The Mapping Collector: Virtual Memory Support for

Generational, Parallel, and

Michal Wegiel

Computer Science Department
University of California, Santa Barbara

mwegiel@cs.ucsb.edu

Abstract

Parallel and concurrent garbage collectors are increlgsiem-
ployed by managed runtime environments (MRESs) to maintain
scalability, as multi-core architectures and multi-thiea appli-
cations become pervasive. Moreover, state-of-the-art MR#n-
monly implement compaction to eliminate heap fragmentadiod
enable fast linear object allocation.

Our empirical analysis of object demographics revealsuhat
reachable objects in the heap tend to form clusters largeginio
be effectively managed at the granularity of virtual memopages.
Even though processes can manipulate the mapping of thebirt
address space through the standard operating system (@8) in
face on most platforms, extant parallel/concurrent cortgraado
not do so to exploit this clustering behavior and insteadexeh
compaction by performing, relatively expensive, objectiing and
pointer adjustment.

We introduce the Mapping Collector (MC), which leverages vi
tual memory operations to reclaim and consolidate freeespatt-
out moving objects and updating pointers. MC is a nearlgisin
phase compactor that is simpler and more efficient than quely
reported compactors that comprise two to four phases. Thret:
fective MRE-OS coordination, MC maintains the simplicitf/a
non-moving collector while providing efficient parallel cacon-
current compaction.

We implement both stop-the-world and concurrent MC in a
generational garbage collection framework within the epeurce
HotSpot Java Virtual Machine. Our experimental evaluatisimg
a multiprocessor indicates that MC significantly incredbesugh-
put and scalability as well as reduces pause times, relatistate-
of-the-art, parallel and concurrent compactors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory Management (Garbage Collection);
D.4.2 [Operating Systems]: Storage Management—Virtual Mem-
ory

General Terms Algorithms, Languages, Performance

Keywords Virtual Memory, Compaction, Parallel, Concurrent

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1-5, 2008, Seattle, Washington, USA.
Copyright(© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

Concurrent Compaction

Chandra Krintz

Computer Science Department
University of California, Santa Barbara

ckrintz@cs.ucsb.edu

1. Introduction

Modern systems are increasingly complex implementing imult
layered software stacks and employing more and more priogess
cores. These systems support a vast diversity of applitatiang-
ing from multi-media and software development to web-smwi
and distributed gaming (among others). To extract highqgoerf
mance from these systems, it is vital that the layers of tftevace
stack cooperate efficiently to make the most of the undeglierd-
ware resources. Two key layers common to most extant sysiems
support of these applications, are the operating system §0&
the managed runtime environment (MRE) — the popular exacuti
environment for portable, type-safe applications (etmsé written

in Java or the .Net languages).

An MRE component that can significantly impact the perfor-
mance of applications and that has the potential for moedligéent
coordination between the MRE, operating system, and uyidgrl
architecture, is memory management. Garbage collecti@) (&
MREs typically is multi-threaded (parallel) and/or coreunt [21]
to exploit increasing numbers of available processing ssoaed
employs compaction to eliminate heap fragmentation to lenab
fast object allocation [20]. Extant compacting GCs achievm-
paction by moving live (reachable) objects. This involvepying,
which is increasingly expensive because of the growinggssar-
memory performance gap, and can adversely impact apjplicati
performance [6].

To address this limitation and to improve the performance of
MRE systems, we investigate a new approach to parallel{rosrt,
compacting, garbage collection in which the MRE coordisate
memory management efforts with the virtual memory systethef
underlying machine — to eliminate object copying altogetiair
GC, to which we refer as the Mapping Collector (MC), expldiits
widely-known phenomenon that objects with similar lifeistend
to exhibit spatial locality in the heap [35]. In particulave find
that dead objects often occur in large clusters. MC expthitsbe-
havior to consolidate free space (compact the heap) throigtal
page mapping operations available via standard, cros®pta
unprivileged, OS system calls. Such reclamation is sintimple-
ment and does not require OS modification. Moreover, MC avoid
object copying and its associated costly memory operatiang
facilitates a very efficient GC implementation. To enabls,tMC
trades off a small heap space overhead for fast, inexpensive
paction. In practice, this space overhead is below 6% onageer
and MC can additionally bound it by an infrequent fall-back t
state-of-the-art, perfect compaction based on object mgovi

The contributions that we make herein include:

¢ The design and implementation of MC, a generational [20] GC
that supports both stop-the-world (STW) and concurrent-com
paction. We implement MC in the open-source HotSpot Java

Virtual Machine [23]. MC is applicable to both server sysgem
(which typically employ concurrent GC to reduce pause times
at the cost of resource over-provisioning [19]) and desksics-
tems (which tend to use STW GC because of its simplicity,
higher throughput, and more efficient use of the underly@ig r
sources [19]).

Virtual memory support for copy avoidance. Unlike previgus
reported systems, MC employs virtual memory unmapping as
a primary and sole technique to implement STW/concurrent
compaction in a modern MRE. MC achieves the same effect
as object moving but avoids object copying and thus improves
GC performance while imposing a small space overhead.

Reduction in the number of GC phases. MC is a nearly-single-
phase compactor while extant compacting GCs require dt leas
two phases. MC enables this by replacing object moving with
virtual page unmapping (whose cost is proportional to & live
ness bitmap size that is approximately 3% of the heap size).

An experimental evaluation of MC against both STW and con-
current state-of-the-art compacting GC systems. We empiri
cally evaluate the throughput, pause times, and scalalofit

in auxiliary data structures (which include the block-effarray).
This process is accompanied by freeing pages in the souaoe sp
and allocating pages in the destination space. CP imposesla s
constant space overhead (1.5% for 256-byte blocks) fodiaoxi
data structures. By contrast, MC performs compaction inlpeae
phase and eliminates object moving and pointer adjustnh&@t.
imposes a variable space overhead (on averagf, which can
be bounded). Both compactors preserve object order. CPpsima
and maps the entire heap each time the compaction is invbked.
limits the number of virtual memory operations to the numdbier
dead-object clusters.

2.2 TheHotSpot Compactor

The parallel compactor currently available in the HotS M).J19]
(herein referred to as HS) is similar in spirit to the CompogsHS
updates pointers in the same way but moves objects only wien i
necessary. HS is a STW virtual-memory-oblivious collectdth

two phases: marking and compaction. HS divides the heap into
fixed-size regions (chunks) and uses a liveness bitmap twdec
the locations of live objects. During marking, HS computés a
ditional per-chunk data needed for pointer adjustment. ddre-

MC and compare MC against the STW and concurrent versions paction phase is parallel. Threads claim available regaiomi-

of the Compressor [21], and the production-quality, higbyi-
mized parallel STW compacting GC currently available in the
HotSpot JVM. We evaluate MC on a multiprocessor system us-
ing a set of standard community benchmarks and find that MC
enables significant performance gains for these metrics.

Prior work on compaction has focused on both partial elim-
ination of object moving [14, 19] and reducing the number of
GC phases [21, 1, 15, 30]. MC leverages MRE-OS interaction
to improve over these approaches by eliminating copying- alt
gether. Virtual memory support for GC has been shown to leeeff
tive in other contexts including preventing collectorcgd pag-
ing [16, 37, 38, 17, 36] and reducing the space overhead gigp
collection via page unmapping [21, 29].

In the next section, we overview the background and related
work. We then detail the design and implementation of MC {Sec
tion 3), present the results of our empirical evaluatiorc{i®e 4),
and conclude in Section 5.

2. Background and Related Work

While most prior work on parallel/concurrent compactiors lie:
cused on virtual-memory-oblivious compactors, the irtéoa be-
tween the collector and virtual memory has recently gaiméet-
est [21, 37, 17, 11]. Previously reported compactors aehiewn-
paction by moving all (or some [14, 19, 11]) live objects aredat
least two phases. MC attempts to achieve compaction witiioyt
object moving and is a nearly-single-phase compactorofiig

cally and fill them with live objects. A region becomes avaiéa
when all its objects have been evacuated (it is empty) orsitiegn
compacted onto itself. HS updates interior object poirasr fills
regions. Filling a region does not require synchronizatod in-
volves identifying source objects destined for the regiod eopy-

ing them until the region is full or no more objects are lef6 Ebm-
putes a new location of a live object as the start of its datitin
region plus the size of live objects that precede the objethat
region. HS performs perfect, sliding compaction and presethe
object order. HS imposes a constant space overhead of 3%eghee
for per-region data that includes the current compactiatesior
each region). The advantages of MC over HS are similar toethos
over the Compressor: nearly one GC phase (instead of two) and
avoidance of object moving and pointer manipulation.

