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ABSTRACT

Traditionally, filesystem consistency has been maintained across system failures either by using
synchronous writes to sequence dependent metadata updates or by using write-ahead logging to
atomically group them. Soft updates, an alternative to these approaches, is an implementation
mechanism that tracks and enforces metadata update dependencies to ensure that the disk image
is always kept consistent. The use of soft updates obviates the need for a separate log or for most
synchronous writes. Indeed, the ability of soft updates to aggregate many operations previously
done individually and synchronously reduces the number of disk writes by 40 to 70% for file-
intensive environments (e.g., program development, mail servers, etc.). In addition to perfor-
mance enhancement, soft updates can also maintain better disk consistency. By ensuring that the
only inconsistencies are unclaimed blocks or inodes, soft updates can eliminate the need to run a
filesystem check program after every system crash. Instead, the system is brought up immedi-
ately. When it is convenient, a background task can be run on the active filesystem to reclaim
any lost blocks and inodes.

This paper describes an implementation of soft updates and its incorporation into the 4.4BSD
fast filesystem. It details the changes that were needed, both to the original research prototype
and to the BSD system, to create a production-quality system. It also discusses the experiences,
difficulties, and lessons learned in moving soft updates from research to reality; as is often the
case, non-focal operations (e.g.,fsck and ‘‘fsync’’) required rethinking and additional code.
Experiences with the resulting system validate the earlier research: soft updates integrates well
with existing filesystems and enforces metadata dependencies with performance that is within a
few percent of optimal.

1. Background and Introduction

In filesystems,metadata (e.g., directories, inodes and
free block maps) gives structure to raw storage capac-
ity. Metadata provides pointers and descriptions for
linking multiple disk sectors into files and identifying
those files. To be useful for persistent storage, a
filesystem must maintain the integrity of its metadata
in the face of unpredictable system crashes, such as
power interruptions and operating system failures.
Because such crashes usually result in the loss of all
information in volatile main memory, the information
in non-volatile storage (i.e., disk) must always be con-
sistent enough to deterministically reconstruct a
coherent filesystem state. Specifically, the on-disk

image of the filesystem must have no dangling point-
ers to uninitialized space, no ambiguous resource
ownership caused by multiple pointers, and no unref-
erenced live resources. Maintaining these invariants
generally requires sequencing (or atomic grouping) of
updates to small on-disk metadata objects.

Traditionally, the BSD fast filesystem (FFS) [McKu-
sick et al, 1984] and its derivatives hav e used syn-
chronous writes to properly sequence stable storage
changes. For example, creating a file in a BSD sys-
tem involves first allocating and initializing a new
inode and then filling in a new directory entry to point
to it. With the synchronous write approach, the
filesystem forces an application that creates a file to



wait for the disk write that initializes the on-disk
inode. As a result, filesystem operations like file cre-
ation and deletion proceed at disk speeds rather than
processor/memory speeds in these systems [McVoy &
Kleiman, 1991; Ousterhout, 1990; Seltzer et al, 1993].
Since disk access times are long compared to the
speeds of other computer components, synchronous
writes reduce system performance.

The metadata update problem can also be addressed
with other mechanisms. For example, one can elimi-
nate the need to keep the on-disk state consistent by
using NVRAM technologies, such as an uninterrupt-
able power supply or Flash RAM [Wu & Zwaenepoel,
1994]. With this approach, only updates to the
NVRAM need to be kept consistent, and updates can
propagate to disk in any order and whenever it is con-
venient. Another approach is to group each set of
dependent updates as an atomic operation with some
form of write-ahead logging [Chutani et al, 1992;
Hagmann, 1987; NCR_Corporation, 1992] or shadow-
paging [Chamberlin et al, 1981; Chao et al, 1992;
Rosenblum & Ousterhout, 1991; Stonebraker, 1987].
Generally speaking, these approaches augment the on-
disk state with additional information that can be used
to reconstruct the committed metadata values after
any system failure other than media corruption. Many
modern filesystems successfully use write-ahead log-
ging to improve performance compared to the syn-
chronous write approach.

In [Ganger & Patt, 1994], an alternative approach
calledsoft updateswas proposed and evaluated in the
context of a research prototype. With soft updates,
the filesystem uses delayed writes (i.e., write-back
caching) for metadata changes, tracks dependencies
between updates, and enforces these dependencies at
write-back time. Because most metadata blocks con-
tain many pointers, cyclic dependencies occur fre-
quently when dependencies are recorded only at the
block level. Therefore, soft updates tracks dependen-
cies on a per-pointer basis, which allows blocks to be
written in any order. Any still-dependent updates in a
metadata block are rolled-back before the block is
written and rolled-forward afterwards. Thus, depen-
dency cycles are eliminated as an issue. With soft
updates, applications always see the most current
copies of metadata blocks and the disk always sees
copies that are consistent with its other contents.

In this paper, we describe the incorporation of soft
updates into the 4.4BSD FFS used in the NetBSD,
OpenBSD, FreeBSD, and BSDI operating systems. In
doing so, we discuss experiences and lessons learned
and describe the aspects that were more complex than
was suggested in the original research papers. As is

often the case, non-focal operations like bounding the
use of kernel memory used to track dependencies,
fully implementing the ‘‘fsync’’, system call seman-
tics, properly detecting and handling lost resources in
fsck, and cleanly and expediently completing an
unmount system call required some rethinking and
resulted in much of the code complexity. Despite
these difficulties, our performance experiences do ver-
ify the conclusions of the early research. Specifically,
using soft updates in BSD FFS eliminates most syn-
chronous writes and provides performance that is
within 5 percent of ideal (i.e., the same filesystem
with no update ordering). At the same time, soft
updates allows BSD FFS to provide cleaner seman-
tics, stronger integrity and security guarantees, and
immediate crash recovery (fsck not required for safe
operation after a system crash).

The remainder of this paper is organized as follows.
Section 2 describes the update dependencies that arise
in BSD FFS operations. Section 3 describes how the
BSD soft updates implementation handles these
update dependencies, including the key data struc-
tures, how they are used, and how they are incorpo-
rated into the 4.4BSD operating system. Section 4
discusses experiences and lessons learned from con-
verting a prototype implementation into an implemen-
tation suitable for use in production environments.
Section 5 briefly overviews performance results from
4.4BSD systems using soft updates. Section 6 dis-
cusses new support for filesystem snapshots and how
this support can be used to do a partialfsck in the
background on active filesystems. Section 7 outlines
the status and availability of the BSD soft updates
code.

2. Update Dependencies in the BSD Fast Filesystem

Several important filesystem operations consist of a
series of related modifications to separate metadata
structures. To ensure recoverability in the presence of
unpredictable failures, the modifications often must be
propagated to stable storage in a specific order. For
example, when creating a new file, the filesystem allo-
cates an inode, initializes it and constructs a directory
entry that points to it. If the system goes down after
the new directory entry has been written to disk but
before the initialized inode is written, consistency
may be compromised since the contents of the on-disk
inode are unknown. To ensure metadata consistency,
the initialized inode must reach stable storage before
the new directory entry. We refer to this requirement
as anupdate dependency, because safely writing the
directory entry depends on first writing the inode.
The ordering constraints map onto three simple rules:



1) Never point to a structure before it has been ini-
tialized (e.g., an inode must be initialized before
a directory entry references it).

2) Never re-use a resource before nullifying all
previous pointers to it (e.g., an inode’s pointer
to a data block must be nullified before that disk
block may be re-allocated for a new inode).

