
Improved Address-Space Switching on Pentium

Processors by Transparently Multiplexing User

Address Spaces

Jochen Liedtke

GMD | German National Research Center for Information Technology �

jochen.liedtke@gmd.de

GMD Technical Report No. 933

November 1995

�GMD SET-RS, Schlo Birlinghoven, 53754 Sankt Augustin, Germany

2

3

Abstract

Address-space switch requires a TLB
ush on many processors. With

increasing TLB size, the secondary costs of address-space switching due to

TLB re�ll can thus increase substantially. For the Pentium processor, we
describe an optimization to avoid TLB
ush in many cases. The method

is transparent to the user and thus requires no extension of the �-kernel

interface.

4

CONTENTS 5

Contents

1 Rationale 7

2 The x86 Memory Model 8

3 Address-Space Switch on 486 9

4 Address-Space Switch on Pentium 11

4.1 The IPC Path . 12
4.2 Message Transfer To/From Small Spaces 15
4.3 Dynamic Association of Small Address-Spaces 15

5 First Results 15

6 CONTENTS

7

1 Rationale

Most modern processors use a physically indexed primary cache which is not

a�ected by address-space switching. Switching the page table is usually very
cheap: 1 to 10 cycles. The real costs are determined by the TLB architecture.

Some processors (e.g. Mips R4000) use tagged TLBs, where each entry does
not only contain the virtual page address but also the address-space id. Switch-
ing the address space is thus transparent to the TLB and costs no additional cy-
cles. However, address-space switching may induce indirect costs, since shared
pages occupy one TLB entry per address space. Provided that the �-kernel
(shared by all address spaces) has a small working set and that there are enough
TLB entries, the problem should not be serious. However, we cannot support
this empirically, since we do not know an appropriate �-kernel running on such
a processor.

Most current processors (e.g. 486, Pentium, PowerPC and Alpha) include
untagged TLBs. An address-space switch thus requires a TLB
ush. The real
costs are determined by the TLB load operations which are required to re-
establish the current working set later. If the working set consists of n pages,
the TLB is fully-associative, has s entries and a TLB miss costs m cycles, at
most min(n; s)�m cycles are required in total.

Apparently, larger untagged TLBs lead to a performance problem. For ex-
ample, completely reloading the Pentium's data and code TLBs requires at
least (32+ 64)� 9 = 864 cycles. Therefore, intercepting a program every 100�s
could imply an overhead of up to 9%. Although using the complete TLB is
unrealistic1, this worst-case calculation shows that switching page tables may
become critical in some situations.

Fortunately, this is not a problem, since on Pentium and PowerPC, address-
space switches can be handled di�erently. The PowerPC architecture includes
segment registers which can be controlled by the �-kernel and o�er an additional
address translation facility from the local 232-byte address space to a global 252-
byte space. If we regard the global space as a set of one million local spaces,
address-space switches can be implemented by reloading the segment registers
instead of switching the page table. With 29 cycles for 3.5 GB or 12 cycles for

1 GB segment switching, the overhead is low compared to a no longer required
TLB
ush. In fact, we have a tagged TLB.

Things are not quite as easy on the Pentium or the 486. Since segments
are mapped into a 232-byte space, mapping multiple user address spaces into
one linear space must be handled dynamically and depends on the actually used
sizes of the active user address spaces. The according implementation technique

1Both TLBs are 4-way set-associative. Working sets which are not compact in the virtual

address space, usually imply some con
icts so that only about half of the TLB entries are used

simultaneously. Furthermore, a working set of 64 data pages will most likely lead to cache

thrashing: in best case, the cache supports 4 � 32 bytes per page. Since the cache is only

2-way set-associative, probably only 1 or 2 cache entries can be used per page in practice.

8 2 THE X86 MEMORY MODEL

is transparent to the user and removes the potential performance bottleneck.
Address space switch overhead then is 15 cycles on the Pentium and 39 cycles
on 486.

