordinates im-
prove lookup delay in Azureus’s DHT.

rate, and, therefore, more useful for distributed applica-
tions that would like to make cheap, quick decisions be-
tween providers of the same service. We show how the
current level of accuracy affects these anycast decisions in
the following section.

6.4 Application-Level Performance
Accuracy and stability metrics capture application-

independent, low-level behavior. To understand how
Internet-scale coordinate systems can affect application-
level behavior, we also examined how Azureus uses them
to make higher-level, anycast decisions in one of its com-
mon tasks: DHT key lookup. Azureus performs this oper-
ation for each tracker announcement, torrent rating lookup
and publish, and NAT traversal rendezvous lookup and
publish (for tunnelling through NATs).

We modified an Azureus client so that it used network
coordinates to optimize lookup delay. Our experiment to
evaluate the change in lookup delay first stored a set of
keys in the DHT, then looked up each key using four dis-
tinct node selection methods, recording the time for the
lookup operation. For each key, we ran the methods in
random order.

Each method selects one node from a small set, i.e.,
is performing an anycast: all choices will make logical
progress toward the target, some have lower latency than
others. Azureus uses Kademlia, which defines the logi-
cal distance between two DHT keys as the exclusive-or of
their bits [17]. Starting with the logically nearest known
nodes to the target: XOR picks the logically nearest node,
2D+H picks the node whose latency as predicted by the
2D+H coordinates is smallest, 4D+H picks the lowest la-
tency node as predicted by the 4D+H coordinates, and RAN-
DOM picks randomly from the set. Each node contacted
returns its neighbors that are logically close to the target.
This repeats until either a node storing the key is found or
the lookup fails. Because Azureus performs DHT lookups
iteratively, we were able to experiment with the lookup
algorithm through code updates on only a single node.

We plot the distribution of delays from storing 250 keys
and performing 2500 lookups in Figure 9. Compared to

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 307

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

C
D

F

Median Relative Error

Uptime ≥ 1 hour
Uptime < 1 hour

Figure 10: Azureus nodes that have been in the system
for longer periods have more accurate coordinates. This
suggests that churn may hurt convergence of Internet-scale
coordinate systems.

the XOR method, which always chooses the nearest logi-
cal node, the data show that 4D+H reduces lookup delay
by 33% at the 80th percentile. It is 12% faster than the
early version of the coordinates, 2D+H, also at the 80th

percentile. Because no latency prediction information is
currently returned to the caller, the optimization only af-
fects the selection of the first hop. In addition, we were
not able to predict latencies to 34% of nodes due to ver-
sion incompatibilities. Both of these factors suggest these
improvements are conservative. We excluded lookups that
timed out due to dropped UDP messages to avoid depen-
dence on a particular timeout handling mechanism. These
data show that using network coordinates can provide a
substantial improvement to an application-level process.

7 Barriers to Accuracy
In this section, we examine five primary causes of the

remaining difference between the current live accuracy
and what appears to be achievable based on simulation re-
sults. The five barriers are: churn, drift, intrinsic error,
corruption, and latency variance. We present techniques
that address the first three barriers and non-malicious cor-
ruption. However, malicious corruption and latency vari-
ance remain unsolved; indeed, the latter requires a fun-
damentally new approach to latency prediction. Based
on our simulation and PlanetLab results and on moni-
toring Azureus over time, we have added the techniques
that address churn, drift, and non-malicious corruption to
the Azureus code. While preliminary experiments suggest
they function as expected, we have not yet fully quantified
their effects and do not include results for them here.

7.1 Churn
Distributed network coordinate algorithms traditionally

consider churn as part of their network model. Re-
searchers ask the question: given an existing, stable sys-
tem, how quickly can a new node find a stable, accu-
rate coordinate? Unfortunately, implicit in this question
is the assumption that the existing system has converged,
and this assumption breaks down in many large-scale dis-

0.0

0.1

0.2

0.3

0.4

0.5

8 16 32 64 128 256 512 ∞

R
el

at
iv

e
E

rr
or

(5
0th

Pc
tl.