3) Never reset the old pointer to a live resource
before the new pointer has been set (e.g., when
renaming a file, do not remove the old name for an
inode until after the new name has been written).

This section describes the update dependencies that
arise in BSD FFS, assuming a basic understanding of
BSD FFS as described in [McKusick et al, 1996].
There are eight BSD FFS activities that require update
ordering to ensure post-crash recoverability: file cre-
ation, file removal, directory creation, directory
removal, file/directory rename, block allocation, indi-
rect block manipulation, and free map management.

The two main resources managed by the BSD FFS are
inodes and data blocks. Tw o bitmaps are used to main-
tain allocation information about these resources. For
each inode in the filesystem, the inode bitmap has a bit
that is set if the inode is in use and cleared if it is free.
For each block in the filesystem, the data block bitmap
has a bit that is set if the block is free and cleared if it is
in use. Each FFS filesystem is broken down into fixed-
size pieces referred to as cylinder groups. Each cylin-
der group has a cylinder group block that contains the
bitmaps for the inodes and data blocks residing within
that cylinder group. For a large filesystem, this organi-
zation allows just those sub-pieces of the filesystem
bitmap that are actively being used to be brought into
the kernel memory. Each of these active cylinder
group blocks is stored in a separate I/O buffer and can
be written to disk independently of the other cylinder
group blocks.

When a file is created, three metadata structures
located in separate blocks are modified. The first is a
new inode, which is initialized with its type field set to
the new file type, its link count set to one to show that it
is live (i.e., referenced by some directory), its permis-
sion fields set as specified, and all other fields set to
default values. The second is the inode bitmap, which
is modified to show that the inode has been allocated.
The third is a new directory entry, which is filled in
with the new name and a pointer to the new inode. To
ensure that the bitmaps always reflect all allocated
resources, the bitmap must be written to disk before
the inode or directory entry. Because the inode is in an
unknown state until after it has been initialized on the
disk, rule #1 specifies that there is an update

dependency requiring that the relevant inode be written
before the relevant directory entry. Although not
strictly necessary, most BSD fast filesystem implemen-
tations also immediately write the directory block
before the system call creating the file returns. This
second synchronous write ensures that the filename is
on stable storage if the application later does an
‘‘fsync’’ system call. If it were not done, then the
‘‘fsync’’ call would have to be able to find all the
unwritten directory blocks containing a name for the
file and write them to disk. A similar update depen-
dency between inode and directory entry exists when
adding a second name for the same file (a.k.a. a hard
link), since the addition of the second name requires
the filesystem to increment the link count in the inode
and write the inode to disk before the entry may appear
in the directory.

When a file is deleted, a directory block, an inode
block, and one or more cylinder group bitmaps are
modified. In the directory block, the relevant directory
entry is ‘‘removed’’, usually by nullifying the inode
pointer. In the inode block, the relevant inode’s type
field, link count and block pointers are zeroed out. The
deleted file’s blocks and inode are then added to the
appropriate free block/inode maps. Rule #2 specifies
that there are update dependencies between the direc-
tory entry and the inode and between the inode and any
modified free map bits. To keep the link count conser-
vatively high (and reduce complexity in practice), the
update dependency between a directory entry and
inode also exist when removing one of multiple names
(hard links) for a file.

Creation and removal of directories is largely as
described above for regular files. However, the ‘‘..’’
entry is a link from the child directory to the parent,
which adds additional update dependencies. Specifi-
cally, during creation, the parent’s link count must be
incremented on disk before the new directory’s ‘‘..’’
pointer is written. Likewise, during removal, the par-
ent’s link count must be decremented after the
removed directory’s ‘‘..’’ pointer is nullified. (Note
that this nullification is implicit in deleting the child
directory’s pointer to the corresponding directory
block.)

When a new block is allocated, its bitmap location is
updated to reflect that it is in use and the block’s con-
tents are initialized with newly written data or zeros.
In addition, a pointer to the new block is added to an
inode or indirect block (see below). To ensure that the
on-disk bitmap always reflects allocated resources, the
bitmap must be written to disk before the pointer.
Also, because the contents of the newly allocated disk
location are unknown, rule #1 specifies an update



dependency between the new block and the pointer to
it. Because enforcing this update dependency with
synchronous writes can reduce data creation through-
put by a factor of two [Ganger & Patt, 1994], many
implementations ignore it for regular data blocks. This
implementation decision reduces integrity and secu-
rity, since newly allocated blocks generally contain
previously deleted file data. Soft updates allows all
block allocations to be protected in this way with near-
zero performance reduction.

Manipulation of indirect blocks does not introduce
fundamentally different update dependencies, but they
do merit separate discussion. Allocation, both of indi-
rect blocks and of blocks pointed to by indirect blocks,
is as discussed above. File deletion, and specifically
de-allocation, is more interesting for indirect blocks.
Because the inode reference is the only way to identify
indirect blocks and blocks connected to them (directly
or indirectly), nullifying the inode’s pointer to an indi-
rect block is enough to eliminate all recoverable point-
ers to said blocks. Once the pointer is nullified on disk,
all its blocks can be freed. Only for partial truncation
of a file do update dependencies between indirect
block pointers and the pointed-to blocks exist. Some
FFS implementations do not exploit this distinction,
ev en though it can have a significant effect on the time
required to remove a large file.

When a file is being renamed, two directory entries are
affected. A new entry (with the new name) is created
and set to point to the relevant inode and the old entry
is removed. Rule #3 states that the new entry should be
written to disk before the old entry is removed to avoid
having the file unreferenced on reboot. If link counts
are being kept conservatively, rename involves at least
four disk updates in sequence: one to increment the
inode’s link count, one to add the new directory entry,
one to remove the old directory entry, and one to decre-
ment the link count. If the new name already existed,
then the addition of the new directory entry also acts as
the first step of file removal as discussed above. Inter-
estingly, rename is the one POSIX file operation that
really wants an atomic update to multiple user-visible
metadata structures to provide ideal semantics. POSIX
does not require said semantics and most implementa-
tions cannot provide it.

On an active filesystem, the bitmaps change constantly.
Thus, the copy of the bitmaps in the kernel memory
often differs from the copy that is stored on the disk. If
the system halts without writing out the incore state of
the bitmaps, some of the recently allocated inodes and
data blocks may not be reflected in the out-of-date
copies of the bitmaps on the disk. So, the filesystem
check program,fsck, must be run over all the inodes in

the filesystem to ascertain which inodes and blocks are
in use and bring the bitmaps up to date [McKusick &
Ko walski, 1994]. An added benefit of soft updates is
that it tracks the writing of the bitmaps to disk and uses
this information to ensure that no newly allocated
inodes or pointers to newly allocated data blocks will
be written to disk until after the bitmap that references
them has been written to disk. This guarantee ensures
that there will never be an allocated inode or data block
that is not marked in the on-disk bitmap. This guaran-
tee, together with the other guarantees made by the soft
update code, means that it is no longer necessary to run
fsck after a system crash. This feature is discussed fur-
ther in Section 6.

3. Tracking and Enforcing Update Dependencies

This section describes the BSD soft updates data
structures and their use in enforcing the update depen-
dencies described in Section 2. The structures and
algorithms described eliminate all synchronous write
operations from BSD FFS except for the partial trun-
cation of a file and the ‘‘fsync’’ system call, which
explicitly requires that all the state of a file be com-
mitted to disk before the system call returns.