For understanding that the restriction of a 232-byte global space is not crucial
to performance, one has to mention that address spaces which are used only for
very short periods and with small working sets are e�ectively very small in most
cases, say 1 MB or less for a device driver. For example, we can multiplex one
3 GB user address space with 8 user spaces of 64 MB and additionally 128
user spaces of 1 MB. The trick is to share the smaller spaces with all large
3 GB spaces. Then any address-space switch to a medium or small space is
always fast. Switching between two large address spaces is uncritical anyway,
since switching between two large working sets implies TLB and cache miss
costs, nevermind whether the two programs execute in the same or in di�erent

address spaces.

Table 1 shows the page table switch and segment switch overhead for several
processors. For a TLB miss, the minimal and maximal cycles are given (provided

TLB TLB miss Page Table Segment

entries cycles switch cycles

486 32 9. . . 13 36. . . 364 39

Pentium 96 9. . . 13 36. . . 1196 15

PowerPC 601 256 ? ? 29
Alpha 21064 40 20. . . 50a 80. . . 1800 n/a

Mips R4000 48 20. . . 50a 0b n/a

aAlpha and Mips TLB misses are handled by software.
bR4000 has a tagged TLB.

Table 1: Address Space Switch Overhead

that no referenced or modi�ed bits need updating). In the case of 486, Pentium
and PowerPC, this depends on whether the corresponding page table entry is
found in the cache or not. As a minimal working set, we assume 4 pages. For
the maximum case, we exclude 4 pages from the address-space overhead costs,
because at most 4 pages are required by the �-kernel and thus would as well
occupy TLB entries when the address space would not be switched.

2 The x86 Memory Model

The reader should be familiar with the segmentation model and the paging
mechanisms of the x86-processor family. A detailed description can be found
in the reference manuals of the 486 [Intel Corp. 1990] and Pentium processor
[Intel Corp. 1993]. Segmentation and paging does not di�er signi�cantly on
both processors.

9

3 Address-Space Switch on 486

L4 (as L3 [Liedtke 1993]) favours a
at memory model. On this processor, the
virtual address space has a size of 4 GB. It consists of 3.5 GB of user space and
0.5 GB of kernel space, see Figure 1. Besides others, the kernel area contains

user area kernel

0 3.5 4

Figure 1: 486 Address Space.

the kernel code and the physical memory needed for page tables. Parts of the
kernel area are shared between all address spaces. An address-space switch thus
has no e�ect on these parts.

The user-accessible segment
at space describes the complete address space.
User access to the kernel part is prohibited by means of page-level protection.
Therefore, both kernel and user can use the same segment for data access.

Inter-process communication (IPC) is by far the most relevant reason for
address-space switches. Note that hardware interrupts are also handled as IPC.
Therefore, an interrupt usually also causes an address space switch through
the IPC path. From the performance point of view, we have only to examine
address-space switch by IPC.

The IPC path, respectively the parts which are relevant with respect to
address-space switch, look like follows:

ipc system call (dest task) :

if ds 6=
at space then ds :=
at space � ;
...

switch thread ;

if dest task 6= source task
then current space := space [dest task] ;

ush TLB ;
� .

10 3 ADDRESS-SPACE SWITCH ON 486

ipc system call: cycles
...

mov ebx,ds 3
cmp ebx,flat space 1
jnz ipc load ds 1

...

mov edi,[edx+proot ptr] 1

switch thread

IFNZ [ebp+proot ptr],edi 3

mov edi,[edi] 1
mov cr3,edi 4 + 9n

FI

iretd

The �rst 3 instructions check, whether the segment register ds is loaded with the
segment
at space which describes the
at address space. Loading a segment
register is relatively expensive on this processor; it costs 9 cycles if the segment
descriptor is found in the data cache, 12 cycles in the case of a cache miss.
Checking a segment register is twice as fast (5 cycles) as loading it.

Each thread control block (tcb) has a variable proot ptr which holds a pointer
into the task proot array. This array holds per task the current page directory
address, i.e. the physical address of respective task's page table root. At the end
of the IPC path, the processor's current page table root register (cr3) is loaded
with the new page table root, i� source (ebp) and destination tcb (edx) belong
to di�erent tasks, i.e. if their proot ptrs point to di�erent task proot entries.