)

Churn (Avg. lifetime in Rounds)

More Churn Less Churn

Coordinate at Birth

Forgotten
Remembered

Figure 11: Coordinate systems that experience high churn
rates and do not allow nodes to “remember” their previous
coordinates have trouble converging.

tributed systems, including Azureus. We found Azureus
follows a long-tailed lifetime distribution typical of peer-
to-peer systems; in its case 78% of the nodes were in the
system for less than one hour.

Because coordinate updates were on the order of tens
of seconds or sometimes minutes apart, nodes often did
not have much time to settle into a stable position before
they exited the system. Using the data from our crawl of
the live network, we separated nodes into ones that had
been in the system for an hour or more and those that had
not. We plot the relative error experienced by these two
groups in Figure 10. The data confirm that these short-
lived nodes, which make up the majority of the system,
are substantially less accurate than long-lived ones.

We considered three potential solutions to the problem
of sustaining a coordinate system under high churn rates.
First, nodes could perform a rapid initial triangulation pro-
cess before shifting to a lower update rate. However, ad-
justing the gossip rate over time has two problems: (a)
“passive” (i.e. maintenance-free) coordinate systems have
no control over gossip and (b) in an “active” system, it
would be a new, complex knob. Second, we considered
“greedy optimization,” where instead of just stepping once
through the update process, nodes would repeat until a (lo-
cal) minimum had been reached with respect to the cur-
rently known neighbors. Unfortunately, we found that this
form of optimization does not work well until many neigh-
bors are known, which is not the case early in a node’s life-
time. Finally, we found a solution that is both extremely
simple and had positive results in simulation: instead of
starting from scratch when restarting a client, have it be-
gin where it left off. We performed an experiment where
we varied the amount of churn in simulation and toggled
whether or not nodes “remembered” their coordinate on
re-entry. In Figure 11, we show the results of this exper-
iment. We found that when nodes started at the origin on
re-entry, they had a deleterious effect not only on them-
selves, but on overall system convergence. In contrast,
with this simple technique, accuracy remained about the
same as when there was no churn. While this technique
assumes limited drift (see next section), it appears to be a

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association308

Gravity’s ρ Migration Error

26 8ms 25%
28 17ms 10%
210 74ms 10%
212 163ms 10%
None 179ms 10%

Table 1: Small amounts of gravity limit drift without pre-
venting coordinates from migrating to low-error positions.

promising start to resolving the noxious effect of churn on
live coordinate systems.

7.2 Drift
Monitoring our PlanetLab-based coordinate service

over several months revealed that coordinates migrated in
a fairly constant direction: the centroid of the coordinates
did not move in a “random walk,” but instead drifted con-
stantly and repeatedly in a vector away from the origin.
This was surprising because our previous study, based on a
shorter, three-day trace, had not exhibited this pattern [16].

While coordinates are meant to provide relative dis-
tance information, absolute coordinates matter too. One
problem with drift is that applications that use them often
need to make assumptions on maximum distances away
from the “true” origin. For example, one could use Hilbert
functions to map coordinates into a single dimension [4].
This requires an a priori estimate of the maximum vol-
ume the coordinates may fill up. Mapping functions like
Hilbert require that the current centroid not drift from the
origin without bound. Drift also limits the amount of time
that cached coordinates remain useful [12].

A “strawman” solution to drift would be to continuously
redefine the origin as the centroid of the systems coordi-
nate. Unfortunately, this would require accurate statisti-
cal sampling of the coordinate distribution and a reliable
mechanism to advertise the current centroid. Our solu-
tion to drift is to apply a polynomially-increasing gravity
to coordinates as they become farther away from the true
origin. Gravity −→

G is a force vector applied to the node’s
coordinate −→xi after each update:

−→
G =

(
‖−→xi‖

ρ

)2

× u(−→xi)

where ρ tunes −→G so that its pull is a small fraction of the
expected diameter of the network. Hyperbolic coordinates
could use a similar equation to compute gravity.

Drift does not occur in simulation if one is using a la-
tency matrix and updating nodes randomly, because this
form of simulation does not capture time-dependent RTT
variability. Instead, we used a 24-hour trace of our Planet-
Lab service to simulate the effect of gravity; we show the
effect of different strengths of gravity in Table 1. The data

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16 18

M
ig

ra
tio

n
of

C
en

tr
oi

d
of

al
lC

oo
rd

in
at

es
(m

s)

Days

No Gravity
With Gravity

Figure 12: With gravity, coordinates did not drift away
from their original origin as they had done before.

show that this simple technique does keep the coordinate
centroid highly stationary without affecting accuracy.