2.3 ThelBM Compactor

The IBM collector [1] is a parallel STW compactor that com-
prises three phases: marking, object moving, and pointengix
This collector does not manipulate virtual memory mappihg.
does not guarantee perfect compaction and, therefore, siespo
an application-specific space overhead, similarly to MCe $is-
tem divides the heap into fixed-size blocks. Initially, GCetids
perform intra-block compaction and proceed to inter-blookn-
paction as free contiguous areas begin to appear in thedgirea
compacted blocks. In the moving phase, the system colleftis i
mation needed for pointer adjustment. In the final phasesytbem
divides the heap into as many areas as there are GC threals, an

the methodology used in [21], we define a GC phase as an opera-each thread redirects pointers in its own area. Pointesadgnt is

tion with cost proportional to the heap or live data size. Tits
phase in state-of-the-art compactors is marking [20] windemti-
fies live objects through parallel/concurrent tracing.

2.1 TheCompressor

The Compressor [21] is a parallel compacting GC that requwe
phases: marking and compaction. It supports both stopvtiré
(STW) and concurrent collection. The Compressor (herdarmed

to as CP) uses virtual memory operations (i.e., page maggidg
unmapping) but accomplishes compaction by moving live abje
and adjusting the pointers. The compaction is perfect, (heap
fragmentation is fully eliminated). The compactor empldy®
virtual spaces and copies objects page by page from one gpace
the other. CP, akin to a copying collector, always moveslgéais.

It updates pointers after moving using information it hasorded

performed in a similar way as in the Compressor. In contid&t,
neither moves objects nor updates pointers and is a ndadies
phase collector.

2.4 TheFlood Compactor

The compactor presented by Flood et al. [15] is a paralledivar

of the Lisp2 [20, 12] collector. This STW GC requires four pbs:
marking, forwarding pointer installation, pointer adjusint, and
object moving. The heap is divided int@ontiguous regions where

p is the number of parallel GC threads. The sliding directibera
nates between left and right for even and odd regions andas a r
sult £ groups of objects are formed in the heap. Thus, free space is
consolidated only partially. This compactor uses forwagdioint-

ers instead of the block-offset array and the mark-bit vedtous,
pointer updates are more efficient but one additional presed-

essary. MC achieves higher-quality compaction (the freeesps
mostly consolidated, no object groups are formed) in neanly
phase and without object moving and pointer adjustment.

25 ThePausdessGC

The Pauseless GC [11] is a parallel and concurrent comptetbr
avoids STW pauses through hardware read barriers, fastusde
trap handlers, an additional intermediate TLB privilegeeleand
fast cooperative preemption via interrupts. The compamosists
of three phases, called mark, relocate, and remap, eachiciivgh
parallel and concurrent. The mark phase periodically séies the
liveness bitmap. The relocate phase uses the most up-edidat
ness bitmap to find pages that contain few live objects, atasu
live data from those pages, and frees the underlying physiem-
ory. Pages with no live data are unmapped as in MC. Evacuated v
tual pages containing live objects are protected to trityggas upon
access. The system maintains pointer-forwarding infaomatut-
side of the evacuated pages, in side arrays (hash tableynaondes
variable, but small, space overhead. Mutators using stalegrs
raise traps which in turn update pointers to refer to newaibe
cations. The remap phase traverses the object graph exgauti
read barrier against each pointer to ensure the completenészy
pointer forwarding and thus guarantees that all evacuaitedal/
pages are eventually unmapped. The system performs thgprema
phase concurrently with the mark phase of the next colleatie
cle. Unlike the Pauseless GC, MC performs compaction in dynea
one phase — marking, which can be implemented either agiséop-
world or concurrent. MC does not require special hardwappstt,
never copies objects, and reclaims only completely freepagl
of which significantly simplify implementation.

2.6 Memory Management with Virtual Memory Support

Recently proposed collectors that leverage virtual menedttyer
focus on copying, not on compaction (like MC), or aim at reduc
ing heap space usage, not at avoiding object moving (like. @)
example, MarkCopy [29] leverages virtual memory mappingeto
duce the space overhead of a copying collector. The collectes
not require a copy reserve since it maps and unmaps consecuti
pages as copying progresses (in a way similar to that of thme-Co
pressor [21]). Unlike MC, these approaches involve objemting.

Collectors that cooperate with the virtual memory manager t
reduce the collector-induced paging [16, 37, 17, 38, 36bateng-
onal and complementary to MC. The Bookmarking collecto [17
records summary information about outgoing pointers froitted
pages to avoid accessing non-resident pages during faf-bem-
pacting collections. CRAMM ([37] and IV heap sizing [16] use
VM paging behavior to predict and set dynamically an appropr
ate, application-specific, heap size that adapts to chgmgemory
pressure.

The Boehm-Demers-Weiser [8] garbage collector is a mark-
sweep (non-compacting) collector for C/C++ which uses page
mapping as an optional and supplementary mechanism toeeduc
fragmentation. This collector is conservative (i.e., nibgarbage
can be identified). Page unmapping in the context of conseeva
GC for C/C++ has also been investigated in [28]. The proposéd
lector remaps virtual memory pages to reduce external fesum
tion in a free list of large objects. In contrast, MC employs u
mapping as a primary technique to achieve compaction aris t
first to do so among non-conservative (precise) collectdmig
Lee’s malloc library [22] uses mmap/munmap primitives fam
ory allocation/reclamation. This system, however, dogsuapport
or provide garbage collection.

An alternative to STW collection is concurrent GC, commonly
employed for server systems, which interleaves appliodtiouta-
tor) and GC execution via additional synchronization arsbuece

(memory and processor) over-provisioning, to reduce GG@au
times. The concurrent version of the Compressor [21], Gmba
First collector [14], and mostly-concurrent mark-sweep][are
recent examples of concurrent GCs. Concurrent collectons-c
monly protect virtual pages in order to detect conflicts with-
tators and to exploit cache locality [21]. Extant systemgpsut-
ing concurrent/parallel collection either do not attempnpaction
[26, 25, 24, 3, 4, 7] or move/copy live objects [21, 18, 10,4, In
contrast, MC achieves compaction without object moving.

3. TheMapping Collector (MC)

MC exploits the widely-observed statistical property thateach-
able objects tend to cluster together [35] and form contigutead
regions in the heap. Our experimental analysis of modera ge
grams (which we present in Section 4) confirms this propenty a
reveals that clusters of dead objects are often sufficidattye to
make their reclamation via virtual page unmapping prattica

Extant garbage collectors do not take advantage of the tdvel
indirection offered by virtual memory and compact the hegp b
moving objects and updating pointers. MC remaps the freeespa
into a contiguous region in a newly allocated area in virtuaim-
ory. This approach is simpler and more efficient than objepying
and pointer adjustment. It enables nearly-single-phas®aotion,
while state-of-the-art compactors comprise at least twasph. In
addition to marking, MC requires only a single traversalrave
liveness bitmap (whose size is 3% of the heap).

To achieve portability, MC relies only on standard virtuam
ory operations [27], such as page mapping and unmappinarha
available for (unprivileged) processes as part of an operalys-
tem interface (system calls) on most modern platforms. We no
that it is not sufficient to rely on the OS paging mechanism to
swap out unreachable, never-accessed pages, and compieaiil
garbage collection. Periodic page unmapping is necesedrge
the associated OS resources (e.g., the swap space) — cthdney
are not freed until program termination.

Since virtual page granularity is larger than the unit obedi-
tion (most objects are small) and because of the page alignme
requirements of modern systems (e.g., 4KB in Linux), MC mscu
a certain heap space overhead, which we evaluate in detaihhe
We find that the size of the uncollected free space is modest in
most cases and can be bounded via an infrequent fall-badbrio p
fect compaction (Section 3.4).