The key attribute of soft updates is dependency track-
ing at the level of individual changes within cached
blocks. Thus, for a block containing 64 inodes, the
system can maintain up to 64 dependency structures
with one for each inode in the buffer. Similarly for a
buffer containing a directory block containing 50
names, the system can maintain up to 50 dependency
structures with one for each name in the directory.
With this level of detailed dependency information,
circular dependencies between blocks are not problem-
atic. For example, when the system wishes to write a
buffer containing inodes, those inodes that can be
safely written can go to the disk. Any inodes that can-
not be safely written yet are temporarily rolled back to
their safe values while the disk write proceeds. After
the disk write completes, such inodes are rolled for-
ward to their current values. Because the buffer is
locked throughout the time that the contents are rolled
back, the disk write is being done, and the contents are
rolled forward, any processes wishing to use the buffer
will be blocked from accessing it until it has been
returned to its current state.

3.1. Dependency Structures

A soft updates implementation uses a variety of data
structures to track pending update dependencies
among filesystem structures. Table 1 lists the depen-
dency structures used in the BSD soft updates imple-
mentation, their main functions, and the types of



Name Function Associated Structures

bmsafemap
track bitmap dependencies (points to lists of dependency structures for recently
allocated blocks and inodes)

cylinder group block

inodedep
track inode dependencies (information and list head pointers for all inode-
related dependencies, including changes to the link count, the block pointers,
and the file size)

inode block

allocdirect
track inode-referenced block (linked into lists pointed to by an inodedep and a
bmsafemap to track inode’s dependence on the block and bitmap being written
to disk)

data block or
indirect block or
directory block

indirdep
track indirect block dependencies (points to list of dependency structures for
recently-allocated blocks with pointers in the indirect block)

indirect block

allocindir
track indirect block-referenced block (linked into lists pointed to by an indirdep
and a bmsafemap to track the indirect block’s dependence on that block and
bitmap being written to disk)

data block or
indirect block or
directory block

pagedep
track directory block dependencies (points to lists of diradd and dirrem struc-
tures)

directory block

diradd track dependency between a new directory entry and the referenced inode
inodedep and
directory block

mkdir
track new directory creation (used in addition to standard diradd structure when
doing a mkdir)

inodedep and
directory block

dirrem track dependency between a deleted directory entry and the unlinked inode
first pagedep
then tasklist

freefrag
tracks a single block or fragment to be freed as soon as the corresponding block
(containing the inode with the now-replaced pointer to it) is written to disk

first inodedep
then tasklist

freeblks
tracks all the block pointers to be freed as soon as the corresponding block
(containing the inode with the now-zeroed pointers to them) is written to disk

first inodedep
then tasklist

freefile
tracks the inode that should be freed as soon as the corresponding block (con-
taining the inode block with the now-reset inode) is written to disk

first inodedep
then tasklist

Table 1: Soft Updates and Dependency Tracking

blocks with which they can be associated. These
dependency structures are allocated and associated
with blocks as various file operations are completed.
They are connected to the in-core blocks with which
they are associated by a pointer in the corresponding
buffer header. Two common aspects of all listed
dependency structures are theworklist structure and
the states used to track the progress of a dependency.

The worklist structure is really just a common header
included as the first item in each dependency structure.
It contains a set of linkage pointers and a type field to
show the type of structure in which it is embedded.
Theworklist structure allows several different types of
dependency structures to be linked together into a sin-
gle list. The soft updates code can traverse one of these
heterogenous lists, using the type field to determine
which kind of dependency structure it has encountered,
and take the appropriate action with each.

The typical use for theworklist structure is to link
together a set of dependencies associated with a buffer.
Each buffer in the system has aworklist head pointer
added to it. Any dependencies associated with that

buffer are linked onto itsworklist list. After the buffer
has been locked and just before the buffer is to be writ-
ten, the I/O system passes the buffer to the soft update
code to let it know that a disk write is about to be initi-
ated. The soft update code then traverses the list of
dependencies associated with the buffer and does any
needed roll-back operations. After the disk write com-
pletes but before the buffer is unlocked, the I/O system
calls the soft update code to let it know that a write has
completed. The soft update code then traverses the list
of dependencies associated with the buffer, does any
needed roll-forward operations, and deallocates any
dependencies that are fulfilled by the data in the buffer
having been written to disk.

Another important list maintained by the soft updates
code is thetasklist that contains background tasks for
the work daemon. Dependency structures are gener-
ally added to thetasklistduring the disk write comple-
tion routine, describing tasks that have become safe
given the disk update but that may need to block for
locks or I/O and therefore cannot be completed during
the interrupt handler. Once per second, the syncer dae-
mon (in its dual role as the soft updates work daemon)



wakes up and calls into the soft updates code to process
any items on thetasklist. The work done for a depen-
dency structure on this list is type-dependent. For
example, for afreeblksstructure, the listed blocks are
marked free in the block bitmaps. For adirrem struc-
ture, the associated inode’s link count is decremented,
possibly triggering file deletion.

Dependency States.Most dependency structures have
a set of flags that describe the state of completion of
the corresponding dependency. Dirty cache blocks can
be written to the disk at any time. When the I/O sys-
tem hands the buffer to the soft updates code (before
and after a disk write), the states of the associated
dependency structures determine what actions are
taken. Although the specific meanings vary from
structure to structure, the three main flags and their
general meanings are:

ATTA CHED
The ATTA CHED flag indicates that the buffer
with which the dependency structure is associ-
ated is not currently being written. When a disk
write is initiated for a buffer with a dependency
that must be rolled-back, theATTA CHED flag is
cleared in the dependency structure to show that
it has been rolled-back in the buffer. When the
disk write completes, updates described by
dependency structures that have theATTA CHED
flag cleared are rolled-forward and the
ATTA CHED flag is set. Thus, a dependency
structure can never be deleted while its
ATTA CHED flag is cleared, since the information
needed to do the roll-forward operation would
then be lost.

DEPCOMPLETE
TheDEPCOMPLETEflag indicates that all asso-
ciated dependencies have been completed.
When a disk write is initiated, the update
described by a dependency structure is rolled-
back if theDEPCOMPLETEflag is clear. For
example, in a dependency structure that is asso-
ciated with newly allocated inodes or data
blocks, theDEPCOMPLETEflag is set when the
corresponding bitmap has been written to disk.

COMPLETE
The COMPLETE flag indicates that the update
being tracked has been committed to the disk.
For some dependencies, updates will be rolled
back during disk writes when theCOMPLETE
flag is clear. For example, for a newly allocated
data block, theCOMPLETEflag is set when the
contents of the block have been written to disk.

In general, the flags are set as disk writes complete and
a dependency structure can be deallocated only when
its ATTA CHED, DEPCOMPLETE, andCOMPLETEflags
are all set. Consider the example of a newly allocated
data block that will be tracked by anallocdirectstruc-
ture. TheATTA CHED flag will initially be set when the
allocation occurs. TheDEPCOMPLETEflag will be set
after the bitmap allocating that new block is written.
The COMPLETE flag will be set after the contents of
the new block are written. If the inode claiming the
newly allocated block is written before both theDEP-
COMPLETE and COMPLETE flags are set, the
ATTA CHED flag will be cleared while the block pointer
in the inode is rolled back to zero, the inode is written,
and the block pointer in the inode is rolled forward to
the new block number. Where different, the specific
meanings of these flags in the various dependency
structures are described in the subsections that follow.

