
The Mapping Collector: Virtual Memory Support for
Generational, Parallel, and Concurrent Compaction

Michal Wegiel
Computer Science Department

University of California, Santa Barbara
mwegiel@cs.ucsb.edu

Chandra Krintz
Computer Science Department

University of California, Santa Barbara
ckrintz@cs.ucsb.edu

Abstract
Parallel and concurrent garbage collectors are increasingly em-
ployed by managed runtime environments (MREs) to maintain
scalability, as multi-core architectures and multi-threaded appli-
cations become pervasive. Moreover, state-of-the-art MREs com-
monly implement compaction to eliminate heap fragmentation and
enable fast linear object allocation.

Our empirical analysis of object demographics reveals thatun-
reachable objects in the heap tend to form clusters large enough to
be effectively managed at the granularity of virtual memorypages.
Even though processes can manipulate the mapping of the virtual
address space through the standard operating system (OS) inter-
face on most platforms, extant parallel/concurrent compactors do
not do so to exploit this clustering behavior and instead achieve
compaction by performing, relatively expensive, object moving and
pointer adjustment.

We introduce the Mapping Collector (MC), which leverages vir-
tual memory operations to reclaim and consolidate free space with-
out moving objects and updating pointers. MC is a nearly-single-
phase compactor that is simpler and more efficient than previously
reported compactors that comprise two to four phases. Through ef-
fective MRE-OS coordination, MC maintains the simplicity of a
non-moving collector while providing efficient parallel and con-
current compaction.

We implement both stop-the-world and concurrent MC in a
generational garbage collection framework within the open-source
HotSpot Java Virtual Machine. Our experimental evaluationusing
a multiprocessor indicates that MC significantly increasesthrough-
put and scalability as well as reduces pause times, relativeto state-
of-the-art, parallel and concurrent compactors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory Management (Garbage Collection);
D.4.2 [Operating Systems]: Storage Management—Virtual Mem-
ory

General Terms Algorithms, Languages, Performance

Keywords Virtual Memory, Compaction, Parallel, Concurrent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

1. Introduction
Modern systems are increasingly complex implementing multi-
layered software stacks and employing more and more processing
cores. These systems support a vast diversity of applications rang-
ing from multi-media and software development to web-services
and distributed gaming (among others). To extract high perfor-
mance from these systems, it is vital that the layers of the software
stack cooperate efficiently to make the most of the underlying hard-
ware resources. Two key layers common to most extant systems, in
support of these applications, are the operating system (OS) and
the managed runtime environment (MRE) – the popular execution
environment for portable, type-safe applications (e.g., those written
in Java or the .Net languages).

An MRE component that can significantly impact the perfor-
mance of applications and that has the potential for more intelligent
coordination between the MRE, operating system, and underlying
architecture, is memory management. Garbage collection (GC) in
MREs typically is multi-threaded (parallel) and/or concurrent [21]
to exploit increasing numbers of available processing cores, and
employs compaction to eliminate heap fragmentation to enable
fast object allocation [20]. Extant compacting GCs achievecom-
paction by moving live (reachable) objects. This involves copying,
which is increasingly expensive because of the growing processor-
memory performance gap, and can adversely impact application
performance [6].

To address this limitation and to improve the performance of
MRE systems, we investigate a new approach to parallel/concurrent,
compacting, garbage collection in which the MRE coordinates its
memory management efforts with the virtual memory system ofthe
underlying machine – to eliminate object copying altogether. Our
GC, to which we refer as the Mapping Collector (MC), exploitsthe
widely-known phenomenon that objects with similar lifetimes tend
to exhibit spatial locality in the heap [35]. In particular,we find
that dead objects often occur in large clusters. MC exploitsthis be-
havior to consolidate free space (compact the heap) throughvirtual
page mapping operations available via standard, cross-platform,
unprivileged, OS system calls. Such reclamation is simple to imple-
ment and does not require OS modification. Moreover, MC avoids
object copying and its associated costly memory operations, and
facilitates a very efficient GC implementation. To enable this, MC
trades off a small heap space overhead for fast, inexpensivecom-
paction. In practice, this space overhead is below 6% on average
and MC can additionally bound it by an infrequent fall-back to
state-of-the-art, perfect compaction based on object moving.

The contributions that we make herein include:

• The design and implementation of MC, a generational [20] GC
that supports both stop-the-world (STW) and concurrent com-
paction. We implement MC in the open-source HotSpot Java

Virtual Machine [23]. MC is applicable to both server systems
(which typically employ concurrent GC to reduce pause times
at the cost of resource over-provisioning [19]) and deskside sys-
tems (which tend to use STW GC because of its simplicity,
higher throughput, and more efficient use of the underlying re-
sources [19]).

• Virtual memory support for copy avoidance. Unlike previously
reported systems, MC employs virtual memory unmapping as
a primary and sole technique to implement STW/concurrent
compaction in a modern MRE. MC achieves the same effect
as object moving but avoids object copying and thus improves
GC performance while imposing a small space overhead.

• Reduction in the number of GC phases. MC is a nearly-single-
phase compactor while extant compacting GCs require at least
two phases. MC enables this by replacing object moving with
virtual page unmapping (whose cost is proportional to a live-
ness bitmap size that is approximately 3% of the heap size).

• An experimental evaluation of MC against both STW and con-
current state-of-the-art compacting GC systems. We empiri-
cally evaluate the throughput, pause times, and scalability of
MC and compare MC against the STW and concurrent versions
of the Compressor [21], and the production-quality, highly-opti-
mized parallel STW compacting GC currently available in the
HotSpot JVM. We evaluate MC on a multiprocessor system us-
ing a set of standard community benchmarks and find that MC
enables significant performance gains for these metrics.

Prior work on compaction has focused on both partial elim-
ination of object moving [14, 19] and reducing the number of
GC phases [21, 1, 15, 30]. MC leverages MRE-OS interaction
to improve over these approaches by eliminating copying alto-
gether. Virtual memory support for GC has been shown to be effec-
tive in other contexts including preventing collector-induced pag-
ing [16, 37, 38, 17, 36] and reducing the space overhead of copying
collection via page unmapping [21, 29].

In the next section, we overview the background and related
work. We then detail the design and implementation of MC (Sec-
tion 3), present the results of our empirical evaluation (Section 4),
and conclude in Section 5.

2. Background and Related Work
While most prior work on parallel/concurrent compaction has fo-
cused on virtual-memory-oblivious compactors, the interaction be-
tween the collector and virtual memory has recently gained inter-
est [21, 37, 17, 11]. Previously reported compactors achieve com-
paction by moving all (or some [14, 19, 11]) live objects and need at
least two phases. MC attempts to achieve compaction withoutany
object moving and is a nearly-single-phase compactor. Following
the methodology used in [21], we define a GC phase as an opera-
tion with cost proportional to the heap or live data size. Thefirst
phase in state-of-the-art compactors is marking [20] whichidenti-
fies live objects through parallel/concurrent tracing.

2.1 The Compressor

The Compressor [21] is a parallel compacting GC that requires two
phases: marking and compaction. It supports both stop-the-world
(STW) and concurrent collection. The Compressor (herein referred
to as CP) uses virtual memory operations (i.e., page mappingand
unmapping) but accomplishes compaction by moving live objects
and adjusting the pointers. The compaction is perfect (i.e., heap
fragmentation is fully eliminated). The compactor employstwo
virtual spaces and copies objects page by page from one spaceto
the other. CP, akin to a copying collector, always moves all objects.
It updates pointers after moving using information it has recorded

in auxiliary data structures (which include the block-offset array).
This process is accompanied by freeing pages in the source space
and allocating pages in the destination space. CP imposes a small
constant space overhead (1.5% for 256-byte blocks) for auxiliary
data structures. By contrast, MC performs compaction in nearly one
phase and eliminates object moving and pointer adjustment.MC
imposes a variable space overhead (on average<6%, which can
be bounded). Both compactors preserve object order. CP unmaps
and maps the entire heap each time the compaction is invoked.MC
limits the number of virtual memory operations to the numberof
dead-object clusters.

