
ALE: Awesome Likeable Enclaves
Aaron Bembenek

bembenek@g.harvard.edu
Lily Tsai

lilliantsai@college.harvard.edu
Ezra Zigmond

ezigmond@college.harvard.edu

I. INTRODUCTION

Our goal is to formally verify work begun by Gollamudi
and Chong, who introduce ImpE, a security-typed calculus
that models low-level imperative programs that can directly
use enclaves (a sort of private memory region), and provide
a translation from a higher-level, enclave-agnostic calculus,
ImpS, to ImpE [1]. Our project naturally falls into two parts:
proving that every well-typed program in ImpE is secure
against a range of low-level attackers, and proving that the
translation of a well-typed program written in ImpS results in
a well-typed ImpE program that enforces the security policies
of the source program.

A. ImpE Security

ImpE is a security-typed calculus that models direct access
to enclaves, a hardware mechanism that provides code and
memory isolation, to the effect that only code running in an
enclave can access the memory associated with that enclave.
This isolation guarantee holds even in respect to the operating
system kernel [2]. The typing rules of ImpE guarantee that a
well-typed ImpE program enforces its security policies in the
face of low-level attackers, including those that can arbitrarily
modify non-enclave code and, in some cases, even modify
enclave code.

The only input to an ImpE program is its initial memory.
Thus, all sensitive information is contained in the program’s
initial memory. A security policy is expressed by assigning
each location in the initial memory a security level (low or
high). The program can perform operations on values in the
initial memory, and output the results of these computations to
a channel with a given security level (low or high). A program
can also declassify a computation result, so that even if the
inputs to the computation are from locations at high security
levels, the result of the computation can be released on a low
channel.

An attacker with security level low can only observe output
results on the low channel, and if the attacker is at the high
security level, she can observe events with security level low
or high. From the attacker’s observations, she can deduce a
set of initial memories upon which the program could execute
and produce the same output as what she observed. This set
of initial memories is called the attacker’s knowledge. The
smaller this set of possible initial memories, the more precisely
the attacker can define the actual contents of memory.

Security is defined as a lower bound on the attacker’s
knowledge. For example, say the attacker is at level low and
observes all outputs on the low channel. The program executes

with initial memory m0. For a program to be secure, the
attacker’s knowledge must include any memory m s.t.

1) m contains the same values as m0 at any locations with
a low security level.

2) m would have produced the same results as m0 for any
declassified computations.

Our proof that a program is secure at a given security
level follows the technique of Pottier and Simonet [3]. We
introduce ImpE2, a language that captures the execution of
an ImpE program under two different memories. We execute
the program in question using ImpE2 with an arbitrary m0

and a memory m satisfying the properties (1) and (2) above.
We show that m must also be in the attacker’s knowledge:
the attacker’s observations at the specified security level when
the program executes on m is the same as those when the
program executes on m0. Using this technique, we prove
the following three theorems about the security of well-typed
ImpE programs:

(* well-typed ImpE programs are secure
against a passive attacker *)

Lemma secure_passive : forall g G G’ K’ d c,
well_formed_spec g →
corresponds G g →
context_wt G d →
com_type (LevelP L) Normal G nil nil d c

G’ K’ →
secure_prog L g cstep estep c.

(* well-typed ImpE programs are secure
against an active attacker
who cannot modify enclave code *)

Lemma secure_n_chaos : forall g G G’ K’ d c,
well_formed_spec g →
corresponds G g →
context_wt G d →
com_type (LevelP L) Normal G nil nil d c

G’ K’ →
secure_prog L g cstep_n_chaos estep c.

(* well-typed ImpE programs are secure
against an active attacker
who can modify enclave code *)

Lemma secure_e_chaos : forall g G G’ K’ d c I,
well_formed_spec g →
corresponds G g →
context_wt G d →
com_type (LevelP L) Normal G nil nil d c G’ K’ →
secure_prog H (g_prime d g I)

(cstep_e_chaos I) estep c.

These three lemmas state the security guarantees of well-
typed ImpE programs for each of the three attacker-types we
model: purely passive attackers who observe the output trace



of the program, active attackers who can only modify non-
enclave code, and attackers who can modify any code. The
well_formed_spec, corresponds, and context_wt
hypotheses are preconditions to the typing judgment that
(intuitively) ensure that the initial security specification, mem-
ory specification, and typing context are well-formed and
make sense together. The com_type hypothesis is the typing
judgment for ImpE commands. Finally, the secure_prog
judgment corresponds to the definition of program security
presented earlier: an attacker cannot learn anything more about
the initial memories of a program than allowed by the security
policy g.