The macro switch thread switches the stack pointer from the source thread's
to the destination thread's kernel stack. Thus the concluding instruction `iretd'
returns to the receiving thread, popping its user-level stack and instruction
pointer from its kernel stack.

In total, 14 + 9n cycles are required for address-space handling, where n is
the number of TLB misses caused by the TLB
ush due to reloading cr3. The
minimal value for n is 4 (see [Liedtke 1993, pp. 188]), the maximum is 32. So
the switch costs vary from 50 to 302 cycles, provided all TLB loads are handled
without cache miss.

11

4 Address-Space Switch on Pentium

On the Pentium processor, the virtual address space has also a size of 4 GB. It
consists of 3 GB of conventional user space, 0.5 GB for small user spaces and
0.5 GB of kernel space, see Figure 2. Tasks requiring only a small address space

user area small kernel

0 3 3.5 4

large user space
z }| {

| {z }

at kernel space

@
@
@
@

@

�
�
�
�
�

1M1M � � � � � � 64M � � � � � � � � � � � �

small user space 0

small user space 1
.
.
.

Figure 2: Pentium Address Space.

do not get the
at user space but an appropriate small user space inside the
small region of the address space. The trick is to share the small region between
all address spaces. Then switching from a large to a small user address space
never requires a true address-space (page-table) switch and avoids
ushing the

TLB. The same holds when switching from a small to another small user space
and when switching back from a small user space to the previously active large
space.

� Switching between large space is done conventionally by switching to a

new page table tree. The only user accessible segment,
at user space,
then describes the large user space region, its base is 0 its size 3M.

� Switching to a small user space is done by modifying the segment de-
scriptor of
at user space; base and size are set to the corresponding
small-user-space values.

Note that this is transparent to the user, since in all cases the same segment,
`
at user space', is used. Changing its base and size is more or less invisible2 to
user-level threads.

2There is a user-level instruction on this processor which delivers the size of a segment. By

means of this, a user thread can �nd out whether it actually has a small or large segment.

12 4 ADDRESS-SPACE SWITCH ON PENTIUM

4.1 The IPC Path

Now the IPC path, respectively the parts which are relevant with respect to
address-space switch, look like follows:

ipc system call (dest task) :

ds :=
at kernel space ;
...

switch thread ;

if has large space (dest task)
then if dest task 6= previous large task

then current space := space [dest task] ;

ush TLB ;
previous large task := dest task

� ;
gdt [
at user space].base := 0 ;
gdt [
at user space].size := 3M

else

gdt [
at user space].base := small base [dest task] ;
gdt [
at user space].size := small size [dest task]

� ;
ds :=
at user space ;
es :=
at user space ;
fs :=
at user space ;
gs :=
at user space .

Since the pages of both the large and the small region must be accessible
by user threads (but running in di�erent tasks), we can no longer rely on page-
level protection to prevent a thread from accessing data outside its user space.

Instead, we must use a user-accessible
at-user-space segment and a kernel-only-
accessible segement,
at kernel space.

When entering the kernel, a segment register must be loaded with
at-kernel-
space. When leaving the kernel, the user segment must be reloaded. Since in
general, the base address and the size of the
at user segment have changed due
to a logical address-space switch, all size and base values in all segment registers
must be updated. This is done by reloading gs, fs, es, ds explicitly with the
at-
user-space segment. The two segment registers cs and ss are automatically
updated by the `iretd'instruction. The corresponding machine instructions are:

4.1 The IPC Path 13

ipc system call: cycles
...

mov ebx,flat kernel space 1
mov ds,ebx 3

...

mov edi,[edx+proot ptr] 1

switch thread

mov eax,[edi] 1
IFB eax,size physical ptab memory 3

IFNZ [current cr3],eax 4
mov [current cr3],eax 1
mov cr3,eax 21 + 9n

FI

mov eax,0x00CB00FF a 1
FI

mov [gpt flat user descr+1],ah 1
mov ah,0xF3 b 0
mov [gpt flat user descr+4],eax 1

mov eax,flat user space 0
mov ds,eax 3
mov es,eax 3
mov fs,eax 3
mov gs,eax 3

iretd

aThis value ensures that the gdt descriptor is set to a base address of 0 and a size of 3M,

see [Intel Corp. 1993].
bThese three instructions update the gdt descriptor of the
at-user-space segment. For

understanding its semantic, look at the description of data-segment descriptors in the Pentium

reference manual [Intel Corp. 1993].