By remapping free space into a new area in virtual memory,
MC consumes increasingly more address space as subseqgoent ¢
pactions occur. This phenomenon, however, is not a problem o
modern 64-bit architectures that have practically inestiale vir-
tual address space at their disposal.

Like most state-of-the-art compactors, MC is designed for a
tenured generation in a generational [33, 20] garbage atme
system. In the young generation, normally a copying cabeect
is used as it is more efficient than compaction if the expected
percentage of live objects is low. The cost of collectingtéraured
generation typically dominates GC performance.

The tenured generation contains objects with relativehglo
lifetimes and the allocation rate in the tenured generasarla-
tively low (compared to the young generation). Thus, theseigd
rate at which new dead clusters appear is low and address gpac
age remains tolerable even on 32-bit architectures (whiethave
verified experimentally).

MC consists of a single parallel marking phase (which impose
the dominant cost of the collector) and a series of operatfon
unmapping and updating auxiliary data structures. Unnmeppc-
curs immediately following marking and has a cost propodido
the size of the liveness bitmap (which is approximately 3%hef
mapped heap size). Thus, MC is a nearly-single-phase cdorpac

I:I live objects

after

marking
| | | | | |

F virtual pages f f i i T T

f f f f f !
after

I:I dead objects | | || free| | |

| free |

| [oee] [fee 7] |

unmapping

Figurel. Page-based free space reclamation in MC. Virtual pagesdalitained in dead clusters are returned to the OS.

MC can be implemented as both STW and concurrent com-
pactor. During unmapping, MC does not access live objecadl,at
and therefore can execute concurrently with the applinatithout
the need for any synchronization. This significantly sirfigdi the
design — note that moving compactors require OS supporttdléa
concurrent mutations to the moved objects.

While STW compaction is triggered only upon heap space ex-
haustion, concurrent compaction is initiated early, whereain
heap occupancy is reached (typically around 70%). Thisdéese
sary to guarantee space for allocation while the compagiion
gresses in the background.

3.1 STW/Concurrent Marking

The marking phase identifies all reachable objects in thp hed
records the starting and ending words for each live objethén

MC invokes the unmapping system calls in parallel which is
more scalable than serialized unmapping, especially gthen
pages returned to the OS by different GC threads belong jmirttis
virtual memory areas. OS kernels that support fine-graikimhoc
in the memory management subsystem can likely handle such
concurrency with little contention.

Figure 1 illustrates how MC reclaims free space on a virtual
page basis. The unmapping scan identifies unreachablensegio
and unmaps their fragments that fully cover the underlyimgal
pages. Since MC does not move objects, the freed areas never
contract, and unmapped pages remain unused. The spaceayerh
tends to improve over time as small dead fragments scathereds
the heap assemble into larger clusters that MC can laterpinma

MC maintains a page bitmap to track heap pages that are cur-
rently unmapped. Its size is approximately 0.003% of thel @k
dress space (1 bit per 4KB). Without this additional datacstrre,

liveness bitmap. Both STW and concurrent marking can be used the performance of long-running applications that exHiigh ob-

with MC.

State-of-the-art STW parallel marking [15, 19] uses work
stealing for dynamic load balancing. The root set is assigoe
the marking GC threads in a round-robin fashion. Whenever a
thread becomes idle, it steals a group of references frorthano
(randomly-selected) thread. Each thread maintains a foagking
stack (for depth-first search). To ensure that each livecoigeoro-
cessed exactly once, marking GC threads claim objects edigni
GC threads coordinate marking termination via barrier bymc
nization.

State-of-the-art concurrent parallel marking [26, 19]<iets of
three sub-phases: STW initial marking, concurrent markargl
STW final marking. Initial marking suspends mutators to rdal
objects directly reachable from the roots. Concurrent imgrke-
sumes mutators and marks a transitive closure of reachbjgets.
Due to concurrent pointer updates some live objects mighefbe
unmarked. Therefore, the algorithm keeps track of all ginp-
dates by leveraging a card table mechanism of a generati@@al
system. Final marking suspends the mutators and repeaksngnar
from the roots treating modified pointers as additional soBtnal
marking is typically short as it skips the already-markegeots.
Each sub-phase can be executed by multiple parallel GCd#irea

3.2 STW Unmapping

STW MC performs unmapping when the mutators are suspended
The goal of the unmapping scan (which amounts to a travevsal o
the liveness bitmap) is to return reclaimable pages to thai@So
compute the total size of free space available in dead chiste

MC performs the unmapping scan in parallel. Since the size of
the liveness hitmap is relatively small, we do not employaiyit
load balancing. MC statically partitions the bitmap intcarig-

ject turnover in the tenured generation may degrade. Theapam
ping scan traverses over the liveness bitmap which has ao§ize
approximately 3% of the address space currently used byehge. h
This includes the unmapped areas. Therefore, to keep thetos
the unmapping scan proportional to 3% of the heap size (ot th
used address space), MC must distinguish between mapped and
unmapped regions. With this enhancement, MC can traversk (a
clear) the liveness bitmap only partially (skipping the @pped re-
gions). In addition, this reduces the number of unmappirsgesy
calls (as we do not unmap the same clusters multiple times).

Once the unmapping scan is complete, MC expands the heap
by the total size of the newly-discovered free space (notdted
size of the newly-unmapped pages) in the heap (to enablédeen
behavior as and a fair comparison to perfect compactingcmiis).
The space overhead of MC then, is the size of this expansiongni
the total size of the pages that MC has unmapped in the current
collection cycle.

3.3 Concurrent Unmapping

In concurrent MC, unmapping takes places after resumingntine
tator threads. MC first traverses over the liveness bitmagsfilead
clusters (their addresses and sizes are stored in the rchustsy),

and clears the bitmap. During the bitmap traversal, MC atsn-c
putes a new object-start array, necessary in a generatBDalys-

.tem to locate the first object on any 512-byte card during theng

generation collection [31]. Since these activities aréquared con-
currently to mutators, a young-generation GC might takeeplia

the background (two collectors may execute at the same .time)
Therefore, MC must compute the object-start array usingpa-se
rate (shadow) array. This translates to 0.2% space ove(tidade

per 512 bytes). Next, MC suspends the mutators, and finisiges t

equal-sized chunks (as many as the number of GC threads). Acomputation of the shadow array. Note that during the carotr

boundary between two adjacent chunks is the first word ofe liv
object. Thus, the subdivision does not hinder our abilitylétect
regions suitable for unmapping. No synchronization is asag/
between the parallel threads since we divide the markingdpt
between threads at live object boundaries and, as a resutpm
flicts can occur.

pass over the bitmap, new allocations might have taken pface
the old generation. These new objects need to be taken into ac
count when generating the shadow array. While the mutarers a
stopped, MC switches to the new shadow array and inserts fille
objects into dead clusters. Card table entries (dirtyfcteads) are

left intact (as no object moves). In addition, MC computesribw

size of free space and resizes the heap accordingly (byttdeine

of the newly-discovered free space). Finally, the mutatoesre-

sumed, and free clusters are unmapped concurrently. Thers, is

one STW sub-phase and two concurrent sub-phases. Auxdléay
structures used by concurrent MC (the cluster array andhidugosy

array) impose additional space overhead. However, thisheeel is
small in practice, and, as we discuss later, is not an issem ghat

concurrent GC needs significantly over-provisioned heaps.

3.4 Bounding Space Overhead

STW MC supports space-bounded collection by falling back to

perfect compaction in cases when unmapping fails to reckim
sufficient amount of free space. In case of concurrent MQrethe

| header | class | length | | unmapped | |

o Ist 2nd | 3rd | | page | |

I T T T T T 1
word word word alighment

Figure 2. The format of a filler object. First three words form the
header of an array object. The page-aligned part of the fekto
cluster is subject to unmapping.

We implement STW/concurrent MC as a parallel compactor in
the tenured generation. Both STW and concurrent MC use STW
parallel marking. We reuse and simplify (MC does not require

is no need for bounding the space overhead as concurrent MCper_chynk summary data) the marking phase of the STW phralle
requires significantly more heap space than STW MC (much more 50t compactor. We increase the distance between giemsra

than the imposed space overhead). This is because corcG@n
trades pause times for space and throughput (Section 4.6).