2.2 The HotSpot Compactor

The parallel compactor currently available in the HotSpot JVM [19]
(herein referred to as HS) is similar in spirit to the Compressor. HS
updates pointers in the same way but moves objects only when it is
necessary. HS is a STW virtual-memory-oblivious collectorwith
two phases: marking and compaction. HS divides the heap into
fixed-size regions (chunks) and uses a liveness bitmap to record
the locations of live objects. During marking, HS computes ad-
ditional per-chunk data needed for pointer adjustment. Thecom-
paction phase is parallel. Threads claim available regionsatomi-
cally and fill them with live objects. A region becomes available
when all its objects have been evacuated (it is empty) or it has been
compacted onto itself. HS updates interior object pointersas it fills
regions. Filling a region does not require synchronizationand in-
volves identifying source objects destined for the region and copy-
ing them until the region is full or no more objects are left. HS com-
putes a new location of a live object as the start of its destination
region plus the size of live objects that precede the object in that
region. HS performs perfect, sliding compaction and preserves the
object order. HS imposes a constant space overhead of 3% (needed
for per-region data that includes the current compaction state for
each region). The advantages of MC over HS are similar to those
over the Compressor: nearly one GC phase (instead of two) and
avoidance of object moving and pointer manipulation.

2.3 The IBM Compactor

The IBM collector [1] is a parallel STW compactor that com-
prises three phases: marking, object moving, and pointer fix-up.
This collector does not manipulate virtual memory mapping.It
does not guarantee perfect compaction and, therefore, imposes
an application-specific space overhead, similarly to MC. The sys-
tem divides the heap into fixed-size blocks. Initially, GC threads
perform intra-block compaction and proceed to inter-blockcom-
paction as free contiguous areas begin to appear in the already-
compacted blocks. In the moving phase, the system collects infor-
mation needed for pointer adjustment. In the final phase, thesystem
divides the heap into as many areas as there are GC threads, and
each thread redirects pointers in its own area. Pointer adjustment is
performed in a similar way as in the Compressor. In contrast,MC
neither moves objects nor updates pointers and is a nearly-single-
phase collector.

2.4 The Flood Compactor

The compactor presented by Flood et al. [15] is a parallel version
of the Lisp2 [20, 12] collector. This STW GC requires four phases:
marking, forwarding pointer installation, pointer adjustment, and
object moving. The heap is divided intop contiguous regions where
p is the number of parallel GC threads. The sliding direction alter-
nates between left and right for even and odd regions and as a re-
sult p

2
groups of objects are formed in the heap. Thus, free space is

consolidated only partially. This compactor uses forwarding point-
ers instead of the block-offset array and the mark-bit vector. Thus,
pointer updates are more efficient but one additional phase is nec-

essary. MC achieves higher-quality compaction (the free space is
mostly consolidated, no object groups are formed) in nearlyone
phase and without object moving and pointer adjustment.

2.5 The Pauseless GC

The Pauseless GC [11] is a parallel and concurrent compactorthat
avoids STW pauses through hardware read barriers, fast user-mode
trap handlers, an additional intermediate TLB privilege level, and
fast cooperative preemption via interrupts. The compactorconsists
of three phases, called mark, relocate, and remap, each of which is
parallel and concurrent. The mark phase periodically refreshes the
liveness bitmap. The relocate phase uses the most up-to-date live-
ness bitmap to find pages that contain few live objects, evacuates
live data from those pages, and frees the underlying physical mem-
ory. Pages with no live data are unmapped as in MC. Evacuated vir-
tual pages containing live objects are protected to triggertraps upon
access. The system maintains pointer-forwarding information out-
side of the evacuated pages, in side arrays (hash table), andimposes
variable, but small, space overhead. Mutators using stale pointers
raise traps which in turn update pointers to refer to new object lo-
cations. The remap phase traverses the object graph executing a
read barrier against each pointer to ensure the completeness of lazy
pointer forwarding and thus guarantees that all evacuated virtual
pages are eventually unmapped. The system performs the remap
phase concurrently with the mark phase of the next collection cy-
cle. Unlike the Pauseless GC, MC performs compaction in a nearly
one phase – marking, which can be implemented either as stop-the-
world or concurrent. MC does not require special hardware support,
never copies objects, and reclaims only completely free pages, all
of which significantly simplify implementation.

2.6 Memory Management with Virtual Memory Support

Recently proposed collectors that leverage virtual memoryeither
focus on copying, not on compaction (like MC), or aim at reduc-
ing heap space usage, not at avoiding object moving (like MC). For
example, MarkCopy [29] leverages virtual memory mapping tore-
duce the space overhead of a copying collector. The collector does
not require a copy reserve since it maps and unmaps consecutive
pages as copying progresses (in a way similar to that of the Com-
pressor [21]). Unlike MC, these approaches involve object moving.

Collectors that cooperate with the virtual memory manager to
reduce the collector-induced paging [16, 37, 17, 38, 36] areorthog-
onal and complementary to MC. The Bookmarking collector [17]
records summary information about outgoing pointers from evicted
pages to avoid accessing non-resident pages during full-heap com-
pacting collections. CRAMM [37] and IV heap sizing [16] use
VM paging behavior to predict and set dynamically an appropri-
ate, application-specific, heap size that adapts to changing memory
pressure.

The Boehm-Demers-Weiser [8] garbage collector is a mark-
sweep (non-compacting) collector for C/C++ which uses pageun-
mapping as an optional and supplementary mechanism to reduce
fragmentation. This collector is conservative (i.e., not all garbage
can be identified). Page unmapping in the context of conservative
GC for C/C++ has also been investigated in [28]. The proposedcol-
lector remaps virtual memory pages to reduce external fragmenta-
tion in a free list of large objects. In contrast, MC employs un-
mapping as a primary technique to achieve compaction and is the
first to do so among non-conservative (precise) collectors.Doug
Lee’s malloc library [22] uses mmap/munmap primitives for mem-
ory allocation/reclamation. This system, however, does not support
or provide garbage collection.

An alternative to STW collection is concurrent GC, commonly
employed for server systems, which interleaves application (muta-
tor) and GC execution via additional synchronization and resource

(memory and processor) over-provisioning, to reduce GC pause
times. The concurrent version of the Compressor [21], Garbage-
First collector [14], and mostly-concurrent mark-sweep [25] are
recent examples of concurrent GCs. Concurrent collectors com-
monly protect virtual pages in order to detect conflicts withmu-
tators and to exploit cache locality [21]. Extant systems support-
ing concurrent/parallel collection either do not attempt compaction
[26, 25, 24, 3, 4, 7] or move/copy live objects [21, 18, 10, 2, 14]. In
contrast, MC achieves compaction without object moving.

3. The Mapping Collector (MC)
MC exploits the widely-observed statistical property thatunreach-
able objects tend to cluster together [35] and form contiguous dead
regions in the heap. Our experimental analysis of modern Java pro-
grams (which we present in Section 4) confirms this property and
reveals that clusters of dead objects are often sufficientlylarge to
make their reclamation via virtual page unmapping practical.

Extant garbage collectors do not take advantage of the levelof
indirection offered by virtual memory and compact the heap by
moving objects and updating pointers. MC remaps the free space
into a contiguous region in a newly allocated area in virtualmem-
ory. This approach is simpler and more efficient than object copying
and pointer adjustment. It enables nearly-single-phase compaction,
while state-of-the-art compactors comprise at least two phases. In
addition to marking, MC requires only a single traversal over the
liveness bitmap (whose size is 3% of the heap).