3.2. Bitmap Dependency Tracking

cylgrp_bp

allocdirect head

new blk head

inodedep head

allocindir head

worklist

bmsafemap

Figure 1: Bitmap Update Dependencies

Bitmap updates are tracked by thebmsafemapstruc-
ture shown in Figure 1. Each buffer containing a
cylinder group block will have its ownbmsafemap
structure. As with every dependency structure, the
first entry in thebmsafemapstructure is aworklist
structure. Each time an inode, direct block, or indirect
block is allocated from the cylinder group, a depen-
dency structure is created for that resource and linked
onto the appropriatebmsafemaplist. Each newly allo-
cated inode will be represented by aninodedepstruc-
ture linked to thebmsafemapinodedep head list.
Each newly allocated block directly referenced by an
inode will be represented by anallocdirect structure
linked to thebmsafemapallocdirect head list. Each
newly allocated block referenced by an indirect block
will be represented by anallocindir structure linked to
the bmsafemapallocindir head list. Because of the
FFS code’s org anization, there is a small window
between the time a block is first allocated and the time
at which its use is known. During this period of time,
it is described by anewblk structure linked to the
bmsafemapnew blk head list. After the kernel



chooses to write the cylinder group block, the soft
update code will be notified when the write has com-
pleted. At that time, the code traverses the inode,
direct block, indirect block, and new block lists, set-
ting the DEPCOMPLETE flag in each dependency
structure and removing said dependency structure
from its dependency list. Having cleared all its depen-
dency lists, thebmsafemapstructure can be deallo-
cated. There are multiple lists as it is slightly faster
and more type-safe to have lists of specific types.

3.3. Inode Dependency Tracking

state (see below)

worklist

deps list

dep bp

hash list

saved inode ptr

nlink delta

inode number

filesystem ptr

inode wait head

buf wait head

pending ops head

saved size

inodedep

buffer update head

incore update head

Figure 2: Inode Update Dependencies

Inode updates are tracked by theinodedepstructure
shown in Figure 2. Theworklist and ‘‘state’’ fields are
as described for dependency structures in general. The
‘‘filesystem ptr’’ and ‘‘inode number’’ fields identify
the inode in question. When an inode is newly allo-
cated, itsinodedepis attached to the ‘‘inodedep head’’
list of abmsafemapstructure. Here, ‘‘deps list’’ chains
additional newinodedepsand ‘‘dep bp’’ points to the
cylinder group block that contains the corresponding
bitmap. Otherinodedepfields are explained in subse-
quent subsections.

Before detailing the rest of the dependencies associ-
ated with an inode, we need to describe the steps
involved in updating an inode on disk as pictured in
Figure 3.

Step 1: The kernel calls the vnode operation,
VOP_UPDATE, which requests that the disk
resident part of an inode (referred to as a din-
ode) be copied from its in-memory vnode
structure to the appropriate disk buffer. This

bp

inode

dinode

vnode

dinode dinode dinode dinode...

buffer of dinodes

Figure 3: Inode Update Steps

disk buffer holds the contents of an entire
disk block, which is usually big enough to
include 64 dinodes. Some dependencies are
fulfilled only when the inode has been writ-
ten to disk. For these, dependency structures
need to track the progress of the writing of
the inode. Therefore, during step 1, a soft
update routine, ‘‘softdep_update_inode-
block’’, is called to moveallocdirect struc-
tures from the ‘‘incore update’’ list to the
‘‘buffer update’’ list and to movefreefile,
freeblks, freefrag, diradd, and mkdir struc-
tures (described below) from the ‘‘inode
wait’’ list to the ‘‘buf wait’’ list.

Step 2: The kernel calls the vnode operation,
VOP_STRATEGY, which prepares to write
the buffer containing the dinode, pointed to
by bp in Figure 3. A soft updates routine,
‘‘softdep_disk_io_initiation’’, identifies
inodedep dependencies and calls ‘‘initi-
ate_write_inodeblock’’ to do roll-backs as
necessary.

Step 3: Output completes on the buffer referred to
by bp and the I/O system calls a routine,
‘‘biodone’’, to notify any waiting processes
that the write has finished. The ‘‘biodone’’
routine then calls a soft updates routine,
‘‘softdep_disk_write_complete’’, which
identifies inodedepdependencies and calls
‘‘handle_written_inodeblock’’ to rev ert roll-
backs and clear any dependencies on the
‘‘buf wait’’ and ‘‘buffer update’’ lists.

3.4. Direct Block Dependency Tracking

Figure 4 illustrates the dependency structures involved
in allocation of direct blocks. Recall that the key
dependencies are that, before the on-disk inode points
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Figure 4: Direct Block Allocation Dependencies

to a newly allocated block, both the corresponding
bitmap block and the new block itself must be written
to the disk. The order in which the two dependencies
complete is not important. The figure introduces the
allocdirectstructure which tracks blocks directly refer-
enced by the inode. The three recently allocated logi-
cal blocks (1, 2, and 3) shown are each in a different
state. For logical block 1, the bitmap block depen-
dency is complete (as shown by theDEPCOMPLETE
flag being set), but the block itself has not yet been
written (as shown by theCOMPLETE flag being
cleared). For logical block 2, both dependencies are
complete. For logical block 3, neither dependency is
complete, so the correspondingallocdirectstructure is
attached to abmsafemap‘‘allocdirect head’’ list (recall
that this list is traversed to setDEPCOMPLETEflags
after bitmap blocks are written). TheCOMPLETEflag
for logical blocks 1 and 3 will be set when their initial-
ized data blocks are written to disk. The figure also
shows that logical block 1 existed at a time that
VOP_UPDATEwas called, which is why itsallocdirect
structure resides on theinodedep‘‘buffer update’’ list.
Logical blocks 2 and 3 were created after the most
recent call toVOP_UPDATE and thus their structures
reside on theinodedep‘‘incore update’’ list.

For files that grow in small steps, a direct block pointer
may first point to a fragment that is later promoted to a
larger fragment and eventually to a full-sized block.
When a fragment is replaced by a larger fragment or a
full-sized block, it must be released back to the

filesystem. However, it cannot be released until the
new fragment or block has had its bitmap entry and
contents written and the inode claiming the new frag-
ment or block has been written to the disk. The frag-
ment to be released is described by afreefragstructure
(not shown). Thefreefrag structure is held on the
‘‘freefrag’’ list of the allocdirectfor the block that will
replace it until the new block has had its bitmap entry
and contents written. Thefreefrag structure is then
moved to the ‘‘inode wait’’ list of theinodedepassoci-
ated with itsallocdirectstructure where it migrates to
the ‘‘buf wait’’ list when VOP_UPDATEis called. The
freefrag structure eventually is added to thetasklist
after the buffer holding the inode block has been writ-
ten to disk. When thetasklistis serviced, the fragment
listed in thefreefragstructure is returned to the free-
block bitmap.