14 4 ADDRESS-SPACE SWITCH ON PENTIUM

Table 2 shows the address-space-switch costs, depending on the type of
switch. Switches to a small space and \back" to the previous large space are
cheap. Pseudo switches to the same address space are also optimized so that
thread switching within an address space need no special optimization. Table 3
shows the switch costs for the typical RPCs.

address-space previous
type switch large [cycles]

S ! D space

LL large ! large 6=D 95 : : : 914 (50 + 9n)

LP large ! large =D 28

LS large ! small 23

SS small ! small 23

SP small ! large =D 28

SL small ! large 6=D 95 : : : 914 (50 + 9n)

Table 2: Address-Space Switch Costs.

type Client $ Server [cycles]

LS + SP large $ small 51

SS + SS small $ small 46

SL + LS small $ large server 6= previous 118. . . 937

SP + LS server = previous 51

LL + LL large $ large inter-task 190. . . 1828

LP + LP intra-task 56

Table 3: Typical RPCs, Address-Space Switch Costs.

4.2 Message Transfer To/From Small Spaces 15

4.2 Message Transfer To/From Small Spaces

The general method to copy messages cross address spaces (without additionally
copying them into kernel space) is described in [Liedtke 1993]. This method is
based on temporary mapping in the kernel area. Small user spaces o�er an even
better solution.

As Figure 3 shows, a message can be copied into or out of a small user space

large user space small kernel

0 3 3.5 4

| {z }

at kernel space

@
@
@
@

@

�
�
�
�
�

� � � � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�3

Figure 3: Message Transfer To/From Small User Space.

by the kernel without any additional mapping, because in kernel space, both
user spaces occupy di�erent address regions and are simultaneously accessible.
(Recall that all small user spaces are shared between all large address spaces.)
Of course, the same method can be used between two small user spaces.

4.3 Dynamic Association of Small Address-Spaces

The system dynamically decides whether a user address space is implemented
as a large or a small user space. If a task has no objects mapped to the upper
part of its address space and an appropriate free small user space is available,
the small space is associated to the task. When the task tries to map objects
outside this small area, its user space is automatically converted to a large one.

If the system ran out of small user spaces, it tries to convert sleeping \small"
tasks to large ones.

These operations are transparent to user-level.

5 First Results

The e�ect of using segment based address-space switch on Pentium is shown in
�gure 4. One long running application with a stable working set (2 to 64 data
pages) executes a short RPC to a server with a small working set (2 pages).
After the RPC, the application re-accesses all its pages. Measurement is done
by 100,000 repetitions and comparing each run against running the application

16 5 FIRST RESULTS

(100,000 time accessing all pages) without RPC. The given times are round
trip RPC times, user to user, plus the required time for re-establishing the
application's working set.

application data working set [pages]

2

4

6

8

10

12

14

RPC

time

+

working

set

reestablish

[�s]

by page-table switch

2

6.3

16

7.6

32

9

48

10.9

64

12.7

3.2 3.2 3.2
3.4

3.6

by segment switch

Figure 4: Segmented Versus Standard Address-Space Switch in L4 on Pentium,

90 MHz.

REFERENCES 17

References

Digital Equipment Corp. 1992. DECChip 21064-AA Risc Microprocessor Data Sheet. Dig-

ital Equipment Corp.

Intel Corp. 1990. i486 Microprocessor Programmer's Reference Manual. Intel Corp.

Intel Corp. 1993.Pentium Processor User's Manual, Volume 3: Architecture and Program-

ming Manual. Intel Corp.

Kane, G. and Heinrich, J. 1992. MIPS Risc Architecture. Prentice Hall.

Liedtke, J. 1993. Improving IPC by kernel design. In 14th ACM Symposium on Operating

System Principles (SOSP), Asheville, NC, pp. 175{188.

Motorola Inc. 1993. PowerPC 601 RISC Microprocessor User's Manual. Motorola Inc.