To achieve portability, MC relies only on standard virtual mem-
ory operations [27], such as page mapping and unmapping, that are
available for (unprivileged) processes as part of an operating sys-
tem interface (system calls) on most modern platforms. We note
that it is not sufficient to rely on the OS paging mechanism to
swap out unreachable, never-accessed pages, and completely avoid
garbage collection. Periodic page unmapping is necessary to free
the associated OS resources (e.g., the swap space) – otherwise they
are not freed until program termination.

Since virtual page granularity is larger than the unit of alloca-
tion (most objects are small) and because of the page alignment
requirements of modern systems (e.g., 4KB in Linux), MC incurs
a certain heap space overhead, which we evaluate in detail herein.
We find that the size of the uncollected free space is modest in
most cases and can be bounded via an infrequent fall-back to per-
fect compaction (Section 3.4).

By remapping free space into a new area in virtual memory,
MC consumes increasingly more address space as subsequent com-
pactions occur. This phenomenon, however, is not a problem on
modern 64-bit architectures that have practically inexhaustible vir-
tual address space at their disposal.

Like most state-of-the-art compactors, MC is designed for a
tenured generation in a generational [33, 20] garbage collection
system. In the young generation, normally a copying collection
is used as it is more efficient than compaction if the expected
percentage of live objects is low. The cost of collecting thetenured
generation typically dominates GC performance.

The tenured generation contains objects with relatively long
lifetimes and the allocation rate in the tenured generationis rela-
tively low (compared to the young generation). Thus, the expected
rate at which new dead clusters appear is low and address space us-
age remains tolerable even on 32-bit architectures (which we have
verified experimentally).

MC consists of a single parallel marking phase (which imposes
the dominant cost of the collector) and a series of operations for
unmapping and updating auxiliary data structures. Unmapping oc-
curs immediately following marking and has a cost proportional to
the size of the liveness bitmap (which is approximately 3% ofthe
mapped heap size). Thus, MC is a nearly-single-phase compactor.

live objects

dead objects

after

marking

free free freefree

virtual pages

after

unmapping

Figure 1. Page-based free space reclamation in MC. Virtual pages fully contained in dead clusters are returned to the OS.

MC can be implemented as both STW and concurrent com-
pactor. During unmapping, MC does not access live objects atall,
and therefore can execute concurrently with the application without
the need for any synchronization. This significantly simplifies the
design – note that moving compactors require OS support to handle
concurrent mutations to the moved objects.

While STW compaction is triggered only upon heap space ex-
haustion, concurrent compaction is initiated early, when acertain
heap occupancy is reached (typically around 70%). This is neces-
sary to guarantee space for allocation while the compactionpro-
gresses in the background.

3.1 STW/Concurrent Marking

The marking phase identifies all reachable objects in the heap and
records the starting and ending words for each live object inthe
liveness bitmap. Both STW and concurrent marking can be used
with MC.

State-of-the-art STW parallel marking [15, 19] uses work
stealing for dynamic load balancing. The root set is assigned to
the marking GC threads in a round-robin fashion. Whenever a
thread becomes idle, it steals a group of references from another
(randomly-selected) thread. Each thread maintains a localmarking
stack (for depth-first search). To ensure that each live object is pro-
cessed exactly once, marking GC threads claim objects atomically.
GC threads coordinate marking termination via barrier synchro-
nization.

State-of-the-art concurrent parallel marking [26, 19] consists of
three sub-phases: STW initial marking, concurrent marking, and
STW final marking. Initial marking suspends mutators to record all
objects directly reachable from the roots. Concurrent marking re-
sumes mutators and marks a transitive closure of reachable objects.
Due to concurrent pointer updates some live objects might beleft
unmarked. Therefore, the algorithm keeps track of all pointer up-
dates by leveraging a card table mechanism of a generationalGC
system. Final marking suspends the mutators and repeats marking
from the roots treating modified pointers as additional roots. Final
marking is typically short as it skips the already-marked objects.
Each sub-phase can be executed by multiple parallel GC threads.

3.2 STW Unmapping

STW MC performs unmapping when the mutators are suspended.
The goal of the unmapping scan (which amounts to a traversal over
the liveness bitmap) is to return reclaimable pages to the OSand to
compute the total size of free space available in dead clusters.

MC performs the unmapping scan in parallel. Since the size of
the liveness bitmap is relatively small, we do not employ dynamic
load balancing. MC statically partitions the bitmap into nearly-
equal-sized chunks (as many as the number of GC threads). A
boundary between two adjacent chunks is the first word of a live
object. Thus, the subdivision does not hinder our ability todetect
regions suitable for unmapping. No synchronization is necessary
between the parallel threads since we divide the marking bitmap
between threads at live object boundaries and, as a result, no con-
flicts can occur.

MC invokes the unmapping system calls in parallel which is
more scalable than serialized unmapping, especially giventhat
pages returned to the OS by different GC threads belong to disjoint
virtual memory areas. OS kernels that support fine-grain locking
in the memory management subsystem can likely handle such
concurrency with little contention.

Figure 1 illustrates how MC reclaims free space on a virtual
page basis. The unmapping scan identifies unreachable regions
and unmaps their fragments that fully cover the underlying virtual
pages. Since MC does not move objects, the freed areas never
contract, and unmapped pages remain unused. The space overhead
tends to improve over time as small dead fragments scatteredacross
the heap assemble into larger clusters that MC can later unmap.

MC maintains a page bitmap to track heap pages that are cur-
rently unmapped. Its size is approximately 0.003% of the used ad-
dress space (1 bit per 4KB). Without this additional data structure,
the performance of long-running applications that exhibithigh ob-
ject turnover in the tenured generation may degrade. The unmap-
ping scan traverses over the liveness bitmap which has a sizeof
approximately 3% of the address space currently used by the heap.
This includes the unmapped areas. Therefore, to keep the cost of
the unmapping scan proportional to 3% of the heap size (not the
used address space), MC must distinguish between mapped and
unmapped regions. With this enhancement, MC can traverse (and
clear) the liveness bitmap only partially (skipping the unmapped re-
gions). In addition, this reduces the number of unmapping system
calls (as we do not unmap the same clusters multiple times).

Once the unmapping scan is complete, MC expands the heap
by the total size of the newly-discovered free space (not thetotal
size of the newly-unmapped pages) in the heap (to enable identical
behavior as and a fair comparison to perfect compacting collectors).
The space overhead of MC then, is the size of this expansion minus
the total size of the pages that MC has unmapped in the current
collection cycle.

3.3 Concurrent Unmapping

In concurrent MC, unmapping takes places after resuming themu-
tator threads. MC first traverses over the liveness bitmap, finds dead
clusters (their addresses and sizes are stored in the cluster array),
and clears the bitmap. During the bitmap traversal, MC also com-
putes a new object-start array, necessary in a generationalGC sys-
tem to locate the first object on any 512-byte card during the young
generation collection [31]. Since these activities are performed con-
currently to mutators, a young-generation GC might take place in
the background (two collectors may execute at the same time).
Therefore, MC must compute the object-start array using a sepa-
rate (shadow) array. This translates to 0.2% space overhead(1 byte
per 512 bytes). Next, MC suspends the mutators, and finishes the
computation of the shadow array. Note that during the concurrent
pass over the bitmap, new allocations might have taken placein
the old generation. These new objects need to be taken into ac-
count when generating the shadow array. While the mutators are
stopped, MC switches to the new shadow array and inserts filler
objects into dead clusters. Card table entries (dirty/clean cards) are
left intact (as no object moves). In addition, MC computes the new

size of free space and resizes the heap accordingly (by the total size
of the newly-discovered free space). Finally, the mutatorsare re-
sumed, and free clusters are unmapped concurrently. Thus, there is
one STW sub-phase and two concurrent sub-phases. Auxiliarydata
structures used by concurrent MC (the cluster array and the shadow
array) impose additional space overhead. However, this overhead is
small in practice, and, as we discuss later, is not an issue given that
concurrent GC needs significantly over-provisioned heaps.