3.5. Indirect Block Dependency Tracking
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Figure 5: Indirect Block Allocation Dependencies

Figure 5 shows the dependency structures involved in
allocation of indirect blocks, which includes the same
dependencies as with direct blocks. This figure intro-
duces two new dependency structures. A separate
allocindir structure tracks each individual block
pointer in an indirect block. Theindirdep structure
manages all theallocindir dependencies associated
with an indirect block. The figure shows a file that
recently allocated logical blocks 14 and 15 (the third
and fourth entries, at offsets 8 and 12, in the first indi-
rect block). The allocation bitmaps have been written
for logical block 14 (as shown by itsDEPCOMPLETE
flag being set), but not for block 15. Thus, the



bmsafemapstructure tracks theallocindir structure for
logical block 15. The contents of logical block 15 have
been written to disk (as shown by itsCOMPLETEflag
being set), but not those of block 14. TheCOMPLETE
flag will be set in 14’sallocindir structure once the
block is written. The list ofallocindir structures
tracked by anindirdepstructure can be quite long (e.g.,
up to 2048 entries for 8KB indirect blocks). To avoid
traversing lengthy dependency structure lists in the I/O
routines, anindirdepstructure maintains a second ver-
sion of the indirect block: the ‘‘saved data ptr’’ always
points to the buffer’s up-to-date copy and the ‘‘safe
copy ptr’’ points to a version that includes only the
subset of pointers that can be safely written to disk
(and NULL for the others). The former is used for all
filesystem operations and the latter is used for disk
writes. When the ‘‘allocindir head’’ list becomes
empty, the ‘‘saved data ptr’’ and ‘‘safe copy ptr’’ point
to identical blocks and theindirdep structure (and the
safe copy) can be deallocated.

3.6. Dependency Tracking for new Indirect Blocks
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Figure 6: Dependencies for a File Expanding into an
Indirect Block

Figure 6 shows the structures associated with a file that
recently expanded into its single-level indirect block.
Specifically, this involvesinodedepandindirdepstruc-
tures to manage dependency structures for the inode
and indirect block, anallocdirectstructure to track the
dependencies associated with the indirect block’s allo-
cation, and anallocindir structure to track the

dependencies associated with a newly allocated block
pointed to by the indirect block. These structures are
used as described in the previous three subsections.
Neither the indirect block nor the data block that it ref-
erences have had their bitmaps set, so they do not have
their DEPCOMPLETE flag set and are tracked by a
bmsafemapstructure. The bitmap entry for the inode
has been written, so theinodedepstructure has itsDEP-
COMPLETE flag set. The use of the ‘‘buffer update
head’’ list by theinodedepstructure indicates that the
in-core inode has been copied into its buffer by a call to
VOP_UPDATE. Neither of the dependent pointers
(from the inode to the indirect block and from the indi-
rect block to the data block) can be safely included in
disk writes yet, since the correspondingCOMPLETE
and DEPCOMPLETEflags are not set. Only after the
bitmaps and the contents have been written will all the
flags be set and the dependencies complete.

3.7. New Directory Entry Dependency Tracking
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Figure 7: Dependencies Associated with Adding New
Directory Entries

Figure 7 shows the dependency structures for a direc-
tory that has two new entries,foo andbar. This figure
introduces two new dependency structures. A separate
diradd structure tracks each individual directory entry
in a directory block. Thepagedepstructure manages
all thediradddependencies associated with a directory
block. For each new file, there is aninodedepstructure
and adiradd structure. Both files’ inodes have had



their bitmap’s written to disk, as shown by theDEP-
COMPLETE flags being set in theirinodedeps. The
inode forfoo has been updated withVOP_UPDATE, but
has not yet been written to disk, as shown by theCOM-
PLETEflag on itsinodedepstructure not being set and
by its diradd structure still being linked onto its ‘‘buf
wait’’ list. Until the inode is written to disk with its
increased link count, the directory entry may not
appear on disk. If the directory page is written, the soft
updates code will roll back the creation of the new
directory entry forfoo by setting its inode number to
zero. After the disk write completes, the roll-back is
reversed by restoring the correct inode number forfoo.

The inode forbar has been written to disk, as shown
by theCOMPLETE flag being set in itsinodedepand
diradd structures. When the inode write completed,
thediradd structure forbar was moved from theinod-
edep‘‘buf wait’’ list to the inodedep‘‘pending ops’’
list. The diradd also moved from thepagedep
‘‘diradd’’ list to the pagedep‘‘pending ops’’ list. Since
the inode has been written, it is safe to allow the direc-
tory entry to be written to disk. Thediradd entries
remain on theinodedepand pagedep‘‘pending ops’’
list until the new directory entry is written to disk.
When the entry is written, thediraddstructure is freed.
One reason to maintain the ‘‘pending ops’’ list is so
that when an ‘‘fsync’’ system call is done on a file, the
kernel is able to ensure that both the file’s contents and
directory reference(s) are written to disk. The kernel
ensures that the reference(s) are written by doing a
lookup to see if there is aninodedepfor the inode that
is the target of the ‘‘fsync’’. If it finds aninodedep, it
checks to see if it has anydiradd dependencies on
either its ‘‘pending ops’’ or ‘‘buf wait’’ lists. If it finds
any diradd structures, it follows the pointers to their
associatedpagedepstructures and flushes out the
directory inode associated with thatpagedep. This
back-tracking recurses on the directoryinodedep.

3.8. New Directory Dependency Tracking

Figure 8 shows the two additional dependency struc-
tures involved with creating a new directory. For a reg-
ular file, the directory entry can be committed as soon
as the newly referenced inode has been written to disk
with its increased link count. When a new directory is
created, there are two additional dependencies: writing
the directory data block containing the "." and ".."
entries (MKDIR_BODY) and writing the parent inode
with the increased link count for ".." (MKDIR_PAR-
ENT). These additional dependencies are tracked by
two mkdir structures linked to the associateddiradd
structure. The BSD soft updates design dictates that
any giv en dependency will correspond to a single
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Figure 8: Dependencies Associated with Adding a
New Directory

buffer at any giv en point in time. Thus, two structures
are used to track the action of the two different buffers.
When each completes, it clears its associated flag in the
diraddstructure. TheMKDIR_PARENT is linked to the
inodedepstructure for the parent directory. When that
directory inode is written, the link count will be
updated on disk. TheMKDIR_BODY is linked to the
buffer that contains the initial contents of the new direc-
tory. When that buffer is written, the entries for "." and
".." will be on disk. The lastmkdir to complete sets the
DEPCOMPLETEflag in thediradd structure so that the
diradd structure knows that these extra dependencies
have been completed. Once these extra dependencies
have been completed, the handling of the directory
diraddproceeds exactly as it would for a regular file.

All mkdir structures in the system are linked together
on a list. This list is needed so that adiraddcan find its
associatedmkdir structures and deallocate them if it is
prematurely freed (e.g., if a ‘‘mkdir’’ system call is
immediately followed by a ‘‘rmdir’’ system call of the
same directory). Here, the de-allocation of adiradd
structure must traverse the list to find the associated
mkdir structures that reference it. The deletion would
be faster if thediradd structure were simply aug-
mented to have two pointers that referenced the associ-
atedmkdir structures. However, these extra pointers
would double the size of thediradd structure to speed
an infrequent operation.



3.9. Directory Entry Removal Dependency Tracking
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Figure 9: Dependencies Associated with Removing a
Directory Entry

Figure 9 shows the dependency structures involved
with the removal of a directory entry. This figure
introduces one new dependency structure, thedirrem
structure, and a new use for thepagedepstructure. A
separatedirrem structure tracks each individual direc-
tory entry to be removed in a directory block. In addi-
tion to previously described uses,pagedepstructures
associated with a directory block manage alldirrem
structures associated with the block. After the direc-
tory block is written to disk, thedirrem request is
added to the work daemon’stasklistlist. For file dele-
tions, the work daemon will decrement the inode’s
link count by one. For directory deletions, the work
daemon will decrement the inode’s link count by two,
truncate its to size zero, and decrement the parent
directory’s link count by one. If the inode’s link count
drops to zero, the resource reclamation activities
described in Section 3.11 are initiated.