To confirm the effect of gravity on a live system, we
added it to our on-going PlanetLab service, which had
≈ 300 participants. In Figure 12, we compare drift before
and after adding gravity over two 18 day periods. The data
show that gravity effectively eliminates drift. In addition,
it did not reduce accuracy, which, in both cases, had a me-
dian of about 10%. While gravity does not actively limit
rotation, we did not observe a rate greater than one full
rotation per three days. Determining the cause of drift is
beyond the scope of this work.

7.3 Intrinsic Error
Violations of the triangle inequality occur more fre-

quently and to a greater extent on Azureus than either
on PlanetLab or for sets of DNS servers (see § 3.3). We
found, perhaps surprisingly, that removing a small num-
ber of the worst violators causes a large improvement in
global accuracy. Not only do the violations these nodes
take part in damage their own coordinates, but the damage
they cause continues to reverberate throughout the system.

We performed an experiment where we removed a small
percentage of the nodes with the largest triangle violations
from the Azureus latency matrix and compared this to re-
moving a random subset of nodes of the same size. We
then computed a system of coordinates and found the rel-
ative error of each link. As Figure 13 illustrates, removing
only the worst 0.5 percent of nodes leads to a 20 percent
improvement in global accuracy. This data parallels re-
sults from theoretical work that showed how to decrease
embedding distortion by sacrificing a small fraction of dis-
tances to be arbitrarily distorted [2]. These results show
that if a mechanism could prevent these nodes from af-
fecting the rest of the system, it would improve overall ac-
curacy. Two example mechanisms for node self-detection
and removal from the coordinate system are: (a) directly
evolving an estimate of the extent of their violations by
asking neighbors for latencies to other neighbors, and (b)
determining if they are subject to traffic shaping (based on
the modality of their latency distribution), and therefore
a major cause of triangle violations. Preliminary experi-

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 309

0.0

0.5

1.0

1.5

2.0

0% 0.5% 1% 2% 4% 8%

R
el

at
iv

e
E

rr
or

(9
5th

Pc
tl.

)

Nodes Removed

Random Subset
Worst Violators

Figure 13: Removing only a small percentage of nodes
with the worst triangle violations has a large effect on
global accuracy.

ments with self-exclusion based on bimodality tests show
an improvement in accuracy of 8% at the 95th percentile.

7.4 Corruption and Versioning
An insipid fact of running a large system where users

can choose when to upgrade is that not everyone is run-
ning the same version. One of the problems we found
with our original deployments was that about 13% of the
remote coordinates received during gossip were at the ori-
gin; that is, [0]d. After much discussion (Is that incredible
churn rate possible? Do nodes behind firewalls never up-
date their coordinates?), we realized that this problem was
due to a portion of the network running an old code ver-
sion. In fact, during one crawl of the Azureus network,
we found only about 44% of the ≈ 9000 clients crawled
were using the current version. While not very exciting,
realizing this fact allowed us to compensate for it both in
the coordinate update process and in active statistics col-
lection through the explicit handling of different versions
within the code.

Kaafar et al. have begun investigating the more in-
teresting side of the problem of coordinate corruption:
malicious behavior [14]. They divide attacks into four
classes: disorder, isolation, free-riding, and landmark con-
trol. While we did not see any evidence of intentionally
corrupt messages, it would be trivial to install a client, or
a set of clients, that responded with random values, for ex-
ample (just as the MPAA runs clients with spurious con-
tent advertisements to squelch piracy). As Internet-scale
coordinate systems come into wider use, they will need to
grapple with both oblivious and malicious corruption.

7.5 Latency Variance
The prior “barriers to accuracy” paint a rosy picture;

most problems have a fairly simple solution that practi-
tioners can use to build more accurate, live coordinate sys-
tems. The existence of wide variation in latency measure-
ments between the same pair of nodes over a short period
of time is a harder problem with broad ramifications. If
variances are very large what does it actually mean to “pre-
dict” the latency from one node to another? Using the data

from our longest snapshot (5D), we determined the stan-
dard deviation of latency between each pair of nodes. We
found that round trip times varied by a median of 183ms.
This spread affects other latency prediction systems as
well. A reactive measurement service, such as Meridian,
will be more error-prone or have higher overhead if small
numbers of pings do not sufficiently measure the latency
to a high variance target. In fact, coordinate systems may
be in a better position to address this problem because they
can retain histories of inter-node behavior.