STW MC evaluates whether to perform a fall-back after STW
parallel unmapping. In most state-of-the-art parallel pantors,
(including MC, HS, and CP), a liveness bitmap is the intexfac
that bridges marking and the subsequent phases. Therdi@re,
can directly proceed to the second phase of a conventionahmo
compactor without any additional processing, once it deiees
that a fall-back is needed.

Our current MC fall-back is the STW Compressor. The com-
paction phase of the Compressor is described in SectionAR.1.
alternative solution is a fall-back to the HotSpot compachut

STW CP imposes a smaller space overhead and is simpler. The

space-bounded MC uses two mutually-distant areas in thessld
space, one of which is active (and mapped) at any given point i
time. The non-moving unmapping-based compaction alwdiesta
place in the currently active space. If a fall-back is needbkdn

all objects from the active space are moved to the other sprade
the roles of the two spaces are flipped (as in the CompreSsuez).
time overhead imposed by a fall-back is the unmapping sdan (t
moving compaction does not benefit from this scan) and irdud
bitmap traversal, unmapping, filler object insertion, abjot-start
array computation.

3.5 Implementation Details

We have implemented STW MC (the unbounded and the space-

bounded variant), concurrent MC, and the STW/concurremh-Co
pressor in HotSpot [23], an open-source (GPL) high-peréorce
Java Virtual Machine available from Sun Microsystems ani-wr

ten in C/C++ (source code released on 3/21/2007). The HotSpo

JVM uses a generational [33] heap layout that comprises¢he p
manent, tenured (old), and young generation. The young géoe

is further subdivided into eden and two equal-sized sunspaces
(called from-space and to-space). The permanent generedio-
tains run-time meta-data for the loaded classes. The syaliem
cates objects initially in the eden (if their size precludden allo-
cation, it allocates them directly in the tenured genemtitJpon
space exhaustion in the eden, a copying collector [9, 18lefta
the scavenger) performs a minor collection. The scavengms-e
uates live objects from the eden-space and from-space ttwthe
space, and promotes objects that survive several minaratimhs
(or those that do not fit into the to-space) to the tenured rgene
tion. The roles of the survivor spaces exchange after eadormi
collection. When space in the tenured generation is exbdust
major collection (compaction) takes place. The parallehSdom-
pactor currently available in HotSpot is described in Secf.2.
GC threads in HS are schedulable kernel threads. HotSpghass
each generation a contiguous region in the virtual addrpases
and maps only the currently used portion.

in virtual memory to reserve address space for page remgyppin

MC compacts the young generation (which is much smaller than
the tenured generation) by object moving and pointer adljest.
This compaction, however, is not part of the major collectits
takes place as an epilogue of a failed minor collection. €ens
quently, MC does not need to update any pointers during major
collections (unlike HS and CP).

Since the scavenger uses a card table to find roots during mi-
nor collections, the unmapping scan in MC must compute aebff
of the first live object for each 512-byte card (the objeertsar-
ray). This additional processing is concomitant to the deladter
unmapping and does not require a separate pass.

Free regions cannot be entirely unmapped as the scavenger mu
be able to traverse (object by object) an arbitrary subspétiee
tenured generation (in search for roots) during minor ctibes.
Therefore, we insert a filler object into every free arearygach
unmapping scan. Figure 2 depicts the format of the filler abje
The type of a filler object is an integer arrayng [1), to ensure that
there are no interior reference fields for the scavenger ltowfo
Thus, each free region is reclaimable except for three wibiatsare
necessary for the header of a filler object. The minor GCsrigdér
objects as if there are live, however, since they are uneddeh
the next major collection considers them to be garbageoWwoily
the HotSpot convention, we use a single system cailbg) to
perform both mapping and unmapping (for the latter we employ
the MAP_NORESERVE flag).

Concurrent MC requires a STW phase in order to atomically up-
date the object-start array, insert filler objects, andzeethie heap.
We piggyback on the STW young generation collection to avoid
introducing additional expensive safepoints [19]. Youege&yation
GC is relatively frequent and a slightly-delayed STW phaseat
a problem in practice.

35.1 Generational Compressor

We extend the Compressor to support generational compaetial
implement it in the tenured generation. The Compressor moke
jects, therefore it needs to update the pointers in the yanty
permanent generations upon each compaction. We use 286-byt
blocks, as we have found them to be the best tradeoff between
space overhead and performance. The concurrent Compitessor
two concurrent sub-phases, separated by a single STW sageph

In the first sub-phase, the Compressor computes the bldsktair-

ray (used for pointer forwarding) and the shadow objeat-staay.

In the STW sub-phase, the system updates the shadow otgerct-s
array (to include new allocations) and sets it as the cubject-
start array, invalidates card tables (because objects aved for-
wards pointers in the young generation and permanent gemera
protects heap pages and switches to the other semi-spatiee In
third sub-phase, a concurrent thread reads subsequerd (mage

Benchmark| Heap[MB] | Time[s] | GC[%] | #GCs
Chart 27 25.79 13.21 16
Xalan 31 20.39 | 43.48 68

Pmd 31 29.54 28.16 26
Hsqgldb 100 18.62 36.48 4
\olano 33 80.25 24.41 112

JBB 174 95.62 43.02 84

Table 1. GC statistics for the HotSpot compactor: the minimum
heap size, execution time, percentage of GC time relatiexé

(HotSpot default). Explicit GC invocation and adaptive getion
resizing are disabled. We employ 4 parallel GC threads (&#xXoe
the scalability experiments where we use 1-8 threads).iurv
spaces (from-space and to-space) occupy 33% of the young gen
eration (the remaining space is used by the eden). For camtur
MC/Compressor we start compaction when 65% of the old gener-
ation is used. Concurrent compaction uses a single comtua€
thread.

We repeat each measurement three times and report the @averag
result along with the standard deviation (error bars in thotsp,

cution time, and the number of GCs. The measurements have bee wherever appropriate. We employ the default input size tor a

obtained for the minimum heap size for each benchmark.

word per page to generate SEGV traps) to ensure that all thespa
are eventually moved, and clears the liveness bitmap.

4. Evaluation
We empirically evaluate 6 compactors: STW HotSpot, STW un-

bounded MC, STW space-bounded MC, concurrent unbounded
MC, STW Compressor, and concurrent Compressor. We compare
these GCs in two groups, one comprising 4 STW compactors

and the other comprising 2 concurrent compactors. In additi
we compare STW MC with concurrent MC to investigate the
STWI/concurrent tradeoffs.

Our experimental platform is an SMP with 4 processors each of
which is a 2-way SMT (the machine has 8 logical CPUs). Each

physical processor is a 32-hit Intel Xeon with 1MB of cache,
clocked at 1.6GHz. The machine is equipped with 7GB of main
memory and is running Linux Red Hat 3.4.6 with the 2.6.9 kerne

The virtual page size is 4KB. We run HotSpot 7-ea-b10 cordpile

with GCC 3.2.3 in the optimized client-compiler (C1) mode.

4.1 Benchmarks

DaCapo benchmarks. VolanoMark is run with 44 chat rooms and
performs 100 iterations in the networked mode. The seneitlza
client are on the same machine. PseudoJBB is configured ¢atexe
10° iterations against 8 (for STW GC) and 4 (for concurrent GC)
warehouses.

4.3 Clustering

Figure 3 shows CDFs for the sizes of clusters of dead objects f
the deskside benchmarks (a), server benchmarks (b), andsacr
the benchmarks (c). We report data obtained for the minimeaph
sizes using STW unbounded MC. Percentage of clusters greate
than 4KB (virtual page size) is 24% for Chart, 52% for Xalan,
38% for Pmd, 1% for Hsqldb, 5% for Volano, and 9% for JBB.
Fragmentation is higher in server benchmarks. MC achiewes |
space overhead for these benchmarks by reclaiming rdiafme
big clusters rather than many smaller ones. Average cls#eris
26KB, minimum cluster size is 28B, and maximum cluster size i
184MB.