3.4 Bounding Space Overhead

STW MC supports space-bounded collection by falling back to
perfect compaction in cases when unmapping fails to reclaima
sufficient amount of free space. In case of concurrent MC, there
is no need for bounding the space overhead as concurrent MC
requires significantly more heap space than STW MC (much more
than the imposed space overhead). This is because concurrent GC
trades pause times for space and throughput (Section 4.6).

STW MC evaluates whether to perform a fall-back after STW
parallel unmapping. In most state-of-the-art parallel compactors,
(including MC, HS, and CP), a liveness bitmap is the interface
that bridges marking and the subsequent phases. Therefore,MC
can directly proceed to the second phase of a conventional moving
compactor without any additional processing, once it determines
that a fall-back is needed.

Our current MC fall-back is the STW Compressor. The com-
paction phase of the Compressor is described in Section 2.1.An
alternative solution is a fall-back to the HotSpot compactor, but
STW CP imposes a smaller space overhead and is simpler. The
space-bounded MC uses two mutually-distant areas in the address
space, one of which is active (and mapped) at any given point in
time. The non-moving unmapping-based compaction always takes
place in the currently active space. If a fall-back is needed, then
all objects from the active space are moved to the other spaceand
the roles of the two spaces are flipped (as in the Compressor).The
time overhead imposed by a fall-back is the unmapping scan (the
moving compaction does not benefit from this scan) and includes
bitmap traversal, unmapping, filler object insertion, and object-start
array computation.

3.5 Implementation Details

We have implemented STW MC (the unbounded and the space-
bounded variant), concurrent MC, and the STW/concurrent Com-
pressor in HotSpot [23], an open-source (GPL) high-performance
Java Virtual Machine available from Sun Microsystems and writ-
ten in C/C++ (source code released on 3/21/2007). The HotSpot
JVM uses a generational [33] heap layout that comprises the per-
manent, tenured (old), and young generation. The young generation
is further subdivided into eden and two equal-sized survivor spaces
(called from-space and to-space). The permanent generation con-
tains run-time meta-data for the loaded classes. The systemallo-
cates objects initially in the eden (if their size precludeseden allo-
cation, it allocates them directly in the tenured generation). Upon
space exhaustion in the eden, a copying collector [9, 15] (called
the scavenger) performs a minor collection. The scavenger evac-
uates live objects from the eden-space and from-space to theto-
space, and promotes objects that survive several minor collections
(or those that do not fit into the to-space) to the tenured genera-
tion. The roles of the survivor spaces exchange after each minor
collection. When space in the tenured generation is exhausted, a
major collection (compaction) takes place. The parallel STW com-
pactor currently available in HotSpot is described in Section 2.2.
GC threads in HS are schedulable kernel threads. HotSpot assigns
each generation a contiguous region in the virtual address space
and maps only the currently used portion.

class lengthheader unmapped

1st

word

2nd

word

3rd

word

page

alignment

Figure 2. The format of a filler object. First three words form the
header of an array object. The page-aligned part of the rest of the
cluster is subject to unmapping.

We implement STW/concurrent MC as a parallel compactor in
the tenured generation. Both STW and concurrent MC use STW
parallel marking. We reuse and simplify (MC does not require
per-chunk summary data) the marking phase of the STW parallel
HotSpot compactor. We increase the distance between generations
in virtual memory to reserve address space for page remapping.

MC compacts the young generation (which is much smaller than
the tenured generation) by object moving and pointer adjustment.
This compaction, however, is not part of the major collection. It
takes place as an epilogue of a failed minor collection. Conse-
quently, MC does not need to update any pointers during major
collections (unlike HS and CP).

Since the scavenger uses a card table to find roots during mi-
nor collections, the unmapping scan in MC must compute an offset
of the first live object for each 512-byte card (the object-start ar-
ray). This additional processing is concomitant to the dead-cluster
unmapping and does not require a separate pass.

Free regions cannot be entirely unmapped as the scavenger must
be able to traverse (object by object) an arbitrary subspaceof the
tenured generation (in search for roots) during minor collections.
Therefore, we insert a filler object into every free area during each
unmapping scan. Figure 2 depicts the format of the filler object.
The type of a filler object is an integer array (int[]), to ensure that
there are no interior reference fields for the scavenger to follow.
Thus, each free region is reclaimable except for three wordsthat are
necessary for the header of a filler object. The minor GC treats filler
objects as if there are live, however, since they are unreachable,
the next major collection considers them to be garbage. Following
the HotSpot convention, we use a single system call (mmap) to
perform both mapping and unmapping (for the latter we employ
theMAP NORESERVE flag).

Concurrent MC requires a STW phase in order to atomically up-
date the object-start array, insert filler objects, and resize the heap.
We piggyback on the STW young generation collection to avoid
introducing additional expensive safepoints [19]. Young generation
GC is relatively frequent and a slightly-delayed STW phase is not
a problem in practice.

3.5.1 Generational Compressor

We extend the Compressor to support generational compaction, and
implement it in the tenured generation. The Compressor moves ob-
jects, therefore it needs to update the pointers in the youngand
permanent generations upon each compaction. We use 256-byte
blocks, as we have found them to be the best tradeoff between
space overhead and performance. The concurrent Compressorhas
two concurrent sub-phases, separated by a single STW sub-phase.
In the first sub-phase, the Compressor computes the block-offset ar-
ray (used for pointer forwarding) and the shadow object-start array.
In the STW sub-phase, the system updates the shadow object-start
array (to include new allocations) and sets it as the currentobject-
start array, invalidates card tables (because objects are moved), for-
wards pointers in the young generation and permanent generation,
protects heap pages and switches to the other semi-space. Inthe
third sub-phase, a concurrent thread reads subsequent pages (one

Benchmark Heap[MB] Time[s] GC[%] #GCs
Chart 27 25.79 13.21 16
Xalan 31 20.39 43.48 68
Pmd 31 29.54 28.16 26

Hsqldb 100 18.62 36.48 4
Volano 33 80.25 24.41 112
JBB 174 95.62 43.02 84

Table 1. GC statistics for the HotSpot compactor: the minimum
heap size, execution time, percentage of GC time relative toexe-
cution time, and the number of GCs. The measurements have been
obtained for the minimum heap size for each benchmark.

word per page to generate SEGV traps) to ensure that all the pages
are eventually moved, and clears the liveness bitmap.

4. Evaluation
We empirically evaluate 6 compactors: STW HotSpot, STW un-
bounded MC, STW space-bounded MC, concurrent unbounded
MC, STW Compressor, and concurrent Compressor. We compare
these GCs in two groups, one comprising 4 STW compactors
and the other comprising 2 concurrent compactors. In addition,
we compare STW MC with concurrent MC to investigate the
STW/concurrent tradeoffs.

Our experimental platform is an SMP with 4 processors each of
which is a 2-way SMT (the machine has 8 logical CPUs). Each
physical processor is a 32-bit Intel Xeon with 1MB of cache,
clocked at 1.6GHz. The machine is equipped with 7GB of main
memory and is running Linux Red Hat 3.4.6 with the 2.6.9 kernel.
The virtual page size is 4KB. We run HotSpot 7-ea-b10 compiled
with GCC 3.2.3 in the optimized client-compiler (C1) mode.