B. ImpS to ImpE Translation

ImpS is a security-typed calculus that is very similar to
ImpE, except that it is not enclave-aware. A well-typed ImpS
program enforces its policies against high-level (observational)
attackers, but is not secure against low-level attackers who
can modify program code or arbitrarily access the program’s
memory. Chong and Gollamudi provide a constraint-based
translation scheme from ImpS to ImpE that guarantees that
the resulting ImpE program is well-typed and enforces the
source program’s security policies even against these types of
low-level attackers.

For instance, consider the following ImpS program, where
the memory locations password and guess have high
security:

status := declassify(*password == *guess);
output status to Low

This program is secure against a passive attacker, who just ob-
serves whether the guess matches the password (an intentional
information leak). However, it is not secure against a low-
level attacker that can arbitrarily modify code. This attacker
could change the final line to output *password to
Low, revealing information that the attacker is not supposed
to learn. A translation of this program to ImpE would provide
security against this attack:

enclave(1, status :=
declassify(*password == *guess));

output status to Low

The translation places the memory locations password and
guess in enclave 1, which means that the program would
fault if the attacker modified the code to try to access
password outside of this particular enclave. The fault is
captured by the ImpE semantics, which does not allow an
enclave memory location to be referenced by code outside of
its enclave.

We anticipate that we will model Gollamudi and Chong’s
translation scheme as a propositional judgment. The alternative
would be to try to model their translation scheme as a compu-
tation that would take an ImpS program as input and output
an ImpE program, but this approach seems more challenging
and could potentially require constraint solving. A simplified
version of the ultimate theorem we hope to prove is:

Theorem translation_sound:
forall (c: imps_com) (g: imps_env)

(c’: impe_com) (g’: impe_env),
imps_well_typed c g →
translation c g c’ g’ →
impe_well_typed c’ g’.

II. SCHEDULE

• Apr 17: ImpE2 complete, prove secure passive.
• Apr 20: Translation code written, lemmas stated and

partially proven.
• Apr 24: ImpE2 for nchaos and echaos implemented,

working on proof for secure nchaos and secure chaos.
• Apr 27: All proofs drafted.
• May 1: Proofs finalized. Start writing paper.
• May 4: Draft of paper complete.
• May 8: DUE

III. DIVISION OF LABOR

We will do the laborious tasks in a divisive fashion. We see
the following as parts that can be implemented in parallel:

• Define ImpE2 for passive attacker and two active attack-
ers

• Security proofs using ImpE2 for all attacker models
• ImpS semantics/syntax, translation specification and

proof
We have divided up the semantics/typing judgments/syntax

implementation (currently, Aaron is working on the translation
and ImpS, and Lily and Ezra are working on defining and
proving ImpE2 for the passive attacker model). We believe that
collaborating on our proofs (at least at the beginning) will be
extremely helpful. Our paper will also be a joint collaborative
effort.

IV. RISKS AND FALLBACK PLAN

We have found that certain modeling decisions made in the
Gollamundi/Chong paper are not suitable for a Coq develop-
ment, or make it more difficult to prove the stated security
theorems. Furthermore, their proofs often rely on intuition,
and we foresee difficulties expressing these intuitions in Coq.

Our basic goal is to prove security against the passive
attacker, as well as the soundness of the translation. Given how
this proceeds, we will hopefully prove security against all three
attacker models. If we cannot reach our basic goal, our fallback
plan is to simplify the ImpE model (for example, allowing an
attacker to view the entire execution of the program rather
than simply a portion of it).

V. FUTURE WORK

Future work includes a computational, rather than proposi-
tional, implementation of the ImpS to ImpE translation, and
a computational type-checker for both ImpE and ImpS. We
would need to prove that these computational versions adhere
to our specification and therefore ensure the security properties
proven.

Far-future work includes verifying a security-aware com-
piler pass for CompCert that automatically inserts enclaves



with a given security policy. This is a large step from modeling
a simple calculus such as ImpE, and will require significantly
more complex modeling.

REFERENCES

[1] A. Gollamudi and S. Chong, “Automatic enforcement of expressive
security policies using enclaves,” in Proceedings of the 29th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Languages, Sys-
tems, Languages, and Applications. New York, NY, USA: ACM Press,
Oct. 2016.

[2] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, p. 86, 2016.

[3] F. Pottier and V. Simonet, “Information flow inference for ml,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 25, no. 1, pp. 117–158, 2003.


	Introduction
	ImpE Security
	ImpS to ImpE Translation

	Schedule
	Division of Labor
	Risks and Fallback Plan
	Future Work
	References