3.10. File Truncation

In the non-soft-updates FFS, when a file is truncated to
zero length, the block pointers in its inode are saved in
a temporary list, the pointers in the inode are zeroed,
and the inode is synchronously written to disk. When
the inode write completes, the list of its formerly
claimed blocks are added to the free-block bitmap.
With soft updates, the block pointers in the inode being
truncated are copied into afreeblksstructure, the point-
ers in the inode are zeroed, and the inode is marked
dirty. The freeblksstructure is added to the ‘‘inode
wait’’ list, and it migrates to the ‘‘buf wait’’ list when
VOP_UPDATEis called. Thefreeblksstructure is even-
tually added to thetasklistafter the buffer holding the
inode block has been written to disk. When thetasklist
is serviced, the blocks listed in thefreeblksstructure
are returned to the free-block bitmap.

3.11. File and Directory Inode Reclamation

When the link count on a file or directory drops to zero,
its inode is zeroed to indicate that it is no longer in use.
In the non-soft-updates FFS, the zeroed inode is syn-
chronously written to disk and the inode is marked as
free in the bitmap. With soft updates, information
about the inode to be freed is saved in afreefilestruc-
ture. The freefile structure is added to the ‘‘inode
wait’’ list, and it migrates to the ‘‘buf wait’’ list when
VOP_UPDATEis called. Thefreefilestructure eventu-
ally is added to thetasklistafter the buffer holding the
inode block has been written to disk. When thetasklist
is serviced, the inode listed in thefreefilestructure is
returned to the free inode map.

3.12. Directory Entry Renaming Dependency
Tracking
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Figure 10: Dependencies Associated with Renaming a
Directory Entry

Figure 10 shows the structures involved in renaming a
file. The dependencies follow the same series of steps
as those for adding a new file entry, with two varia-
tions. First, when a roll-back of an entry is needed
because its inode has not yet been written to disk, the
entry must be set back to the previous inode number
rather than to zero. The previous inode number is
stored in adirremstructure. TheDIRCHG flag is set in
thediraddstructure so that the roll-back code knows to
use the old inode number stored in thedirrem struc-
ture. The second variation is that, after the modified



directory entry is written to disk, thedirremstructure is
added to the work daemon’stasklistlist so that the link
count of the old inode will be decremented as
described in Section 3.9.

4. Experiences and Lessons Learned

This section describes various issues that arose in mov-
ing soft updates from research prototype to being a pro-
duction-quality component of the 4.4BSD operating
system. Some of these issues were evident shortcom-
ings of the research prototype, and some were simply
the result of differences in the host operating systems.
Others, however, only became evident as we gained
operational experience with soft updates.

The "fsync" system call. An important filesystem
interface is accessed through the ‘‘fsync’’ system call.
This system call requests that the specified file be writ-
ten to stable storage and that the system call not return
until all its associated writes have completed. The pro-
totype soft update implementation did not implement
the ‘‘fsync’’ system call.

The task of completing an ‘‘fsync’’ requires more than
simply writing all the file’s dirty data blocks to disk. It
also requires that any unwritten directory entries that
reference the file also be written, as well as any unwrit-
ten directories between the file and the root of the
filesystem. Simply getting the data blocks to disk can
be a major task. First, the system must check to see if
the bitmap for the inode has been written, finding the
bitmap and writing it if necessary. It must then check
for, find, and write the bitmaps for any new blocks in
the file. Next, any unwritten data blocks must go to
disk. Following the data blocks, any first level indirect
blocks that have newly allocated blocks in them are
written, followed by any double indirect blocks, then
triple level indirect blocks. Finally, the inode can be
written which will ensure that the contents of the file
are on stable store. Ensuring that all names for the file
are also on stable store requires data structures that can
determine whether there are any uncommitted names
and if so, in which directories they occur. For each
directory containing an uncommitted name, the soft
update code must go through the same set of flush
operations that it has just done on the file itself.

Although the ‘‘fsync’’ system call must ultimately be
done synchronously, this does not mean that the flush-
ing operations must each be done synchronously.
Instead, whole sets of bitmaps or data blocks are
pushed into the disk queue and the soft update code
then waits for all the writes to complete. This
approach is more efficient because it allows the disk

subsystem to sort all the write requests into the most
efficient order for writing. Still, the ‘‘fsync’’ part of
the soft update code generates most of the remaining
synchronous writes in the filesystem.

Unmounting filesystems. Another issue related to
‘‘fsync’’ is unmounting of filesystems. Doing an
unmount requires finding and flushing all the dirty
files that are associated with the filesystem. Flushing
the files may lead to the generation of background
activity such as removing files whose reference count
drops to zero as a result of their nullified directory
entries being written. Thus, the system must be able to
find all background activity requests and process them.
Even on a quiescent filesystem, several iterations of
file flushes followed by background activity may be
required. The 4.4BSD FFS allows for forcible
unmounts of filesystems which allows the unmount to
take place while the filesystem is actively in use, which
required additional support.

Removing directories. The prototype implementation
oversimplified the sequencing of updates involved with
removing a directory. Specifically, the prototype
allowed the removal of the directory’s name and the
removal of its ".." entry to proceed in parallel. This
meant that a crash could leave the directory in place
with its ".." entry removed. Althoughfsck could be
modified to repair this problem, it is not acceptable
whenfsck is bypassed during crash recovery.

For correct operation, a directory’s ".." entry should
not be removed until after the directory is persistently
unlinked. Correcting this in the soft updates code
introduced a delay of up to two minutes between
unlinked a directory and its really being deallocated
(when the ".." entry is removed). Until the directory’s
".." entry is really removed, the link count on its parent
will not be decremented. Thus, when a user removed
one or more directories, the the link count of their for-
mer parent still reflected their being present for several
minutes. This delayed link count decrement not only
caused some questions from users, but also caused
some applications to break. For example, the ‘‘rmdir’’
system call will not remove a directory that has a link
count over two. This restriction means that a directory
that recently had directories removed from it cannot be
removed until its former directories have been fully
deleted.

To fix these link-count problems, the BSD soft updates
implementation augments the inode ‘‘nlink’’ field with
a new field called ‘‘effnlink’’. The ‘‘nlink’’ field is still
stored as part of the on-disk metadata and reflects the
true link count of the inode. The ‘‘effnlink’’ field is
maintained only in kernel memory and reflects the final



value that the ‘‘nlink’’ field will reach once all its out-
standing operations are completed. All interactions
with user applications report the value of the ‘‘effn-
link’’ field which results in the illusion that everything
has happened immediately.

Block Reallocation. Because it was not done in Sys-
tem V Release 4 UNIX, the prototype system did not
handle block reallocation. In the 4.4BSD FFS, the
filesystem sometimes changes the on-disk locations of
file blocks as a file grows to lay the file out more con-
tiguously. Thus, a block that is initially assigned to a
file may be replaced as the file grows larger. Although
the prototype code was prepared to handle upgrades of
fragments to full-sized blocks in the last block of a file,
it was not prepared to have full-sized blocks reallo-
cated at interior parts of inodes and indirect blocks.

Memory used for Dependency Structures. One con-
cern with soft updates is the amount of memory con-
sumed by the dependency structures. This problem
was attacked on two fronts: memory efficiency and
usage bounding.