4.1 Benchmarks

We employ a diverse set of benchmarks with a wide range of
behaviors. These benchmarks include three multi-threadedserver
benchmarks: VolanoMark 2.5 [34], PseudoSPECjbb 2000 [32],and
Hsqldb from the DaCapo 2006 suite [13], and three deskside utili-
ties (from DaCapo 2006): Xalan, Chart, and Pmd. We list the basic
statistics for these benchmarks (i.e., the minimum heap size, total
execution time, total GC time, and the number of GCs), that we
obtain using the HotSpot compactor, in Table 1.

VolanoMark is a standard server benchmark derived from a
commercial chat server (VolanoChat), which simulates a multi-user
environment with multiple chat rooms. The benchmark exchanges
a given number of messages and reports execution time and com-
munication throughput. PseudoSPECjbb is a variant of SPECjbb
that executes a given number of transactions and reports execu-
tion time. The benchmark emulates a three-tier client-server sys-
tem (with emphasis on the middle tier) where clients are replaced
by driver threads and database storage by binary trees of objects.
Hsqldb is a relational SQL database management system that sup-
ports in-memory and disk-based data storage. DaCapo employs
Hsqldb to execute an in-memory benchmark that comprises a num-
ber of transactions against a model of a banking application. Xalan
transforms XML documents into HTML. Pmd analyzes a set of
Java classes for a range of source code problems. Chart plotsa
number of complex line graphs and renders them into a PDF file.

4.2 Methodology

Each of our experiments uses a fixed-size heap. We report total
heap size, which includes the young, old, and permanent genera-
tion. Total heap size does not include auxiliary data structures as
they are located outside of the heap. The young generation size
is 25% of the old generation. The permanent generation is 12MB

(HotSpot default). Explicit GC invocation and adaptive generation
resizing are disabled. We employ 4 parallel GC threads (except for
the scalability experiments where we use 1–8 threads). Survivor
spaces (from-space and to-space) occupy 33% of the young gen-
eration (the remaining space is used by the eden). For concurrent
MC/Compressor we start compaction when 65% of the old gener-
ation is used. Concurrent compaction uses a single concurrent GC
thread.

We repeat each measurement three times and report the average
result along with the standard deviation (error bars in the plots),
wherever appropriate. We employ the default input size for all
DaCapo benchmarks. VolanoMark is run with 44 chat rooms and
performs 100 iterations in the networked mode. The server and the
client are on the same machine. PseudoJBB is configured to execute
10

5 iterations against 8 (for STW GC) and 4 (for concurrent GC)
warehouses.

4.3 Clustering

Figure 3 shows CDFs for the sizes of clusters of dead objects for
the deskside benchmarks (a), server benchmarks (b), and across
the benchmarks (c). We report data obtained for the minimum heap
sizes using STW unbounded MC. Percentage of clusters greater
than 4KB (virtual page size) is 24% for Chart, 52% for Xalan,
38% for Pmd, 1% for Hsqldb, 5% for Volano, and 9% for JBB.
Fragmentation is higher in server benchmarks. MC achieves low
space overhead for these benchmarks by reclaiming relatively few
big clusters rather than many smaller ones. Average clustersize is
26KB, minimum cluster size is 28B, and maximum cluster size is
184MB.

4.4 STW Compactors

We compare STW unbounded MC (UN) and STW space-bounded
MC (SP) with STW Compressor (CP) and STW HotSpot (HS) in
terms of memory footprint, throughput, pause times, and scalabil-
ity. For SP, we employ the 10% space overhead bound in all ex-
periments. We also investigate the impact of other bounds onthe
fall-back frequency and average pause times.

4.4.1 Space Overhead

HS and CP impose a constant space overhead of 3% (for 2KB
chunks) and 1.5% (for 256B blocks), respectively. In MC, thespace
overhead is variable and application-specific (but can be bounded)
and depends on the degree of dead-object clustering in the heap.

The bar graph in Figure 4(a) shows space overhead imposed
by STW unbounded MC and STW space-bounded MC. For each
benchmark, we report the average value across the heap sizes. The
overhead is shown as a percentage of the heap size. On average, the
unbounded MC imposes 5.8% overhead while the space-bounded
MC (with the 10% bound) imposes 3.5% overhead.

4.4.2 Throughput

In Figure 5, we present per-benchmark graphs, each with fourper-
formance curves for a range of heap sizes. Each graph shows exe-
cution time as a function of heap size (starting from the minimum
heap size).

For the minimum heap sizes and relatively to HS, UN improves
throughput by up to 23.5% (Hsqldb) and by 13.3% on average.
For the minimum heap sizes and relatively to CP, UN improves
throughput by up to 42.1% (PseudoJBB) and by 23.3% on average.

For the minimum heap sizes and relatively to HS, SP improves
throughput by up to 22.7% (Hsqldb) and by 10.9% on average.
For the minimum heap sizes and relatively to CP, SP improves
throughput by up to 40.1% (PseudoJBB) and by 21.1% on average.

(a) Deskside benchmarks (b) Server benchmarks (c) Summary

10
2

10
4

10
6

10
80.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Chart
Xalan
Pmd

10
1

10
2

10
3

10
4

10
50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Hsqldb
Volano
JBB

10
1

10
2

10
3

10
4

10
5

10
6

10
70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Deskside
Server
All

Figure 3. Distribution of cluster sizes for the deskside benchmarks (a), server benchmarks (b) and across the benchmarks (c). We report a
CDF for each individual benchmark as well as summary CDFs forthe deskside, server, and all benchmarks.

(a) Space overhead (b) Average pause times (c) Maximum pause times

Chart Xalan Pmd Hsqldb Volano JBB
0

2

4

6

8

10

12

S
pa

ce
 O

ve
rh

ea
d

[%
]

 UN
 SP

Chart Xalan Pmd Hsqldb Volano JBB
0

500

1000

1500

2000

2500

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s] UN

SP
HS
CP

Chart Xalan Pmd Hsqldb Volano JBB
0

500

1000

1500

2000

2500

3000

M
ax

im
um

 G
C

 P
au

se
 T

im
e

[m
s]

UN
SP
HS
CP

Figure 4. GC statistics across the heap sizes for STW unbounded MC (UN), STW space-bounded MC (SP) with the 10% bound, STW
HotSpot compactor (HS), and STW Compressor (CP): heap spaceoverhead (a), average pause times (b), and maximum pause times (c).

26 28 30 32 34 36 38 40 42 44

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75x 10
4 Chart

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

30 32.5 35 37.5 40 42.5 45 47.5 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3x 10
4 Xalan

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

30 32 34 36 38 40 42 44 46 48

2.2

2.4

2.6

2.8

3

3.2x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Pmd

CP

HS

SP

UN

32 34 36 38 40 42 44

60

65

70

75

80

85

90

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[s
]

Volano

CP

HS

SP

UN

98 100 102 104 106 108 110 112 114

1

1.2

1.4

1.6

1.8

2

2.2

2.4x 10
4 Hsqldb

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

172 174 176 178 180 182 184 186 188 190

4

6

8

10

12

14x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

PseudoJBB

CP

HS

SP

UN

Figure 5. Benchmark performance (execution time) across the heap sizes for STW unbounded MC (UN), STW space-bounded MC (SP)
with the 10% bound, STW HotSpot compactor (HS), and STW Compressor (CP). Error bars indicate the standard deviation across 3 runs.

4.4.3 Pause Times

Figures 4(b) and 4(c) present average and maximum pause times
for UN, SP, HS, and CP. For each benchmark, we report the average
value across the heap sizes.