4.4 STW Compactors

We compare STW unbounded MC (UN) and STW space-bounded
MC (SP) with STW Compressor (CP) and STW HotSpot (HS) in

We employ a diverse set of benchmarks with a wide range of terms of memory footprint, throughput, pause times, anthbda

behaviors. These benchmarks include three multi-threadeder
benchmarks: VolanoMark 2.5 [34], PseudoSPECjbb 2000 E8%],
Hsqldb from the DaCapo 2006 suite [13], and three desksitie ut
ties (from DaCapo 2006): Xalan, Chart, and Pmd. We list tteécba
statistics for these benchmarks (i.e., the minimum heag sital

execution time, total GC time, and the number of GCs), that we

obtain using the HotSpot compactor, in Table 1.

VolanoMark is a standard server benchmark derived from a

commercial chat server (VolanoChat), which simulates dirsker
environment with multiple chat rooms. The benchmark exgkan

a given number of messages and reports execution time and com

munication throughput. PseudoSPEC|bb is a variant of SBfECj
that executes a given number of transactions and reportaiexe
tion time. The benchmark emulates a three-tier clientesesys-
tem (with emphasis on the middle tier) where clients areacgd
by driver threads and database storage by binary trees eftsbj
Hsqldb is a relational SQL database management systemugvat s

ity. For SP, we employ the 10% space overhead bound in all ex-
periments. We also investigate the impact of other boundghen
fall-back frequency and average pause times.

4.4.1 Space Overhead

HS and CP impose a constant space overhead of 3% (for 2KB
chunks) and 1.5% (for 256B blocks), respectively. In MC,gpace
overhead is variable and application-specific (but can hethed)
and depends on the degree of dead-object clustering in g he

The bar graph in Figure 4(a) shows space overhead imposed
by STW unbounded MC and STW space-bounded MC. For each
benchmark, we report the average value across the heap Biees
overhead is shown as a percentage of the heap size. On aubage
unbounded MC imposes 5.8% overhead while the space-bounded
MC (with the 10% bound) imposes 3.5% overhead.

ports in-memory and disk-based data storage. DaCapo employ 442 Throughput

Hsqldb to execute an in-memory benchmark that comprisesa nu
ber of transactions against a model of a banking applicaaian
transforms XML documents into HTML. Pmd analyzes a set of
Java classes for a range of source code problems. Chartalots
number of complex line graphs and renders them into a PDF file.

4.2 Methodology

In Figure 5, we present per-benchmark graphs, each withderr
formance curves for a range of heap sizes. Each graph shaws ex
cution time as a function of heap size (starting from the mimn
heap size).

For the minimum heap sizes and relatively to HS, UN improves
throughput by up to 23.5% (Hsgldb) and by 13.3% on average.
For the minimum heap sizes and relatively to CP, UN improves

Each of our experiments uses a fixed-size heap. We repotft tota throughput by up to 42.1% (PseudoJBB) and by 23.3% on average

heap size, which includes the young, old, and permanentrgene
tion. Total heap size does not include auxiliary data stmest as

they are located outside of the heap. The young generatian si
is 25% of the old generation. The permanent generation isBL2M

For the minimum heap sizes and relatively to HS, SP improves
throughput by up to 22.7% (Hsgldb) and by 10.9% on average.
For the minimum heap sizes and relatively to CP, SP improves
throughput by up to 40.1% (PseudoJBB) and by 21.1% on average

(a) Deskside benchmarks

—— Chart
-- Xalan
— Pmd

0.1

)

10° 10 10
Cluster Size [byte]

10°

(b) Server benchmarks

1
0.9r
0.8r
0.7r
0.6r

IhLO 5

g0.
0.4r
0.3r
0.2r
0.1r

o ‘
10" 10°

: 3
Cluster %Cl]ze [byte]

10 10°

0.9r
0.8r
0.7r
0.61
LDLO 5
g0.
0.4r
0.3r
0.2r
0.1r

(c) Summary

1

— Deskside
-- Server
— All

0 . . .
1 2 3 4 5
10 10 mcluster gl)ze [bytejj0

10° 10

Figure 3. Distribution of cluster sizes for the deskside benchmaaljsqderver benchmarks (b) and across the benchmarks (cepie a
CDF for each individual benchmark as well as summary CDFghiedeskside, server, and all benchmarks.

(a) Space overhead

12

10r

Space Overhead [%]
[}

0

Chart Xalan Pmd Hsqgldb Volano JBB

(b) Average pause times

2500
gzooo— Hl UN n
o W sp
£ I Hs
=
% 1500} Llcp
&
=1
©
o
3 1000f
[}
i=2
<
2 500

0 Chart Xalan Pmd quldib Volano JBB

Maximum GC Pause Time [ms]

N
a
=}
=)

N
o
]
S

1500

=
o
]
=]

o
o
S

(c) Maximum pause times

0

Chart Xalan Pmd Hsgldb Volano JBB

Figure 4. GC statistics across the heap sizes for STW unbounded MC, (8RN} space-bounded MC (SP) with the 10% bound, STW
HotSpot compactor (HS), and STW Compressor (CP): heap spachead (a), average pause times (b), and maximum paus (iin

x 10 ‘ ‘ ‘Chart‘

- CP

26 28 30 32, Slzeﬁle] 3%

Volano

40 42

44

Execution Time [s]
(o2} ~ ~ @
e 9 9

o
]

32 34 3 1oap e g ©°

a4

Xalan

Execution Time [rTS]
BB Nt NN
S (=2} [es] N N B (o2} fee]

30 325 35 475 50

TRap e MH°

Hsqldb

Execution Time [ms]
I
R £ 9 o n

[N

98 100 102 110 112 114

19|eap %lze [ME?S

7o
®

Execution Time

N
=

Execution Time [ms]

N
N

Pmd

w

I
)}

30 32 34 Heap Sizé H\/IB] 42 44 46 48

PseudoJBB

172 174 176 178 180 182 184 186 188
Heap Size [MB]

190

Figure 5. Benchmark performance (execution time) across the heap fiz STW unbounded MC (UN), STW space-bounded MC (SP)
with the 10% bound, STW HotSpot compactor (HS), and STW Cesgur (CP). Error bars indicate the standard deviatiorsagouns.

443 PauseTimes Bound[%] [2 | 5] 7 [10] 15] 20
Benchmark Fall-back frequency [%]
Chart 128 0.0 | 0O | 0.0 | 0.0 | 0.0
Xalan 996|326 | 164 | 57 | 15| 04

Figures 4(b) and 4(c) present average and maximum pauss time
for UN, SP, HS, and CP. For each benchmark, we report thegeera
value across the heap sizes.

Compared to HS, UN reduces average (maximum) pause times Pmd 66 | 39 | 42| 41| 41 | 0.0
by up to 69.7% (78.7%) and on average by 63.4% (68.4%). Com- Hsqldb 0.0 | 0.0 | 00 | 007 00} 00
pared to CP, UN reduces average (maximum) pause times by up Volano 1.0 1 0.0 1 00} 00 | 00 0.0
to 73.8% (74.4%) and on average by 66.8% (67.5%). Compared to JBB 43 | 23] 16] 12| 00] 00
HS, SP reduces average (maximum) pause times by up to 67.8% | _Compactor Avg. Pause Decrease [%]

(76.4%) and on average by 49.3% (31.4%). Compared to CP, SP STWCP | 62.6 | 64.7] 65.2] 651 65.2] 66.1
reduces average (maximum) pause times by up to 72.2% (71.7%) | STWHS | 53.2 | 55.8 | 56.4 | 56.3 | 56.4 | 57.5
and on average by 53.9% (31.5%). Compactor Avg. Pause Increase [%]

A commonly-employed metric for the evaluation of colleetor STWUN | 268]225]21.4]215]214] 194

imposed pauses are minimal mutator utilization (MMU) csrve — -
[10] that lend insight into the distribution of GC pausesoasrpro- Tablei. G% Stag'St.'CSdfor STV\(\ spgc.e-bourllqded MC for d|ﬁ§rent
gram execution. Mutator utilization for a given time windawis sEace fOILImb Sﬁ ftalne using the mlnlmun; Gegp S'_Zﬁs' sze‘"St
defined as the fraction of the time that the mutator (as ogbtise 'Sl'hzwssecacl)r; q apcart rsehqolifssn(E)yer(g:rzfae;éag:c(r)ease ?nmg;[/erzge &?‘ paus
the collector) executes within the window. Minimum mutator .)

