PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 1

Veritfying Information Confidentiality under Query
Optimization in HotCRP

Richard Cho and Dan Fu

Abstract—HotCRP is a conference submission and re-
view system with complex information flow policies and
an expressive search capability. As a result, optimizing
the search process is technically difficult and can result in
information leaks if the optimization process returns either
more or fewer papers than the unoptimized process. In
particular, optimizations that transfer query burden across
a sanitization pass can be especially problematic. In this
work, we tackle this problem using formal verification.
First, we develop a formal model of information flow in
HotCRP. Next, we model different information flow policies
and optimizations in HotCRP and use our framework to
prove that the optimizations do not leak information.

I. INTRODUCTION

HotCRP is a web-based conference submission and
review system [4], [5]. One of its primary features is
a strong search capability: program committee members
can search for papers by title, authors, decision, and other
relevant fields. With such a search capability comes a
number of issues with information flow, however. For
example, program committee members may themselves
submit papers to the conference; in such cases, they
should not be allowed to read reviews or see decisions
about their paper before de-anonymization.

Such information flow issues are compounded by
attempts at query optimization. In particular, information
confidentiality is enforced at the level of the PHP server,
but it is desirable to move query burden from the PHP
server to the database. If done without care, such query
optimization can result in information leakage. Consider
an example of a user searching for all papers that do not
have a positive "accept" decision, for example. The user
should receive a list of all papers that are not written by
the user and have not been accepted, and all the papers
written by the user, regardless of whether the paper has
been accepted or not. A naive optimization might move
the entire query to the SQL layer and return a list of
all papers that have not been accepted. By the time a
server-level information policy has been applied to this
list, it is too late: the user will be able to deduce which
of their papers have been accepted by the absence of
such papers from the returned list.

We use formal verification to address this problem by
using the Coq interactive proof assistant [2f] to model
information flow in HotCRP and prove information con-
fidentiality. To avoid difficulties with the source language
of HotCRP (PHP), we do not attempt to prove properties
of the actual PHP system. Rather, we propose a model
flexible enough to capture the dynamics of information
flow in HotCRP, and prove information confidentiality
on number of different optimizations in that system. We
leave it to the developers of HotCRP to either adopt some
of the optimizations we propose or use our framework
to prove the optimizations used by the actual software
system.

Our framework models papers, users, policies, user
queries on papers, and a simple subset of SQL. For
simplicity, we model the entire HotCRP database as a
list of papers, with users existing independently. We
avoid the need for complex operations such as joins by
simply adding relevant fields to our paper model. For
example, where a real relational database might keep
papers and decisions in separate tables, thus requiring
joins to determine a paper’s status, our model simply
makes the decision a field of the paper. In this way, our
framework can model rich interactions while remaining
unencumbered by complex SQL logic.

Over the course of our development, we iterated over
a number of policies and optimizations, from simple
to complex. We also iterated over a number of proof
strategies. We will present them in this paper to demon-
strate the difficulty of writing correct optimizations and
to help future undertakers of this or similar projects avoid
common pitfalls.

In we discuss relevant background about how
search queries in HotCRP work. In we discuss
the formal model of the relevant functionality, with
optimization. In we discuss the specific types of
information policies we cover and the optimizations they
are amenable to. In we discuss our proof strategy. In
§VIl we evaluate our framework and discuss the impact
our proof strategy had on various proofs. In §VII| we
discuss related work. Finally, in we discuss future
work and conclude.

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 2

II. BACKGROUND

The subset of HotCRP that we model consists of
papers, users, and queries, all governed by an overall
information policy. Papers can have a number of fields,
such as a unique ID, a title, a list of authors, time
of submission, etc. Similarly, users can have a number
of fields and have a number of complex associations.
For example, users are often attached to institutions
or may play special roles in the conference, such as
committee chair or conference chair. This multitude
of fields engenders complex relationships and potential
conflicts of interest between users and papers, and the
information policy must ensure that users do not see any
information that they are forbidden from.

This interaction is most difficult when dealing with
HotCRP’s rich query system. Users can search for papers
using a number of complex query options, and queries
must not leak information. Luckily, it is possible to write
information policies that can prevent information leaks
with some care [5]. However, the problem is complicated
by HotCRP’s architecture. Like many web applications,
HotCRP has both a PHP server and a SQL server. It
is much easier to enforce the information policy on the
PHP server, since it runs on a much more expressive
source language than the SQL server.

Indeed, the simplest way to ensure correctness is to
load all the papers from the SQL server on the PHP
server, and process the list of papers locally using the
full expressive capabilities of PHP. Unfortunately, this
approach has a number of problems; namely, some
conferences are very large and have an extremely large
number of papers. In such conferences, loading all the
papers onto the PHP server may put it under extreme
strain. Coupled with a large population of users all
searching for results at once, this could be extremely
problematic.