As reviewed in Section 4.1, we developed latency filters
in previous work. They act as a low-pass filter: anomalies
are ignored while a baseline signal passes through. Ad-
ditionally, they adapt to shifts in the baseline that BGP
route changes cause, for example. These filters assign a
link a single value that conveys the expected latency of the
link. While we found these simple filters worked well on
PlanetLab, describing a link with a single value is not ap-
propriate with the enormous variance we observe on some
of Azureus’ links.

We ran an experiment where we compared ICMP, fil-
tered, and raw latency measurements that were taken at
the same time. To determine which destination nodes to
use, we started Azureus on three PlanetLab nodes and
chose five ping-able neighbors after a twenty-minute start-
up period. We then let Azureus continue to run normally
for six hours while simultaneously measuring the latency
to these nodes with ping. We plot the data in Figure 14.
Figure 14 (a) illustrates a pair similar to our PlanetLab
observations: there was raw application-level and ICMP
variance, but a consistent baseline that could be described
with a single value. In contrast, Figure 14 (b) portrays a
high variance pair: while the filter does approximate the
median round trip time, it is difficult to say, at any point in
time, what the latency is between this pair.

The impact of the dual problems of high latency vari-
ance and modifying algorithms to deal with high latency
variance is not limited to network coordinate systems. La-
tency and anycast services deployed “in the wild” need to
address this problem. While there may exist methods to
incorporate this variance into coordinate systems — either
through “uncertainty” in the latency filters or in the co-
ordinates themselves — resolving this problem is beyond
the scope of this paper.

8 Related Work
Early work on latency prediction services focused

on reducing the intractability of all-pairs measurements
through clustering. Based on the assumption that nodes in
the same cluster would have similar latencies to nodes in
another cluster, researchers examined how to create accu-
rate clusters and how to minimize inter- and intra-cluster
measurement overhead. Francis et al. created clusters
based on IP address prefixes, but found that prediction

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association310

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

C
D

F

Round Trip Time (ms)

(a) From planetlab2.iis.sinica.edu.tw To 12.226.X.X

ICMP (2623)
Raw (10)

Filter (10)
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

C
D

F

Round Trip Time (ms)

(b) From planetlab14.millennium.berkeley.edu To 84.18.X.X

ICMP (2630)
Raw (7)

Filter (7)

0
200
400
600
800

1000
1200
1400
1600

0 1 2 3 4 5

R
ou

nd
T

ri
p

T
im

e
(m

s)

Time (hours)

ICMP
Raw

Filter

0
200
400
600
800

1000
1200
1400
1600

0 1 2 3 4 5

R
ou

nd
T

ri
p

T
im

e
(m

s)

Time (hours)

ICMP
Raw

Filter

Figure 14: A comparison of round trip times between two sets of node pairs using ICMP, raw application-level measure-
ments, and filtered measurements. Pair (a) exhibits some variance, but shows a consistent baseline. With pair (b), the
variance is so large that assigning this node a coordinate — or putting it into a consistent Meridian ring — is bound to be
an error-prone process. The number in parentheses in the legend is the number of round trip time measurements in the
cumulative distribution function.

error was heavily dependent on the initial choice of rep-
resentatives [11]. Chen et al. addressed this problem
through the automatic formation of clusters and represen-
tatives; they found the cluster size and, more generally,
the amenability of the network to clustering had a large
effect on accuracy [5]. Ratnasamy et al. proposed a hy-
brid approach: nodes that are similar distances away from
fixed landmarks place themselves into the same cluster;
they also found error was highly dependent on the number
of bins [23]. Because all of this clustering involves mea-
surement and lower network layers are already perform-
ing much of this measurement, Nakao et al. proposed re-
ducing overhead by tapping into this existing information;
unfortunately, this requires a change in the interface of In-
ternet routers [18].