) executes withi M inimu u times relative to STW Compressor (CP) and STW HotSpot (HS).

utilization for a window of a specific size is the lowest mutator The third part shows percentage increase in average GG f
utilization for all time windows of sizes across the program ex- - Paese
brog relative to STW unbounded MC (UN).

ecution. Thus, the x-intercept of a MMU curve is the maximum
pause time and the asymptotic y-value corresponds to thie app
cation throughput. As shown in Figure 6, UN achieves the -high
est MMU for all window sizes across all benchmarks and attain
non-zero utilization for windows shorter than SP, HS, and €
achieves better or the same utilization as HS and CP for atitbe

When multi-threading is taken into account (8 GC threads), t
speedup averages at 3.75 for UN, 3.19 for SP, 2.56 for HS, &3d 3
for CP. Thus, UN improves speedup by 47% relative to HS and by

0 : X - 0 .
marks. Since SP falls back to CP, its maximum pause time és oft 23% relative to CP, while SP improves speedup by 23% relegive

similar to CP. HS achieves better or comparable utilizaéigCP. HS and by 3% relative to CP.

Figure 7 compares average (data points) and maximum. (error4 45 Fall-Back Rate
bars) pause times for UN, SP, HS, and CP. For these expesment)) o .
we vary the number of parallel GC threads for a fixed heap size SP falls back to CP if excessive fragmentation in the heapesak
(we use the minimum heap sizes). Both UN and SP consistently impossible to reclaim a satisfactory fraction of free spdable 2
decrease pause times relative to HS and CP, independene of th Shows the rate of fall-back to perfect compaction that isesary
number of parallel GC threads. For 1 GC thread, UN reduces 0 guarantee a specific space overhead bound (2% to 20%). We
pauses on average by 49% relative to HS and by 61% relative to @XPress this rate as the percentage of GCs that need to daltba
CP, while SP reduces pauses on average by 44% relative toddS an conventional moving compaction to keep the space overhelag/b
by 56% relative to CP. For 4 GC threads, UN reduces pauses on@ given threshold. L o
average by 61% relative to HS and by 66% relative to CP, while The fal_l-back statistics fo_r the minimum heap sizes indichat
SP reduces pauses on average by 519% relative to HS and by 5798Ven for tight pounds, relatlvely infrequent fall-back iscessary.
relative to CP. Finally, for 8 GC threads, UN reduces pauses o For instance, in order to achieve 5% bound, on average, 6.5%
average by 65% relative to HS and by 66% relative to CP, while collections neeq to trigger afall-b.a.ck (for 7% bound it i8%.and
SP reduces pauses on average by 54% relative to HS and by 54040" 10% bound itis 1.8%). In addition, we have measured @eera

relative to CP. GC pause times for different space bounds. The results for UN
and SP, reported in Table 2, indicate that the space-boukiiad
4.4.4 Scalability reduces pauses significantly relative to HS and CP (for alhte

that we investigate), and increases average pause tima®inyca

Our experimental platform has four 2-way SMT processottsialf 20% compared to the unbounded MC.

ized by the operating system as 8 logical CPUs. We investitpet
scalability (speedup) of UN, SP, HS, and CP in the contexbdtifi b
multi-processing and multi-threading parallelism. We mea the
(from 1 through 8) to a fixed-size workload and the minimumghea Compressor (CP) in terms of memory footprint, throughpuot a
for each benchmark. We compute the speeduppftireads as a Pause times.
ratio of the average GC pause time fothread and fop threads.

As shown in Figure 8, server benchmarks scale better (e.g.,4'5'1 Space Overhead
Hsqldb/UN achieves 5.9 speedup while the maximum for ddsksi Concurrent collection requires heap space over-proviisipiio

45 Concurrent Compactors

benchmarks is 3.4 for Chart/UN). HS has the worst scalstit- avoid the situation when allocators exhaust the heap befae
cause it computes per-chunk statistics during markinggchven- ongoing background collection is complete. Thereforecemaver-
tails more synchronization. The plots in Figure 7 provideaiibte head is less of a problem in concurrent MC than in STW MC.
average GC pause times from which the speedup graphs have beeFigure 9(a) shows space overhead (as a heap percentagajexver
derived. across the heap sizes. As explained earlier, CP has a cosgtae

When considering only multi-processing parallelism (4 GC overhead of 1.5%. Across the benchmarks, the space ovedfiead
threads), the speedup averages at 2.86 for UN, 2.6 for SP, 2.2 concurrent UN averages at 4.1%. Note that concurrent UNinesju
for HS, and 2.49 for CP. Thus, UN improves speedup by 30% rel- about 28% more heap space than STW UN (Section 4.6). Thus,
ative to HS and by 15% relative to CP, while SP improves spgedu bounding space overhead in concurrent MC does not seem-neces
by 17% relative to HS and by 4% relative to CP. sary/practical.

Chart Xalan Pmd

1 0.8
oo - UN
oo T 07— sp
0.8 s od 1S
o7t ——CP ’
0.6f 0.5
o
=05 = 0.4
=
0.4f 0.3
0.3f
0.2]
0.2r
01 01
0 0 A . . 0 . .
10* 10 10° 10* 10° ° 10 10° 10° ° 10’ 10°
Window Size [us] Window Size [us] Window Size [us]
Hsqldb Volano PseudoJBB
0.7, T T 0.9 T T 0.7, T T
0.85-
0.6/ - UN 0.6/
— SP 0.8f
H
o5 _ ¢p 075 0.5
0.7r
-04F 5 -04F
0.3f o6l 0.3f
0.2 0.55f 0.2
0.5p
0.1r 0.1r
0.45-
0 4 L 0.4 L L 0 L L L
10* 10° 10° 10’ 10° 10° 10° 10’ 10° 10° 10° 10’ 10° 10°
Window Size [us] Window Size [us] Window Size [us]

Figure 6. Minimum mutator utilization (MMU) curves for the minimum &p sizes for STW unbounded MC (UN), STW space-bounded
MC (SP) with the 10% bound, STW HotSpot compactor (HS), and/SJompressor (CP). Window size is in microseconds.

Chart Xalan Pmd
800 T T T 350 T T T T 1200 T T T T T
7001
300 o cp 10001
= 6001 T & HS =
E E 250+ —+— SP E. 800-
2 5001 2 —— UN 2
5 400 % 200 ‘s 600}
g g g
a 300r o o
o © 150F o 400t
o Q B o
2001
100/ T 200/
1001
‘ 3
00 1 3 4 5 6 7 8 9 50 1 2 3 4 5 6 7 8 9 O0 1 2 3 4 5 6 7 8 9
Parallel GC Threads Parallel GC Threads Parallel GC Threads
Hsqldb Volano PseudoJBB
10000 T T T 550 T T T T T T T T 3000 T T T T T
9000 5001
8000 450¢ 25007
Z 7000; Z 400} Z 2000
2 6000 & 3501 g
I F I
) 5000 2 3001) 1500
2 4000 Z 250 3
I3} I3} | © 1000
3 3000 8 200 3
2000 150 5001
1000f 100
0O 3 4 5 6 7 9 500 2 3 4 5 6 7 9 O0 1 2 3 4 5 6 8 9
Parallel GC Threads Parallel GC Threads Parallel GC Threads

Figure 7. Average (data points) and maximum (error bars) GC pausestforel-8 parallel GC threads and the minimum heap sizes for
STW unbounded MC (UN), STW space-bounded MC (SP) with the ho&td, STW HotSpot compactor (HS), and STW Compressor (CP).
We report average values across 3 runs.