Compared to HS, UN reduces average (maximum) pause times
by up to 69.7% (78.7%) and on average by 63.4% (68.4%). Com-
pared to CP, UN reduces average (maximum) pause times by up
to 73.8% (74.4%) and on average by 66.8% (67.5%). Compared to
HS, SP reduces average (maximum) pause times by up to 67.8%
(76.4%) and on average by 49.3% (31.4%). Compared to CP, SP
reduces average (maximum) pause times by up to 72.2% (71.7%)
and on average by 53.9% (31.5%).

A commonly-employed metric for the evaluation of collector-
imposed pauses are minimal mutator utilization (MMU) curves
[10] that lend insight into the distribution of GC pauses across pro-
gram execution. Mutator utilization for a given time windoww is
defined as the fraction of the time that the mutator (as opposed to
the collector) executes within the windoww. Minimum mutator
utilization for a window of a specific sizes is the lowest mutator
utilization for all time windows of sizes across the program ex-
ecution. Thus, the x-intercept of a MMU curve is the maximum
pause time and the asymptotic y-value corresponds to the appli-
cation throughput. As shown in Figure 6, UN achieves the high-
est MMU for all window sizes across all benchmarks and attains
non-zero utilization for windows shorter than SP, HS, and CP. SP
achieves better or the same utilization as HS and CP for all bench-
marks. Since SP falls back to CP, its maximum pause time is often
similar to CP. HS achieves better or comparable utilizationas CP.

Figure 7 compares average (data points) and maximum (error
bars) pause times for UN, SP, HS, and CP. For these experiments,
we vary the number of parallel GC threads for a fixed heap size
(we use the minimum heap sizes). Both UN and SP consistently
decrease pause times relative to HS and CP, independent of the
number of parallel GC threads. For 1 GC thread, UN reduces
pauses on average by 49% relative to HS and by 61% relative to
CP, while SP reduces pauses on average by 44% relative to HS and
by 56% relative to CP. For 4 GC threads, UN reduces pauses on
average by 61% relative to HS and by 66% relative to CP, while
SP reduces pauses on average by 51% relative to HS and by 57%
relative to CP. Finally, for 8 GC threads, UN reduces pauses on
average by 65% relative to HS and by 66% relative to CP, while
SP reduces pauses on average by 54% relative to HS and by 54%
relative to CP.

4.4.4 Scalability

Our experimental platform has four 2-way SMT processors virtual-
ized by the operating system as 8 logical CPUs. We investigate the
scalability (speedup) of UN, SP, HS, and CP in the context of both
multi-processing and multi-threading parallelism. We measure the
unscaled speedup – we apply an increasing number of GC threads
(from 1 through 8) to a fixed-size workload and the minimum heap
for each benchmark. We compute the speedup forp threads as a
ratio of the average GC pause time for1 thread and forp threads.

As shown in Figure 8, server benchmarks scale better (e.g.,
Hsqldb/UN achieves 5.9 speedup while the maximum for deskside
benchmarks is 3.4 for Chart/UN). HS has the worst scalability be-
cause it computes per-chunk statistics during marking, which en-
tails more synchronization. The plots in Figure 7 provide absolute
average GC pause times from which the speedup graphs have been
derived.

When considering only multi-processing parallelism (4 GC
threads), the speedup averages at 2.86 for UN, 2.6 for SP, 2.22
for HS, and 2.49 for CP. Thus, UN improves speedup by 30% rel-
ative to HS and by 15% relative to CP, while SP improves speedup
by 17% relative to HS and by 4% relative to CP.

Bound [%] 2 5 7 10 15 20
Benchmark Fall-back frequency [%]

Chart 12.8 0.0 0.0 0.0 0.0 0.0
Xalan 99.6 32.6 16.4 5.7 1.5 0.4
Pmd 6.6 3.9 4.2 4.1 4.1 0.0

Hsqldb 0.0 0.0 0.0 0.0 0.0 0.0
Volano 1.0 0.0 0.0 0.0 0.0 0.0
JBB 4.3 2.3 1.6 1.2 0.0 0.0

Compactor Avg. Pause Decrease [%]
STW CP 62.6 64.7 65.2 65.1 65.2 66.1
STW HS 53.2 55.8 56.4 56.3 56.4 57.5

Compactor Avg. Pause Increase [%]
STW UN 26.8 22.5 21.4 21.5 21.4 19.4

Table 2. GC statistics for STW space-bounded MC for different
space bounds obtained using the minimum heap sizes. The firstpart
shows fall-back frequency (percentage of GCs with a fall-back).
The second part shows percentage decrease in average GC pause
times relative to STW Compressor (CP) and STW HotSpot (HS).
The third part shows percentage increase in average GC pausetimes
relative to STW unbounded MC (UN).

When multi-threading is taken into account (8 GC threads), the
speedup averages at 3.75 for UN, 3.19 for SP, 2.56 for HS, and 3.03
for CP. Thus, UN improves speedup by 47% relative to HS and by
23% relative to CP, while SP improves speedup by 23% relativeto
HS and by 3% relative to CP.

4.4.5 Fall-Back Rate

SP falls back to CP if excessive fragmentation in the heap makes it
impossible to reclaim a satisfactory fraction of free space. Table 2
shows the rate of fall-back to perfect compaction that is necessary
to guarantee a specific space overhead bound (2% to 20%). We
express this rate as the percentage of GCs that need to fall back to
conventional moving compaction to keep the space overhead below
a given threshold.

The fall-back statistics for the minimum heap sizes indicate that
even for tight bounds, relatively infrequent fall-back is necessary.
For instance, in order to achieve 5% bound, on average, 6.5%
collections need to trigger a fall-back (for 7% bound it is 3.7% and
for 10% bound it is 1.8%). In addition, we have measured average
GC pause times for different space bounds. The results for UN
and SP, reported in Table 2, indicate that the space-boundedMC
reduces pauses significantly relative to HS and CP (for all bounds
that we investigate), and increases average pause times by around
20% compared to the unbounded MC.

4.5 Concurrent Compactors

Next, we compare concurrent unbounded MC (UN) and concurrent
Compressor (CP) in terms of memory footprint, throughput, and
pause times.

4.5.1 Space Overhead

Concurrent collection requires heap space over-provisioning to
avoid the situation when allocators exhaust the heap beforethe
ongoing background collection is complete. Therefore, space over-
head is less of a problem in concurrent MC than in STW MC.
Figure 9(a) shows space overhead (as a heap percentage) averaged
across the heap sizes. As explained earlier, CP has a constant space
overhead of 1.5%. Across the benchmarks, the space overheadof
concurrent UN averages at 4.1%. Note that concurrent UN requires
about 28% more heap space than STW UN (Section 4.6). Thus,
bounding space overhead in concurrent MC does not seem neces-
sary/practical.

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window Size [us]

M
M

U

Chart

UN
SP
HS
CP

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window Size [us]

M
M

U

Xalan

UN
SP
HS
CP

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Window Size [us]

M
M

U

Pmd

UN
SP
HS
CP

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Window Size [us]

M
M

U

Hsqldb

UN
SP
HS
CP

10
5

10
6

10
7

10
80.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Window Size [us]

M
M

U
Volano

UN
SP
HS
CP

10
5

10
6

10
7

10
8

10
90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Window Size [us]

M
M

U

PseudoJBB

UN
SP
HS
CP

Figure 6. Minimum mutator utilization (MMU) curves for the minimum heap sizes for STW unbounded MC (UN), STW space-bounded
MC (SP) with the 10% bound, STW HotSpot compactor (HS), and STW Compressor (CP). Window size is in microseconds.