While this research and the work on network coordi-
nates that grew out of it focus on generalized latency pre-
diction — maintaining an infrastructure that works well
for most queries — a separate body of work has fo-
cused more directly on the problem of finding the near-
est of many replicated services. In direct response to an
application-level request, Meridian finds the nearest over-
lay node (i.e., one running Meridian) to an arbitrary point
in the Internet through a set of pings that progress loga-
rithmically closer to the target [29]. Freedman et al. de-
veloped OASIS, a distributed service explicitly designed
to help clients find and choose a “good” server out of
many [12]. Building on Meridian, OASIS primarily fo-
cuses on network locality, but also incorporates liveness
and load. OASIS employs a reliable core of hosts to map
clients to nearby servers, which are assumed to be long-
lived. Note the distinct purposes of these anycast services
from those of network coordinates: Meridian and OASIS

are designed for the case where contact with the service
will be frequent and long-lived enough to outweigh the
high upfront cost of finding the best service. With their
current levels of accuracy (good but not perfect) and main-
tenance (zero), network coordinates fall to the other side
of the trade-off: short-lived, cheap decisions for which
finding the exact answer is not worthwhile, but repeatedly
finding a good answer leads to aggregate savings. While
Meridian (and OASIS) are inherently reactive – acting in
response to a query – they too could be more tightly inte-
grated with an application, using its messages to dampen
ring maintenance, for example.

8.1 Network Coordinates
There exist two main classes of algorithms for calculat-

ing coordinates: landmark-based schemes, in which over-
lay nodes use a fixed number of landmark nodes to cal-
culate their coordinates, and simulation-based schemes,
which are decentralized and calculate coordinates by mod-
eling nodes as entities in a physical system.
Landmark-based. In GNP [19], nodes contact multi-
ple landmark nodes to triangulate their coordinates. The
drawbacks of this approach are that the accuracy of the
coordinates depends on the choice of landmark nodes
and landmark nodes may become a bottleneck. Light-
houses [21] addresses this by supporting multiple indepen-
dent sets of landmarks with their own coordinate systems.
These local coordinates map into a global coordinate sys-
tem. PIC [7] does not use explicit landmarks, incorporat-
ing measurements to any node using a simplex optimiza-
tion algorithm to obtain an up-to-date coordinate. These
landmark-based schemes require a reasonably stable in-
frastructure and, to the best of our knowledge, have not

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 311

been adopted for wide-spread use.
Simulation-based. Vivaldi [8] and Big Bang Simula-
tion [24] determine coordinates using spring-relaxation
and force-field simulation, respectively. In both, nodes at-
tract and repel each other according to network distance
measurements. The low-energy state of the physical sys-
tem corresponds to the coordinates with minimum error.

de Launois et al. propose a different method for stabi-
lizing coordinates: asymptotically dampening the effect of
each new Vivaldi measurement [9]. While this factor does
mitigate oscillations in a fixed network, it prevents the al-
gorithm from adapting to changing network conditions.

9 Conclusion
We have demonstrated that network coordinates in the

wild do behave somewhat differently than do tame coor-
dinates on PlanetLab or in simulation. Fortunately, even
these wild coordinates can be tamed. Our analysis of a
large, Internet-scale coordinate system has convinced us
to join the network coordinate supporters camp. While
the initial network coordinate implementation illustrated
some of the problems that critics often cite, we found that
simple, but effective techniques overcame nearly all these
issues. In Azureus, network coordinates provide a sim-
ple and efficient mechanism for anycast, as part of DHT
lookups, and may soon be used to optimize streaming me-
dia. In addition to providing a wealth of data and analysis
from a live, large-scale deployment, we have deployed and
evaluated six techniques that improve the accuracy and/or
stability of network coordinate systems: latency filters,
update filters, neighbor decay, coordinate memory, grav-
ity, and violator exclusion. Together, these yield efficient,
accurate, and stable network coordinates in the million-
node Azureus network. In the future, we plan to add the
remaining techniques to the Azureus code and monitor
their effectiveness.

10 Acknowledgements
We wish to thank Peter Pietzuch for early discussions

on the myriad potential reasons for the discrepancy be-
tween simulated and real network coordinates, Olivier
Chalouhi of Aelitis for allowing us to tinker with the
Azureus source code, and Michael Parker of UCLA for
putting us in touch with Aelitis and for porting our im-
plementation to Java. In addition, we wish to thank our
anonymous reviewers and our shepherd, Emin Gün Sirer,
who provided extremely detailed constructive criticism.