Xalan Pmd

3.5 2.6, 3.5
2.4+
3t 3
2.2t
o25¢ g 7 a2
=] =] =3
3 g18 3
j=N j=N Q
(21 (/)1-67 201
1.4f
150 1.5¢
1.20
L1 = Baadce fread® ! 8 9 B 2 3 4 5 6 9 Yt 2 3 4 5 6 7 8 o
arallel GC Threads Parallel GC Threads Parallel GC Threads
Hsqldb Volano PseudoJBB
6 3.5 5.5
5.5 s
—— UN
50 al
4.5; SP
4.5t a = HS
—-- CP
o 4r o 2.5 =y
2 3 2350
3 351]]
=% o o 3
[Z2 [z [
2.5¢ 25
2+ 150 2
1.5F 1.5
) 2 7 8 9 B 7 8 9 R 8 9

3 4 5 6 3 4 5 6 3 4 5 6
Parallel GC Threads Parallel GC Threads Parallel GC Threads

Figure8. Scalability (unscaled speedup) for 1-8 parallel GC threfixksd workload, and the minimum heap sizes for STW unboud€d
(UN), STW space-bounded MC (SP) with the 10% bound, STW Hatt&pmpactor (HS), and STW Compressor (CP). Speedup is dechpu
for average GC pause times. Absolute average GC pause timesparted in Figure 7.

(a) Space overhead (b) Average pause times (c) Maximum pause times
8 300 — 350
T M el = 3000
ﬁzso £ cp
g9 2 O3 cP 2 250 B UN
s 1 uN 15 200 [uN E
£ 8 2 200f
g4t 3150 &
g Al Q 8 150
o 100 £
& ;‘f’ £ 100
2r 1 g H
1 H H I H “ 1 = sof
i A

0
Chart Xalan Pmd Hsqldb Volano JBB Chart Xalan Pmd Hsqldb Volano JBB Chart Xalan Pmd Hsqldb Volano JBB

Figure 9. GC statistics across the heap sizes for concurrent unbduM@(UN), and concurrent Compressor (CP): heap space cxerhe
(a), average pause times (b), and maximum pause times (@)s¥he same heap size ranges as in Figure 10.

45.2 Throughput up to 94% (Volano) and on average by 88%. Since concurrent CP

; ; bjects, it needs to update the pointers in the youdg an
In Figure 10, we present per-benchmark graphs, each of which MOVeS © ; .
shows execution time as a function of heap size (starting ftee permanent generations as part of its STW phase. Concurrént M
minimum heap size). For the minimum heap sizes, concurraht U does not need to do that and thus its STW pause is much shorter.

improves throughput by up to 52% (Xalan) and by 29% on average
(relative to the concurrent Compressor). 46 STW/Concurrent Tradeoffs
To lend insight into the tradeoffs associated with STW and-co
current compaction [5, 14, 20, 26], we compare STW UN with
concurrent UN, in terms of throughput, pause times, and ngmo
Figures 9(b) and 9(c) present average and maximum pause time footprint. Both compactors use the same STW parallel mgréin

for concurrent UN and concurrent CP. For each benchmark, we gorithm.

report the average value across the heap sizes. Note that met d Table 3 shows experimental results for our benchmarks. We
consider pauses imposed by concurrent marking here, ongeth report the minimum heap size in MB (columns 2 and 3), maximum
imposed by concurrent compaction. Compared to concurrént C pause time in ms (columns 4 and 5), and execution time in skscon
concurrent UN reduces average pause times by up to 96% @jolan (columns 6 and 7). Execution time and pause times are mehsure
and on average by 90%, while reducing maximum pause times by for the minimum heap size of concurrent UN (shown in column 3)

453 PauseTimes

4 Chart 4 Xalan 4 Pmd
26710 55010 ‘ : : ‘ g 10
2,55 5 1 o cP
7k
4.5- b

- 25f - —-CP - —= UN

£ E 4t] Eel

g 2.45r g —&— UN “E’

E E 350 1 £

T 24t = Ts

2 S 3r 1 2

3 2.35[3 3

@ @ 2.5 1 @ 4

w w w

2.3 2r 1 Q“E\\EV*E\‘ﬁggﬁ\\ﬁ\\ﬂ‘ﬁﬁ\\ﬁ'ga
3k
2.25¢ 18-)
35 40 45 50 55 60 30 40 50 60 70 80 90 35 40 45 50 55 60
Heap Size [MB] Heap Size [MB] Heap Size [MB]
x 10

IS

w
0
o

w
63}

Execution Time [s]
I
w

&)

Volano 10* Hsqldb 4 PseudoJBB

- CP -o- CP
= UN | ' = UN

45 50 5 65 70 f0 110 120 _130_ 150 160 170
8ap Size (MB] 1a39 size'fifey 120 130 140 170 180 190

Execution Time
Executiop Time [ms]
N
(4]

I
N

61

N
[N
N
~

150 160
Heap Size [MB]

Figure 10. Benchmark performance (execution time) across the heap &z concurrent unbounded MC (UN) and concurrent Compress
(CP). Error bars indicate the standard deviation acroses ru

Bench- | Min.Heap[MB] | Max.Pause[ms]| Exec.Time[s] Bench- | # System| GC Ti- System System
mark | SMC| CMC | SMC | CMC | SMC | CMC mark Calls me [ms] | Time [ms] | Time [%]
Chart 27 39 81.4 7.9 23.13 | 23.85 Chart 4358 3405 135 0.4
Xalan 31 37 66.3 6.2 15.64 | 24.62 Xalan 92796 8869 287.7 3.2
Pmd 31 37 160.4 | 11.2 | 22.44| 37.36 Pmd 26585 8319 82.4 1.0
Hsqldb | 100 108 n/a 39.7 | 9.43 | 12.03 Hsqldb 911 6818 2.8 0.0
\Volano | 33 48 n/a 2.1 60.25 | 61.07 Volano | 12514 19592 38.8 0.2
JBB 92 122 | 147.0| 24.1 | 23.63| 26.49 JBB 299953 | 41134 929.9 2.3

Table 3. Comparison of STW unbounded MC (SMC) and concur- Table 4. The cost of unmapping system calls in STW unbounded
rent unbounded MC (CMC). We report the minimum heap sizes, MC. We report the total number of thenap calls, total GC time,
maximum GC pause times, and execution times. Executiorstime total time spent in the system calls, and percentage of G€ tim
and pause times are obtained for the minimum heap size of CMC spent in the system calls. System time has been consetyative
(as it is bigger than the minimum heap size of SMC). The regbrt estimated using a serial micro-benchmark.

pause times correspond to compaction only (marking is eecll

1.2% of GC time in system calls. Note that this result is anenpp
This heap size is often much larger than the minimum heapo$ize bound as our micro-benchmark is not parallel.
STW UN - in some cases big enough to prevent STW UN from
any GC activity (we then report pause times as n/a). 4.8 Other Benchmarks

Concurrent GC trades pause times for throughput and heapThus far, we have only presented detailed experimentalfdaia

space. On average, relative to STW UN, concurrent UN resjuire subset of benchmarks that we have studied. For our in-deth a
28% more heap space and degrades throughput by 28%. Maximumysis we have selected standard, modern benchmarks whdee per
pause times (needed for compaction, not marking), howewer, mance is considerably affected by GC. Table 5 summarizesxthe

shorter for concurrent UN by 89% on average. perimental data obtained for the remaining deskside yitiénch-
47 U ina Overhead marks that we have investigated: Db (memory-resident datgb
: nmapping Overhea and Javac (Java compiler) from the SPECjvm (1998) suite [32]

We have evaluated the cost of theap system calls relative to GC ~ as well as Bloat (bytecode analyzer/optimizer), Fop (XStsea
time in STW UN. Table 4 presents per-benchmark data obtdored and formatter), and Lusearch (text search engine) from #@dpo
the minimum heap sizes. We report total number of systens,call (2006) suite [13].

total GC time, total system call time, and percentage of Gti In Table 5 we report results for both STW and concurrent UN
spent in system calls. We estimate the cost of a single unimgpp (slash-separated) in comparison to STW HS and STW/conuurre
system call using a separate micro-benchmark. Our plathereads CP. We report the minimum heap size for STW/concurrent UN

3.1s to performl0® unmapping calls. The length of the unmapped (column 2), space overhead for STW/concurrent UN (column 3)
region does not impact this cost. On average, STW UN spends and average pause time reduction in comparison to HS and CP

Bench- | Heap Si-| % Space % Avg. Pause
mark ze [MB] | Overhead| vs. HS vs. CP
Bloat 16/20 | 59/31 | 69.6 | 73.0/96.9

Fop 20/24 | 31/1.0| 57.3 | 68.8/91.6
Lusearch| 16/24 | 44/3.1| 626 | 73.7/97.2
Db 24732 | 0.8/05 | 47.6 | 66.7/94.2
Javac 2437 | 15.7/8.5| 56.1 | 68.8/80.8

Table 5. GC statistics for additional benchmarks using the min-
imum heap sizes. Slash delimits data for STW and concur-
rent MC. In subsequent columns, we report the minimum heap
size for STW/concurrent unbounded MC (2), space overhead fo
STW/concurrent unbounded MC (3), average pause time rieduct
for STW unbounded MC relative to STW HS (4) and STW Com-
pressor (5), and average pause time reduction for conc¢unren
bounded MC relative to concurrent Compressor (5).

