
BrainCoqulus: A Formally Verified Optimizing Compiler of Lambda
Calculus to Brainfuck

Thomas Lively
Harvard University

Vı́ctor Domene
Harvard University

Gabriel Guimaraes
Harvard University

Abstract

We investigate compilation and verification tech-
niques for functional language compilers by devel-
oping and verifying a toy optimizing compiler from
the untyped lambda calculus to Brainfuck. Our key
optimization is provisional type inference, in which
the compiler guesses the latent type of a lambda
calculus subterm and produces optimized Brainfuck
code for that subterm, falling back on the naive slow
path code in contexts where that guess is incorrect.
Provisional type inference allows the compiler to be
extended with additional optimized Brainfuck im-
plementation of common idioms and data structures
with minimal additional verification burden.

1 Introduction

BrainCoqulus is a toy compiler from the lambda cal-
culus to Brainfuck composed of layered translations
between intermediate langauages, similar to other
formally verified compilers such as CompCert [1].
Unlike CompCert, however, BrainCoqulus’ source
language is functional, which creates a host of new
verification challenges.

We chose λ -calculus and Brainfuck as our source
and target languages so we could focus on the chal-
lenge of functional to imperative compilation with-
out getting bogged down by complex languages or
large instruction sets, and also because it sounded
fun. The result will be a fully functional, verified
compiler of a slightly modified untyped λ -calculus
to Brainfuck with verification-friendly semantics.

2 Verification Property

The trusted compute base of BrainCoqulus includes
the implementation of the reference interpreters that
serve as the specifications of the compiler’s input
and output languages. In both of these interpreters,
a program’s input and output are sequences of natu-
ral numbers. To simplify the correctness property
of the compiler, a program’s input is specified in
full before execution, i.e. the program is determin-
istic. In addition, the program is only considered
to have produced output if it terminates. The com-
piler makes no guarantees about the behavior of pro-
grams that do not terminate.

The λ -calculus used as the input language is the
untyped call-by-value λ -calculus with the addition
of an output operator, ∧, that generally behaves
identically to the identity function. The difference
is that when the output operator’s subterm is α-
equivalent to a Church numeral representing n, n is
appended to the output sequence. λ -calculus pro-
grams are lambda terms that are applied at execu-
tion time to the term encoding the input as a list of
Church numerals. 1

To reduce the the impedance mismatch between
the input and output languages as much as possi-
ble, we use an idealized version of the Brainfuck
semantics. While most Brainfuck interpreters use
fixed-size cells and many use fixed-size arrays, our
reference Brainfuck interpreter uses an infinite array

1It would be possible and in some ways more intuitive to
have lambda calculus programs evaluate to the encoded list
of Church numerals corresponding to their output, so we may
change to this model in the future. This would allow us to re-
move the non-standard output operator.



Theorem compile_correct :

forall (l : lambda) (input output : list nat),

(exists fuel, interpret_lambda l input fuel = Some output) =>

(exists fuel, interpret_bf (compile l) input fuel = Some output).

Figure 1: Theorem asserting correctness of the compilation process

of natural numbers, or in other words it represents
memory as a function N→ N.

Since both reference interpreters serve as the full
specifications of their respective languages, they are
implemented in Coq. As such, both are required to
provably terminate. Since it is possible to write di-
vergent programs in both λ -calculus and Brainfuck,
we introduce a fuel argument to the interpreter func-
tions. On each step of the interpreter, the fuel argu-
ment is decreased, and if it reaches zero the inter-
preter stops and the execution is considered unfin-
ished. Given any λ -calculus or Brainfuck program
and an input, there exists some fuel that makes the
reference interpreter finish and return the program’s
output if and only if the program terminates on that
input. This leads to the functional correctness prop-
erty given in Figure 1.

3 Project Schedule

By Friday 4/21, we will have the reference inter-
preters implemented, a simple layer above Brain-
fuck implemented and its translation to Brainfuck
verified, and the provisional type inference from λ -
calculus implemented and verified. This shallow
layer will give us experience to understand what a
good abstraction would be for our project.

By Friday 4/28, we will have all necessary con-
trol flow, as well as higher order functions, built on
top of Brainfuck with a verified translation. We ex-
pect this layer to be the most challenging one, and
more time may be allocated to it.

By Friday 5/5, we will have a verified translation
from the provisionally typed λ -calculus to the layer
built on the previous week, completing the transla-
tion from λ -calculus to Brainfuck.

By Monday 5/8, we will have finished writing our
write-up and will have performed an extraction to
test our compiler on real programs.

4 Division of Labor

Once the intermediate layers have been defined, im-
plementing and verifying the translations between
them will be highly parallelizable. The group
should be working on two or three individual trans-
lations at any given time. Verification of translations
is also highly parallelizable once the implementa-
tions are in place, so we will focus on getting im-
plementations done as soon as possible.

We foresee, however, that most of the effort will
be spent in the translation step with higher-order
functions to the neighbouring layers. For this par-
ticular case, we intend to split it into smaller tasks
(such as verifying that, say, higher-order functions
are correct; verifying control-flow; and so on) so
that we can still parallelize work.

5 Risks

The greatest risk to the project is that one of the
translation steps is extremely complicated and hard
to prove. Since we don’t know exactly how to im-
plement the full compilation yet, we may run into
roadblocks or have to try multiple approaches be-
fore finding one that works.

6 Future Work

Future work could include making the compiler
aware of more types of data structures and control
flow idioms to further optimize the output. It may
also be possible to include optimization passes on
the Brainfuck itself, to simplify the code generated
from λ -calculus.

References

[1] CompCert. http://compcert.inria.fr. Accessed:
2017-04-16.

2