References
[1] Azureus BitTorrent Client.
[2] Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric

ramsey-type phenomena. In STOC, San Diego, CA, 2003.
[3] R. Bindal et al. Improving Traffic Locality in BitTorrent

via Biased Neighbor Selection. In ICDCS, July 2006.
[4] A. R. Butz. Alternative Algorithm for Hilbert’s Space-

Filling Curve. IEEE Transactions on Computers, pages
424–426, April 1971.

[5] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the
Stability of Network Distance Estimation. SIGMETRICS
Performance Evaluation Review, 30(2), 2002.

[6] B. Cohen. Incentives Build Robustness in BitTorrent. In
Workshop on Economics of P2P Systems, June 2003.

[7] M. Costa et al. PIC: Practical Internet Coordinates for Dis-
tance Estimation. In ICDCS, March 2004.

[8] F. Dabek et al. Vivaldi: A Decentralized Network Coordi-
nate System. In SIGCOMM, Aug. 2004.

[9] C. de Launois, S. Uhlig, and O. Bonaventure. A Stable and
Distributed Network Coordinate System. Technical report,
Universite Catholique de Louvain, December 2004.

[10] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally Distributed Content Delivery. IEEE
Internet Computing, September/October 2002.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: a global internet host distance estima-
tion service. IEEE/ACM Trans. Networking, 9(5), 2001.

[12] M. Freedman, K. Lakshminarayanan, et al. OASIS: Any-
cast for Any Service. In NSDI, San Jose, CA, May 2006.

[13] K. P. Gummadi et al. King: Estimating Latency between
Arbitrary Internet End Hosts. In IMW, Nov. 2002.

[14] M. A. Kaafar et al. Virtual Networks under Attack: Dis-
rupting Internet Coordinate Systems. In CoNext, 2006.

[15] J. Ledlie et al. Network Coordinates in the Wild. Technical
Report TR-20-06, Harvard U., Cambridge, MA, Oct. 2006.

[16] J. Ledlie, P. Pietzuch, et al. Stable and Accurate Network
Coordinates. In ICDCS, Lisbon, Portugal, July 2006.

[17] P. Maymounkov et al. Kademlia: A P2P Information Sys-
tem Based on the XOR Metric. In IPTPS, March 2002.

[18] A. Nakao et al. A Routing Underlay for Overlay Networks.
In SIGCOMM, Karlsruhe, Germany, Aug. 2003.

[19] E. Ng et al. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM, June 2002.

[20] L. Peterson et al. A Blueprint for Introducing Disruptive
Technology into the Internet. In HotNets, October 2002.

[21] M. Pias, J. Crowcroft, S. Wilbur, et al. Lighthouses for
Scalable Distributed Location. In IPTPS, February 2003.

[22] P. Pietzuch et al. Network-Aware Operator Placement for
Stream-Processing Systems. In ICDE, April 2006.

[23] S. Ratnasamy et al. Topology-Aware Overlay Construction
and Server Selection. In INFOCOM, June 2002.

[24] Y. Shavitt et al. Big-Bang Sim. for embedding network
distances in Euclidean space. In INFOCOM, June 2003.

[25] Y. Shavitt and T. Tankel. On the Curvature of the Internet
and its usage for Overlay Construction and Distance Esti-
mation. In INFOCOM, June 2004.

[26] N. Spring, D. Wetherall, et al. Scriptroute: A Public Inter-
net Measurement Facility. In USITS, Mar. 2003.

[27] I. Stoica et al. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In SIGCOMM, Aug. 2001.

[28] L. Tang and M. Crovella. Virtual Landmarks for the Inter-
net. In IMC, Oct. 2003.

[29] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service without Virtual Co-
ordinates. In SIGCOMM, Aug. 2005.

[30] R. Zhang, Y. C. Hu, et al. A Hierarchical Approach to
Internet Distance Prediction. In ICDCS, July 2006.

[31] H. Zheng, E. K. Lua, M. Pias, et al. Internet Routing Poli-
cies and Round-Trip-Times. In PAM, Mar. 2005.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association312