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Chart

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Xalan

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Pmd

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Hsqldb

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

500

550

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Volano

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

PseudoJBB

CP
HS
SP
UN

Figure 7. Average (data points) and maximum (error bars) GC pause times for 1–8 parallel GC threads and the minimum heap sizes for
STW unbounded MC (UN), STW space-bounded MC (SP) with the 10%bound, STW HotSpot compactor (HS), and STW Compressor (CP).
We report average values across 3 runs.

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Chart

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Parallel GC Threads

S
pe

ed
up

Xalan

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Pmd

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Parallel GC Threads

S
pe

ed
up

Hsqldb

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Volano

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Parallel GC Threads

S
pe

ed
up

PseudoJBB

UN
SP
HS
CP

Figure 8. Scalability (unscaled speedup) for 1–8 parallel GC threads, fixed workload, and the minimum heap sizes for STW unboundedMC
(UN), STW space-bounded MC (SP) with the 10% bound, STW HotSpot compactor (HS), and STW Compressor (CP). Speedup is computed
for average GC pause times. Absolute average GC pause times are reported in Figure 7.

(a) Space overhead (b) Average pause times (c) Maximum pause times

Chart Xalan Pmd Hsqldb Volano JBB
0

1

2

3

4

5

6

7

8

S
pa

ce
 O

ve
rh

ea
d

[%
]

 UN

Chart Xalan Pmd Hsqldb Volano JBB
0

50

100

150

200

250

300

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s]

CP
UN

Chart Xalan Pmd Hsqldb Volano JBB
0

50

100

150

200

250

300

350

M
ax

im
um

 G
C

 P
au

se
 T

im
e

[m
s]

CP
UN

Figure 9. GC statistics across the heap sizes for concurrent unbounded MC (UN), and concurrent Compressor (CP): heap space overhead
(a), average pause times (b), and maximum pause times (c). Weuse the same heap size ranges as in Figure 10.

4.5.2 Throughput

In Figure 10, we present per-benchmark graphs, each of which
shows execution time as a function of heap size (starting from the
minimum heap size). For the minimum heap sizes, concurrent UN
improves throughput by up to 52% (Xalan) and by 29% on average
(relative to the concurrent Compressor).

4.5.3 Pause Times

Figures 9(b) and 9(c) present average and maximum pause times
for concurrent UN and concurrent CP. For each benchmark, we
report the average value across the heap sizes. Note that we do not
consider pauses imposed by concurrent marking here, only those
imposed by concurrent compaction. Compared to concurrent CP,
concurrent UN reduces average pause times by up to 96% (Volano)
and on average by 90%, while reducing maximum pause times by

up to 94% (Volano) and on average by 88%. Since concurrent CP
moves objects, it needs to update the pointers in the young and
permanent generations as part of its STW phase. Concurrent MC
does not need to do that and thus its STW pause is much shorter.

4.6 STW/Concurrent Tradeoffs

To lend insight into the tradeoffs associated with STW and con-
current compaction [5, 14, 20, 26], we compare STW UN with
concurrent UN, in terms of throughput, pause times, and memory
footprint. Both compactors use the same STW parallel marking al-
gorithm.

Table 3 shows experimental results for our benchmarks. We
report the minimum heap size in MB (columns 2 and 3), maximum
pause time in ms (columns 4 and 5), and execution time in seconds
(columns 6 and 7). Execution time and pause times are measured
for the minimum heap size of concurrent UN (shown in column 3).

35 40 45 50 55 60

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Chart

CP

UN

30 40 50 60 70 80 90

1.5

2

2.5

3

3.5

4

4.5

5

5.5x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Xalan

CP

UN

35 40 45 50 55 60

3

4

5

6

7

8x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Pmd

CP

UN

45 50 55 60 65 70

60

61

62

63

64

65

66

67

68

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[s
]

Volano

CP

UN

100 110 120 130 140 150 160 170
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Hsqldb

CP

UN

120 130 140 150 160 170 180 190

2.7

3

3.25

3.5

3.75

4x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

PseudoJBB

CP

UN

Figure 10. Benchmark performance (execution time) across the heap sizes for concurrent unbounded MC (UN) and concurrent Compressor
(CP). Error bars indicate the standard deviation across 3 runs.

Bench- Min.Heap[MB] Max.Pause[ms] Exec.Time[s]
mark SMC CMC SMC CMC SMC CMC
Chart 27 39 81.4 7.9 23.13 23.85
Xalan 31 37 66.3 6.2 15.64 24.62
Pmd 31 37 160.4 11.2 22.44 37.36

Hsqldb 100 108 n/a 39.7 9.43 12.03
Volano 33 48 n/a 2.1 60.25 61.07
JBB 92 122 147.0 24.1 23.63 26.49

Table 3. Comparison of STW unbounded MC (SMC) and concur-
rent unbounded MC (CMC). We report the minimum heap sizes,
maximum GC pause times, and execution times. Execution times
and pause times are obtained for the minimum heap size of CMC
(as it is bigger than the minimum heap size of SMC). The reported
pause times correspond to compaction only (marking is excluded).

This heap size is often much larger than the minimum heap sizeof
STW UN – in some cases big enough to prevent STW UN from
any GC activity (we then report pause times as n/a).

Concurrent GC trades pause times for throughput and heap
space. On average, relative to STW UN, concurrent UN requires
28% more heap space and degrades throughput by 28%. Maximum
pause times (needed for compaction, not marking), however,are
shorter for concurrent UN by 89% on average.

4.7 Unmapping Overhead

We have evaluated the cost of themmap system calls relative to GC
time in STW UN. Table 4 presents per-benchmark data obtainedfor
the minimum heap sizes. We report total number of system calls,
total GC time, total system call time, and percentage of GC time
spent in system calls. We estimate the cost of a single unmapping
system call using a separate micro-benchmark. Our platformneeds
3.1s to perform10

6 unmapping calls. The length of the unmapped
region does not impact this cost. On average, STW UN spends

Bench- # System GC Ti- System System
mark Calls me [ms] Time [ms] Time [%]
Chart 4358 3405 13.5 0.4
Xalan 92796 8869 287.7 3.2
Pmd 26585 8319 82.4 1.0

Hsqldb 911 6818 2.8 0.0
Volano 12514 19592 38.8 0.2
JBB 299953 41134 929.9 2.3

Table 4. The cost of unmapping system calls in STW unbounded
MC. We report the total number of themmap calls, total GC time,
total time spent in the system calls, and percentage of GC time
spent in the system calls. System time has been conservatively
estimated using a serial micro-benchmark.

1.2% of GC time in system calls. Note that this result is an upper
bound as our micro-benchmark is not parallel.

4.8 Other Benchmarks

Thus far, we have only presented detailed experimental datafor a
subset of benchmarks that we have studied. For our in-depth anal-
ysis we have selected standard, modern benchmarks whose perfor-
mance is considerably affected by GC. Table 5 summarizes theex-
perimental data obtained for the remaining deskside utility bench-
marks that we have investigated: Db (memory-resident database)
and Javac (Java compiler) from the SPECjvm (1998) suite [32]
as well as Bloat (bytecode analyzer/optimizer), Fop (XSL parser
and formatter), and Lusearch (text search engine) from the DaCapo
(2006) suite [13].