Thus, it is desirable to shift as much of the query
burden from the PHP server to the SQL server as possi-
ble. This entails processing a user query and generating
a SQL query from it to run on the SQL server. The
smaller the list of papers that make it to the PHP server,
the better. Unfortunately, such optimizations are non-
trivial to write, and very error-prone. In this work, we
propose a framework to prove such optimizations correct
and demonstrate its efficacy on a family of policies and
optimizations.

We make a number of simplifying assumptions to
make our model simpler and make the proofs more
tractable. On the SQL side, we do not model multiple
tables or joins between multiple tables; rather, we simply
add relevant information as fields to papers or users.

We also only model a very limited subset of SQL: we
can handle SELECT statements with a WHERE clause
composed of field equality, AND, OR, and NOT. We
collapse all information conflicts into a single team
concept. Generally speaking, if a user and paper are on
the same team, they have a conflict of interest (although
we do allow more complex policies in later sections).
Finally, we also simplify user input by modeling user
queries exactly the same as SQL queries, and sharing
architecture for both.

III. BASIC MODEL

We have a basic model of HotCRP where we have
papers, databases, users, queries, and policies. A paper
is a set of fields, namely id, title, team, and decision.
A database is a list of papers. A user is a set of fields
id, email, and team. A query is an inductive type that
can be computed over a given paper and return true or
false. It has the primitive operations of always being true
or false, or testing equality of a field of a paper with a
given value; this last operation requires another inductive
type representing paper fields. We create more complex
queries using And, Or, and Not. The Coq definitions
of these objects are given in Listing 1. With these
operations, queries on the database reduce to filters on
a list of papers. Given a function eval (g:query)
(p:paper) that returns true if g admits p, we can
apply a query g to a database db via a filter:

filter (fun p => eval g p) db

Since we have defined a database to be a list of papers,
this operation also returns a database.

However, these definitions alone are not enough to
model information policies, which may scrub out fields
of individual papers based on the attributes of the user
making the query. For this functionality, we introduce
policy maps into our model:

policy_map: paper —> user —> paper

These functions take in a paper and a user and return a
sanitized version of the paper by scrubbing out individual
fields of the paper based on whether the user is allowed
to see them. We discuss concrete policies and the limi-
tations we place on them in more detail in Given
a policy pol, we can thus compute a sanitized version
of a database db via Coq’s map function:

map (fun p => pol p u) db.

Similarly to the filter function from before, this function
will again return a database. Critically, this means that
we can chain filter and map operations together.

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 3

Inductive paper Set :=

| Paper: forall (id:nat)
(title:string) (team:nat)
(decision:nat), paper.

Inductive user Set :=

| User: forall (id:nat)
(email:string) (team: nat), user.

Notation database := (list paper).
Inductive paper_field Set:

| Paper_id: nat —-> paper_field

| Paper_title: string —-> paper_field
| Paper_team: nat —-> paper_field

| Paper_decision: nat -> paper_field.
Inductive query Set :=

| True: query

| False: query

| Field eq: paper_field -> query
| And: gquery —-> query —> query
| Or: query —-> query —-> query
| Not: query —> query.

Listing 1. The basic model of HotCRP.

This finally allows us to define the complete operation
of a user query on a database (without any optimization).
Suppose a user u makes a query ug on a database db
under policy pol. HotCRP must first perform a SQL
query on the underlying database; in an unoptimized
system, this is equivalent to a True query in our model.
Next, the results of this query are sanitized by the policy
map. Finally, the user query is applied to the sanitized
list, which is returned to the user. Formally, this operates
as follows:

filter (fun p => eval ugq p)
(map (fun p’ => pol p’ u)
(filter (fun p’’ => eval True p’'’)
db

)) .

IV. POLICIES AND OPTIMIZATIONS

A. Policies

In order to make our proof tractable, we need to
impose restrictions of the operation of policy maps. It
would be impossible to optimize a randomized policy,
for example. We tackled policies of varying levels of

simple_policy (p:paper) (u:user) :=
if p.team = u.team
then (Paper p.id p.title p.team 0)

else p

Listing 2. The simple policy.

complexity throughout our project, starting from simpler
ones and moving to more complex policies.

The simplest policy we have developed optimizations
for is, appropriately named, simple. It scrubs out the
decision field of any paper where the paper and the
user belong to the same team (i.e., their team fields
are equal). A pseudocode listing is given in Listing 2.
The simple policy is a simple policy to start out with
and facilitates reasoning about optimization strategies,
but it is sorely lacking in its expressive ability. Any
change in functionality requires writing a new function
and accompanying proofs from scratch. To address these
limitations, we have developed a model of boolean
expressions, upon which we have built blacklist and
whitelist policies.