The prototype implementation generally used two
structures for each update dependency. One was asso-
ciated with the data that needed to be written and one
with the data that depended on the write. For example,
each time a new block was allocated, new dependency
structures were associated with the allocated disk
block, the bitmap from which the block was allocated,
and the inode claiming the new disk block. The struc-
ture associated with the inode was dependent on the
other two being written. The 4.4BSD soft updates
code uses a single dependency structure (associated
with the disk block) to describe a block allocation.
There is a single dependency structure associated with
each bitmap and each inode, and all related block allo-
cation structures are linked into lists headed by these
structures. That is, one block allocation structure is
linked into the allocated block’s list, the bitmap’s list,
and the inode’s list. By constructing lists rather than
using separate structures, the demand on memory was
reduced by about 40 percent.

In daily operation, we have found that the additional
dynamic memory load placed on the kernel memory
allocation area is about equal to the amount of memory
used by vnodes plus inodes. For a system with 1000
vnodes, the additional peak memory load is about
300KB. The one exception to this guideline occurs
when large directory trees are removed. Here, the
filesystem code can get arbitrarily far ahead of the on-
disk state, causing the amount of memory dedicated to
dependency structures to grow without bound. The
4.4BSD soft update code was modified to monitor the

memory load for this case and not allow it to grow past
a tunable upper bound. When the bound is reached,
new dependency structures can only be created at the
rate at which old ones are retired. The effect of this
limit is to slow down the rate of removal to the rate at
which the disk updates can be done. While this restric-
tion slows the rate at which soft updates can normally
remove files, it is still considerably faster than the tra-
ditional synchronous write filesystem. In steady-state,
the soft update remove algorithm requires about one
disk write for each ten files removed while the tradi-
tional filesystem requires at least two writes for every
file removed.

The fsck Utility . As with the dual tracking of the true
and effective link count, the changes needed tofsck
became evident through operational experience. In a
non-soft-updates filesystem implementation, file
removal happens within a few milliseconds. Thus,
there is a short period of time between the directory
entry being removed and the inode being deallocated.
If the system crashes during a bulk tree removal opera-
tion, there are usually no inodes lacking references
from directory entries, though in rare instances there
may be one or two. By contrast, in a system running
with soft updates, many seconds may elapse between
the times when the directory entry is deleted and the
inode is deallocated. If the system crashes during a
bulk tree removal operation, there are usually tens to
hundreds of inodes lacking references from directory
entries. Historically,fsck placed any unreferenced
inodes into thelost+found directory. This action is
reasonable if the filesystem has been damaged because
of disk failure which results in the loss of one or more
directories. However, it results in the incorrect action
of stuffing thelost+found directory full of partially
deleted files when running with soft updates. Thus, the
fsck program must be modified to check that a filesys-
tem is running with soft updates and clear out, rather
than saving, unreferenced inodes (unless it has deter-
mined that unexpected damage has occurred to the
filesystem, in which case the files are saved in
lost+found).

A peripheral benefit of soft updates is thatfsck can
trust the allocation information in the bitmaps. Thus, it
only needs to check the subset of inodes in the filesys-
tem that the bitmaps indicate are in use. Although
some of the inodes marked "in use" may be free, none
of those marked free will ever be in use.

Partial File Truncation . Although the common case
for deallocation is for all data in a file to be deleted, the
‘‘truncate’’ system call allows applications to delete
only part of a file. This creates slightly more compli-
cated update dependencies, including the need to have



deallocation dependencies for indirect blocks and the
need to consider partially deleted data blocks. Because
it is so uncommon, neither the prototype nor the BSD
soft updates implementation optimizes this case; the
conventional synchronous write approach is used
instead.

5. Performance

This paper gives only a cursory look at soft updates
performance. For a detailed analysis, including com-
parisons with other techniques, see [Ganger, McKu-
sick, & Patt, ].

We place the performance of BSD FFS with soft
updates in context by comparing it to the default BSD
FFS (referred to below as "normal"), which uses syn-
chronous writes for update ordering, and BSD FFS
mounted with theO_ASYNCoption (referred to below
as "asynchronous"), which ignores all update depen-
dencies. In asynchronous mode, all metadata updates
are converted into delayed writes (a delayed write is
one in which the buffer is simply marked dirty, put on a
least-recently-used list, and not written until needed
for some other purpose). Thus, theO_ASYNC data
provides an upper bound on the performance of an
update ordering scheme in BSD FFS. As expected, we
have found that soft updates eliminates almost all syn-
chronous writes and usually allows BSD FFS to
achieve performance with 5 percent of the upper
bound. Compared to using synchronous writes, file
creation and removal performance increases by factors
of 2 and 20, respectively. Overall, 4.4BSD systems
tend to require 40 percent fewer disk writes and com-
plete tasks 25 percent more quickly than when using
the default 4.4BSD fast filesystem implementation.

To provide a feeling for how the system performs in
normal operation, we present measurements from three
different system tasks. The first task is our ‘‘filesystem
torture test’’. This consists of 1000 runs of the Andrew
benchmark, 1000 copy and removes of/etc with ran-
domly selected pauses of 0-60 seconds between each
copy and remove, and 500 executions of thefind appli-
cation from / with randomly selected pauses of 100
seconds between each run. The run of the torture test
compares as follows:

Filesystem Disk Writes Running

Configuration Sync Async Time

Normal 1,459,147 487,031 27hr, 15min

Asynchronous 0 1,109,711 19hr, 43min

Soft Updates 6 1,113,686 19hr, 50min

The overall result is that asynchronous and soft
updates require 42 percent fewer writes (with almost
no synchronous writes) and have a 28 percent shorter

running time. This is particularly impressive when one
considers that the finds and the pauses involve no
update dependencies, and the Andrew benchmark is
largely CPU bound.

The second test consists of building and installing the
FreeBSD system. This task is a real-world example of
a program development environment. The results are
as follows:

Filesystem Disk Writes Running

Configuration Sync Async Time

Normal 162,410 39,924 2hr, 12min

Asynchronous 0 38,262 1hr, 44min

Soft Updates 1124 48,850 1hr, 44min

The overall result is that soft updates require 75 per-
cent fewer writes and has a 21 percent shorter running
time. Although soft updates initiates 30 percent more
writes than asynchronous, the two result in the same
running time.

The third test compares the performance of the central
mail server for Berkeley Software Design, Inc. run
with and without soft updates. The administrator was
obviously unwilling to run it in asynchronous mode,
since it is a production machine and people will not
abide by losing their mail. Unlike the tests above,
which involve a single disk, the mail spool on this sys-
tem is striped across three disks. The statistics were
gathered by averaging the results from thirty days of
non-weekend operation in each mode. The results for
a 24-hour period are as follows:

Filesystem Disk Writes

Configuration Sync Async

Normal 1,877,794 1,613,465

Soft Updates 118,102 946,519

The normal filesystem averaged over 40 writes per sec-
ond with a ratio of synchronous to asynchronous writes
of 1:1. With soft updates, the write rate dropped to 12
per second and the ratio of synchronous to asyn-
chronous writes dropped to 1:8. For this real-world
application, soft updates requires 70 percent fewer
writes, which triples the mail handling capacity of the
machine.