(columns 4-5). Column 4 compares STW UN and STW HS. Col-
umn 5 compares STW UN with STW CP as well as concurrent UN
with concurrent CP.

For our additional benchmarks, on average, concurrent UN re

quires 36.5% more heap space than STW UN. Space overhead,

across these benchmarks, is 6% for STW UN and 3% for concur-
rent UN. Concurrent UN reduces average pause times by 92% com

pared to concurrent CP. STW UN reduces average pause times by

59% relative to STW HS and by 70% relative to STW CP.

5. Conclusions

We introduce the Mapping Collector (MC) which is a genenazio
parallel GC that supports both stop-the-world and conatiicem-
paction. MC coordinates with the underlying virtual memeys-
tem of the operating system and performs compaction inyiead
phase. Thus, MC is simpler and more efficient than stat&efart
compactors which require at least two phases. Unlike pusiyo
reported compactors, MC is a non-moving collector thatrizges
the level of indirection provided by virtual memory to colidate
free space into a single contiguous region. By doing so, Mibis
to avoid costly object copying and pointer adjustment. Tloéva-
tion for MC is the observation that unreachable objects énhtbap
tend to form clusters that can be effectively reclaimed agtanu-
larity of virtual pages. Space overhead imposed by MC isatéei
but modest in practice and can be bounded by relativelyqofat
fall-back to conventional, perfect compaction. MC is partarly
attractive for concurrent compaction as it does not reqgyirehro-
nization with the mutators and its space overhead is not lalgumo
in the light of heap over-provisioning.

We implement MC in the open-source HotSpot JVM and eval-
uate it experimentally on a multiprocessor using a rangeifef d
ferent benchmarks and metrics, including throughput, @éinses,
and scalability. We show that MC significantly outperforntste-
of-the-art, stop-the-world parallel compactors (the Coespor and
the HotSpot compactor), as well as the concurrent Comprefeso
the metrics and benchmarks that we investigate.

Acknowledgments

We thank the anonymous reviewers for providing insightfuine
ments on this paper. This work was funded in part by NSF grants
CCF-0444412, CNS-0546737, and CNS-0627183.

References

[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershteim eficient
parallel heap compaction algorithm. the ACM Conference on
Object-Oriented Systems, Languages and Applications, 2004.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrerdliection on
stock multiprocessorsACM S GPLAN Notices, 23(7):11-20, 1988.

[3] K. Barabash, O. Ben-Yitzhak, |. Goft, E. K. Kolodner, \kikehman,
Y. Ossia, A. Owshanko, and E. Petrank. A parallel, increalent
mostly concurrent garbage collector for served€M Transactions
on Programming Languages and Systems, 27(6):1097-1146, 2005.

[4] K. Barabash, Y. Ossia, and E. Petrank. Mostly concurgambage
collection revisited. Inthe ACM Conference on Object-Oriented
Systems, Languages and Applications, 2003.

[5] S. M. Blackburn and K. S. McKinley. Ulterior referenceuwsting:
Fast garbage collection without a long wait. the ACM Conference
on Object-Oriented Systems, Languages and Applications, 2003.

[6] H.-J. Boehm. Reducing garbage collector cache misseSedond
International Symposium on Memory Management, ACM SIGPLAN
Notices. ACM Press, 2000.

[7] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly pdrgiiebage
collection. ACM SIGPLAN Notices, 26(6), 1991.

[8] H.-J. Boehm and M. Weiser. Garbage collection in an upeoative
environment. Software Practice and Experience, 18(9):807—820,
1988.

[9] C. J. Cheney. A non-recursive list compacting algoritHBemmuni-
cations of the ACM, 13(11):677-8, Nov. 1970.

[10] P. Cheng and G. Blelloch. A parallel, real-time garbag#ector.
In the ACM Conference on Programming Languages Design and
Implementation, 2001.

[11] C. Click, G. Tene, and M. Wolf. The pauseless GC alganitin the
ACM Conference on Mirtual Execution Environments, 2005.

[12] J. Cohen and A. Nicolau. Comparison of compacting atlyors for
garbage collectionACM Transactions on Programming Languages
and Systems, 5(4):532-553, 1983.

[13] The DaCapo Benchmark Suitettp://dacapobench.org.

[14] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Gaybdirst
garbage collection. Ithe ACM International Symposium on Memory
Management, 2004.

[15] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallatbjge
collection for shared memory multiprocessors.tha USENIX Java
Virtual Machine Symposium, 2001.

[16] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski. Mista heap
sizing: Using feedback to avoid paging. tiie ACM Conference on
Code Generation and Optimization, 2007.

[17] M. Hertz, Y. Feng, and E. D. Berger. Garbage collectiathaut
paging. Inthe ACM Conference on Programming Languages Design
and Implementation, 2005.

[18] A. L. Hosking. Portable, mostly-concurrent and mostbpying
garbage collection for multi-processors. the ACM International
Symposium on Memory Management, 2004.

[19] HotSpot Virtual Machine Garbage Collectiohttp://java.sun.
com/javase/technologies/hotspot/gc/index. jsp.

[20] R. E. JonesGarbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, July 1996.

[21] H. Kermany and E. Petrank. The Compressor: Concurrent,
incremental and parallel compaction. tle ACM Conference on
Programming Languages Design and Implementation, 2006.

[22] D. Lea. A memory allocator, 199http://gee.cs.oswego.edu/
dl/html/malloc.html.
[23] Open Source J2SE Implementatidrttp: //openjdk. java.net.

[24] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. lkeihman,
and A. Owshanko. A parallel, incremental and concurrent GC f
servers. Irthe ACM Conference on Programming Languages Design
and Implementation, 2002.

[25] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concuatre
compaction for mark-sweep GC. lime ACM International

Symposium on Memory Management, 2004.

[26] T. Printezis and D. Detlefs. A generational mostly-cament
garbage collector. Ithe ACM International Symposium on Memory
Management, 2000.

[27] R. Rashid, A. Tevanian, M. Young, et al. Machine-indegent virtual
memory management for paged uniprocessor and multipracess
architectures. Inthe ACM Conference on Architectural Support for
Programming Languages and Operating Systems, 1987.

[28] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. A-non
fragmenting, non-moving garbage collectortha ACM International
Symposium on Memory Management, 1998.

[29] N. Sachindran and E. Moss. MarkCopy: Fast copying G® Vass
space overhead. the ACM Conference on Object-Oriented Systems,
Languages and Applications, 2003.

[30] K. Sagonas and J. Wilhelmsson. Mark and split. tha ACM
International Symposium on Memory Management, 2006.

[31] P. Sobalvarro. A lifetime-based garbage collectorfiep systems on
general-purpose computers. Technical Report AITR-1417T, M
Lab, Feb. 1988.

[32] The SPEC Benchmark&ttp://www.spec.org.

[33] D. M. Ungar. Generation scavenging: A non-disruptivighh
performance storage reclamation algoritht@M SIGPLAN Notices,
19(5):157-167, Apr. 1984.

[34] The VolanoMark Benchmark. http://www.volano.com/
benchmarks.html.

[35] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. &mwit
storage allocation: A survey and critical review. the I nternational
Workshop on Memory Management, 1995.

[36] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. Bgsl
Autonomic heap sizing: Taking real memory into account.thia
ACM International Symposium on Memory Management, 2004.

[37] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAM
Virtual memory support for garbage-collected applicatiorin the
ACM Conference on Operating Systems Design and Implementation,
2006.

[38] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. bagia.
Program-level adaptive memory managementthéhnACM Interna-
tional Symposium on Memory Management, 2006.