In Table 5 we report results for both STW and concurrent UN
(slash-separated) in comparison to STW HS and STW/concurrent
CP. We report the minimum heap size for STW/concurrent UN
(column 2), space overhead for STW/concurrent UN (column 3),
and average pause time reduction in comparison to HS and CP

Bench- Heap Si- % Space % Avg. Pause
mark ze [MB] Overhead vs. HS vs. CP
Bloat 16 / 20 5.9 / 3.1 69.6 73.0 / 96.9
Fop 20 / 24 3.1 / 1.0 57.3 68.8 / 91.6

Lusearch 16 / 24 4.4 / 3.1 62.6 73.7 / 97.2
Db 24 / 32 0.8 / 0.5 47.6 66.7 / 94.2

Javac 24 / 37 15.7 / 8.5 56.1 68.8 / 80.8

Table 5. GC statistics for additional benchmarks using the min-
imum heap sizes. Slash delimits data for STW and concur-
rent MC. In subsequent columns, we report the minimum heap
size for STW/concurrent unbounded MC (2), space overhead for
STW/concurrent unbounded MC (3), average pause time reduction
for STW unbounded MC relative to STW HS (4) and STW Com-
pressor (5), and average pause time reduction for concurrent un-
bounded MC relative to concurrent Compressor (5).

(columns 4–5). Column 4 compares STW UN and STW HS. Col-
umn 5 compares STW UN with STW CP as well as concurrent UN
with concurrent CP.

For our additional benchmarks, on average, concurrent UN re-
quires 36.5% more heap space than STW UN. Space overhead,
across these benchmarks, is 6% for STW UN and 3% for concur-
rent UN. Concurrent UN reduces average pause times by 92% com-
pared to concurrent CP. STW UN reduces average pause times by
59% relative to STW HS and by 70% relative to STW CP.

5. Conclusions
We introduce the Mapping Collector (MC) which is a generational,
parallel GC that supports both stop-the-world and concurrent com-
paction. MC coordinates with the underlying virtual memorysys-
tem of the operating system and performs compaction in nearly one
phase. Thus, MC is simpler and more efficient than state-of-the-art
compactors which require at least two phases. Unlike previously
reported compactors, MC is a non-moving collector that leverages
the level of indirection provided by virtual memory to consolidate
free space into a single contiguous region. By doing so, MC isable
to avoid costly object copying and pointer adjustment. The motiva-
tion for MC is the observation that unreachable objects in the heap
tend to form clusters that can be effectively reclaimed at the granu-
larity of virtual pages. Space overhead imposed by MC is variable
but modest in practice and can be bounded by relatively infrequent
fall-back to conventional, perfect compaction. MC is particularly
attractive for concurrent compaction as it does not requiresynchro-
nization with the mutators and its space overhead is not a problem
in the light of heap over-provisioning.

We implement MC in the open-source HotSpot JVM and eval-
uate it experimentally on a multiprocessor using a range of dif-
ferent benchmarks and metrics, including throughput, pause times,
and scalability. We show that MC significantly outperforms state-
of-the-art, stop-the-world parallel compactors (the Compressor and
the HotSpot compactor), as well as the concurrent Compressor, for
the metrics and benchmarks that we investigate.

Acknowledgments
We thank the anonymous reviewers for providing insightful com-
ments on this paper. This work was funded in part by NSF grants
CCF-0444412, CNS-0546737, and CNS-0627183.

References
[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient

parallel heap compaction algorithm. Inthe ACM Conference on
Object-Oriented Systems, Languages and Applications, 2004.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors.ACM SIGPLAN Notices, 23(7):11–20, 1988.

[3] K. Barabash, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman,
Y. Ossia, A. Owshanko, and E. Petrank. A parallel, incremental,
mostly concurrent garbage collector for servers.ACM Transactions
on Programming Languages and Systems, 27(6):1097–1146, 2005.

[4] K. Barabash, Y. Ossia, and E. Petrank. Mostly concurrentgarbage
collection revisited. Inthe ACM Conference on Object-Oriented
Systems, Languages and Applications, 2003.

[5] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. Inthe ACM Conference
on Object-Oriented Systems, Languages and Applications, 2003.

[6] H.-J. Boehm. Reducing garbage collector cache misses. In Second
International Symposium on Memory Management, ACM SIGPLAN
Notices. ACM Press, 2000.

[7] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage
collection. ACM SIGPLAN Notices, 26(6), 1991.

[8] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820,
1988.

[9] C. J. Cheney. A non-recursive list compacting algorithm. Communi-
cations of the ACM, 13(11):677–8, Nov. 1970.

[10] P. Cheng and G. Blelloch. A parallel, real-time garbagecollector.
In the ACM Conference on Programming Languages Design and
Implementation, 2001.

[11] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In the
ACM Conference on Virtual Execution Environments, 2005.

[12] J. Cohen and A. Nicolau. Comparison of compacting algorithms for
garbage collection.ACM Transactions on Programming Languages
and Systems, 5(4):532–553, 1983.

[13] The DaCapo Benchmark Suite.http://dacapobench.org.

[14] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first
garbage collection. Inthe ACM International Symposium on Memory
Management, 2004.

[15] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage
collection for shared memory multiprocessors. Inthe USENIX Java
Virtual Machine Symposium, 2001.

[16] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski. IslaVista heap
sizing: Using feedback to avoid paging. Inthe ACM Conference on
Code Generation and Optimization, 2007.

[17] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection without
paging. Inthe ACM Conference on Programming Languages Design
and Implementation, 2005.

[18] A. L. Hosking. Portable, mostly-concurrent and mostly-copying
garbage collection for multi-processors. Inthe ACM International
Symposium on Memory Management, 2004.

[19] HotSpot Virtual Machine Garbage Collection.http://java.sun.
com/javase/technologies/hotspot/gc/index.jsp.

[20] R. E. Jones.Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, July 1996.

[21] H. Kermany and E. Petrank. The Compressor: Concurrent,
incremental and parallel compaction. Inthe ACM Conference on
Programming Languages Design and Implementation, 2006.

[22] D. Lea. A memory allocator, 1997.http://gee.cs.oswego.edu/
dl/html/malloc.html.

[23] Open Source J2SE Implementation.http://openjdk.java.net.

[24] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman,
and A. Owshanko. A parallel, incremental and concurrent GC for
servers. Inthe ACM Conference on Programming Languages Design
and Implementation, 2002.

[25] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concurrent
compaction for mark-sweep GC. Inthe ACM International

Symposium on Memory Management, 2004.

[26] T. Printezis and D. Detlefs. A generational mostly-concurrent
garbage collector. Inthe ACM International Symposium on Memory
Management, 2000.

[27] R. Rashid, A. Tevanian, M. Young, et al. Machine-independent virtual
memory management for paged uniprocessor and multiprocessor
architectures. Inthe ACM Conference on Architectural Support for
Programming Languages and Operating Systems, 1987.

[28] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. A non-
fragmenting, non-moving garbage collector. Inthe ACM International
Symposium on Memory Management, 1998.

[29] N. Sachindran and E. Moss. MarkCopy: Fast copying GC with less
space overhead. Inthe ACM Conference on Object-Oriented Systems,
Languages and Applications, 2003.

[30] K. Sagonas and J. Wilhelmsson. Mark and split. Inthe ACM
International Symposium on Memory Management, 2006.

[31] P. Sobalvarro. A lifetime-based garbage collector forLisp systems on
general-purpose computers. Technical Report AITR-1417, MIT AI
Lab, Feb. 1988.

[32] The SPEC Benchmarks.http://www.spec.org.

[33] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm.ACM SIGPLAN Notices,
19(5):157–167, Apr. 1984.

[34] The VolanoMark Benchmark. http://www.volano.com/
benchmarks.html.

[35] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. Inthe International
Workshop on Memory Management, 1995.

[36] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. B. Moss.
Autonomic heap sizing: Taking real memory into account. Inthe
ACM International Symposium on Memory Management, 2004.

[37] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In the
ACM Conference on Operating Systems Design and Implementation,
2006.

[38] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara.
Program-level adaptive memory management. Inthe ACM Interna-
tional Symposium on Memory Management, 2006.