6. Filesystem Snapshots

A filesystemsnapshotis a frozen image of a filesys-
tem at a given instant in time. Snapshots support sev-
eral important features: the ability to provide back-ups
of the filesystem at several times during the day, the
ability to do reliable dumps of live filesystems, and
(most important for soft updates) the ability to run a
filesystem check program on a active system to reclaim
lost blocks and inodes.
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Figure 11: Structure of a snapshot file

Implementing snapshots in BSD FFS has proven to be
straightforward, with the following steps. First, activ-
ity on the relevant filesystem is briefly suspended.
Second, all system calls currently writing to that
filesystem are allowed to finish. Third, the filesystem
is synchronized to disk as if it were about to be
unmounted. Finally, asnapshot fileis created to track
subsequent changes to the filesystem; a snapshot file is
shown in Figure 11. This snapshot file is initialized to
the size of the filesystem’s partition, and most of its file
block pointers are marked as ‘‘not copied’’. A few
strategic blocks are allocated and copied, such as those
holding copies of the superblock and cylinder group
maps. The snapshot file also uses a distinguished
block number (1) to mark all blocks ‘‘not used’’ at the
time of the snapshot, since there is no need to copy
those blocks if they are later allocated and written.

Once the snapshot file is in place, activity on the
filesystem resumes. Each time an existing block in the
filesystem is modified, the filesystem checks whether
that block was in use at the time that the snapshot was
taken (i.e., it is not marked ‘‘not used’’). If so, and if it
has not already been copied (i.e., it is still marked ‘‘not
copied’’), a new block is allocated and placed in the
snapshot file to replace the ‘‘not copied’’ entry. The
previous contents of the block are copied to the newly
allocated snapshot file block, and the modification to
the original is then allowed to proceed. Whenever a
file is removed, the snapshot code inspects each of the
blocks being freed and claims any that were in use at
the time of the snapshot. Those blocks marked ‘‘not
used’’ are returned to the free list.

When a snapshot file is read, reads of blocks marked
‘‘not copied’’ return the contents of the corresponding
block in the filesystem. Reads of blocks that have been

copied return their contents. Writes to snapshot files
are not permitted. When a snapshot file is no longer
needed, it can be removed in the same way as any other
file; its blocks are simply returned to the free list and
its inode is zeroed and returned to the free inode list.

Snapshots may live across reboots. When a snapshot
file is created, the inode number of the snapshot file is
recorded in the superblock. When a filesystem is
mounted, the snapshot list is traversed and all the listed
snapshots are activated. The only limit on the number
of snapshots that may exist in a filesystem is the size of
the array in the superblock that holds the list of snap-
shots. Currently, this array can hold up to twenty snap-
shots.

Multiple snapshot files can concurrently exist. As
described above, earlier snapshot files would appear in
later snapshots. If an earlier snapshot is removed, a
later snapshot would claim its blocks rather than allow-
ing them to be returned to the free list. This semantic
means that it would be impossible to free any space on
the filesystem except by removing the newest snap-
shot. To avoid this problem, the snapshot code care-
fully goes through and expunges all earlier snapshots
by changing its view of them to being zero length files.
With this technique, the freeing of an earlier snapshot
releases the space held by that snapshot.

When a block is overwritten, all snapshots are given
an opportunity to copy the block. A copy of the block
is made for each snapshot in which the block resides.
Deleted blocks are handled differently. The list of
snapshots is consulted. When a snapshot is found in
which the block is active (‘‘not copied’’), the deleted
block is claimed by that snapshot. The traversal of the
snapshot list is then terminated. Other snapshots for
which the block are active are left with an entry of
‘‘not copied’’ for that block. The result is that when
they access that location they will still reference the
deleted block. Since snapshots may not be written, the
block will not change. Since the block is claimed by a
snapshot, it will not be allocated to another use. If the
snapshot claiming the deleted block is deleted, the
remaining snapshots will be given the opportunity to
claim the block. Only when none of the remaining
snapshots want to claim the block (i.e., it is marked
‘‘not used’’ in all of them) will it be returned to the
freelist.

6.1. Instant Filesystem Restart

Traditionally, after an unclean system shutdown, the
filesystem check program,fsck, has had to be run over
all inodes in an FFS filesystem to ascertain which
inodes and blocks are in use and correct the bitmaps.



This is a painfully slow process that can delay the restart
of a big server for an hour or more. The current imple-
mentation of soft updates guarantees the consistency of
all filesystem resources, including the inode and block
bitmaps. With soft updates, the only inconsistency that
can arise in the filesystem (barring software bugs and
media failures) is that some unreferenced blocks may
not appear in the bitmaps and some inodes may have to
have overly high link counts reduced. Thus, it is com-
pletely safe to begin using the filesystem after a crash
without first runningfsck. Howev er, some filesystem
space may be lost after each crash. Thus, there is value
in having a version offsck that can run in the back-
ground on an active filesystem to find and recover any
lost blocks and adjust inodes with overly high link
counts. A special case of the overly high link count is
one that should be zero. Such an inode will be freed as
part of reducing its link count to zero. This garbage col-
lection task is less difficult than it might at first appear,
since this version offsck only needs to identify
resources that are not in use and cannot be allocated or
accessed by the running system.

With the addition of snapshots, the task becomes sim-
ple, requiring only minor modifications to the standard
fsck. When run in background cleanup mode,fsck
starts by taking a snapshot of the filesystem to be
checked.Fsck then runs over the snapshot filesystem
image doing its usual calculations just as in its normal
operation. The only other change comes at the end of
its run, when it wants to write out the updated versions
of the bitmaps. Here, the modifiedfsck takes the set of
blocks that it finds were in use at the time of the snap-
shot and removes this set from the set marked as in use
at the time of the snapshot—the difference is the set of
lost blocks. It also constructs the list of inodes whose
counts need to be adjusted.Fsck then calls a new sys-
tem call to notify the filesystem of the identified lost
blocks so that it can replace them in its bitmaps. It also
gives the set of inodes whose link counts need to be
adjusted; those inodes whose link count is reduced to
zero are truncated to zero length and freed. Whenfsck
completes, it releases its snapshot.

6.2. User Visible Snapshots

Snapshots may be taken at any time. When taken
ev ery few hours during the day, they allow users to
retrieve a file that they wrote several hours earlier and
later deleted or overwrote by mistake. Snapshots are
much more convenient to use than dump tapes and can
be created much more frequently.

The snapshot described above creates a frozen image
of a filesystem partition. To make that snapshot acces-
sible to users through a traditional filesystem interface,

BSD uses the vnode driver,vnd. Thevnd driver takes
a file as input and produces a block and character
device interface to access it. Thevnd block device can
then be used as the input device for a standard BSD
FFS mount command, allowing the snapshot to appear
as a replica of the frozen filesystem at whatever loca-
tion in the namespace that the system administrator
chooses to mount it.

6.3. Live Dumps

Once filesystem snapshots are available, it becomes
possible to safely dump live filesystems. Whendump
notices that it is being asked to dump a mounted
filesystem, it can simply take a snapshot of the filesys-
tem and run over the snapshot instead of on the live
filesystem. Whendump completes, it releases the
snapshot.

7. Current Status

The soft updates code is available for commercial use
in Berkeley Software Design Inc.’s BSD/OS 4.0 and
later systems. It is available for non-commercial use in
the freely-available BSD systems: FreeBSD, NetBSD,
and OpenBSD. The snapshot code is in alpha test and
should be available in the BSD systems towards the
end of 1999. Sun Microsystems has been evaluating
the soft updates and snapshot technology for possible
inclusion in Solaris. Vendors wishing to use soft
updates for commercial use in a freely-available BSD
or in their own products should visit http://www.mcku-
sick.com/softdep/ or contact Dr. McKusick.
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