First, we discuss our boolean expressions in more
detail. These are very similar in structure to queries, but
have a few extra fields for greater expressive power. In
particular, they also include functionality for comparing
user fields to particular values, and for comparing paper
fields directly to user fields. These features require
another type representing user fields, which are analo-
gous to the paper fields in the query definition. These
definitions are given in Listing 3. Boolean expressions
are passed to a boolean_eval function that also takes
in a paper and a user. The operation on most of the
constructors is self-explanatory. On B_paper_field
and B_user_field, boolean_val compares the
value of the proper paper or user field to the value
passed in during construction of the paper_field
or user_field object. On B_paper_user_field,
boolean_eval simply compares the given paper and
user fields for equality.

With boolean expressions, we can construct families
of blacklist and whitelist policies.

A blacklist policy is composed of an inductive type
and a function that evaluates a user and a paper against
that policy. The inductive type, named b_policy for
short, takes in four boolean expressions, one for each
field of a paper. Given an instantiation of a b_policy,
a paper, and a user, the blacklist function evaluates each
boolean expression for the paper and the user, and scrubs
out the corresponding field of the paper if the expression
evaluates to true.

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 4

Inductive user_field Set :=

| User_id: nat —-> user_field

| User_email: string -> user_field

| User_team: nat —> user_field.

Inductive boolean_exp Set :=

| B_true: boolean_exp

| B_false: boolean_exp

| B_paper_field: paper_field —->
boolean_exp

| B_user_ field:
boolean_exp

| B_paper_user_field: paper_field ->
user_field -> boolean_exp

| B_and: boolean_exp —-> boolean_exp —>
boolean_exp

| B_or: boolean_exp —-> boolean_exp —>
boolean_exp

| B_not: boolean_exp —-> boolean_exp.

user_field —>

Listing 3. Boolean expressions.

The whitelist policy is structured the same way, except
it only scrubs out the corresopnding field of the paper
if the expression evaluates to false. Definitions of the
inductive types and pseudocode for the blacklist function
are given in Listing 4. With these definitions, we can
define general families of policies and prove statements
about the entire family of policies. The only limitation is
that conditions for policy scrubbing must be expressible
in terms of boolean expressions on user and paper fields.

B. Optimizations

An optimization is defined to be a function that maps
a user query to an inner and outer user query. The inner
query represents the optimized SQL query, and the outer
query represents the PHP processing that occurs post-
sanitization. In a correct optimization, for all databases
db, users u, policies P, and user queries uq, a paper is
in the set of papers accepted by ug on db scrubbed by
P if and only if it is in the set of papers accepted by
the outer query applied to the set of papers obtained by
using the policy to scrub the set of papers accepted by
the inner query

We created two optimization functions for the simple
policy, one which just relaxed the user sql by replacing
every instance of Paper.decision with True. The
first method treats the policy scrubbers as black boxes
and then modifies the user query to replace any fields that

'For a different expression of this, see é;@

Inductive b_policy Set :=
| B_policy:
forall (id_exp:boolean_exp)

(title_exp:boolean_exp)

(team_exp:boolean_exp)

(decision_exp:boolean_exp),
b_policy.

Inductive w_policy Set :=
| W_policy:
forall (id_exp:boolean_exp)

(title_exp:boolean_exp)

(team_exp:boolean_exp)

(decision_exp:boolean_exp),
w_policy.

b_policy_map
(u:user) :=
Paper
(if b_eval pol.id_exp p u
then 0 else p.id)
(1f b_eval pol.title_exp p u
then "" else p.id)
(1f b_eval pol.team_exp p u
then 0 else p.team)
(1f b_eval pol.deciesion_exp p u
then 0 else p.decision)

(pol:b_policy) (p:paper)

Listing 4. Blacklist and whitelist inductive types and the blacklist
policy map function.

are scrubbed out with True. In the simple policy, this is
the decision field. This effectively relaxes the user query
by preventing it from looking at any information that gets
scrubbed by the policy and is unsafe to look at before the
policy is applied. This method generates an inner query
that accepts a paper if the original query accepts a paper
after the policy has been applied. The outer query in
this case is the same as the original query, since this
will guarantee that the optimization is correct. While
this method is capable of handling arbitrarily complex
policies, a simple relaxment function can suffer from
relaxing the query too much until the inner query just
becomes effectively an True. This proof was far easier
due to not having to look inside the boolean expressions
inside the policies to show it correct.

The secondary method takes into account the construc-
tion of the policy blacklist to move the entire user query
into a query that can be applied before the policy that
accepts papers if and only if it is accepted by the original
user query after the policy has been applied. This is

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 5

possible because our policy map function as previously
defined has a boolean expression that can be written in
terms of a user query because the boolean expression
can only look at paper fields, user fields (which are
constants at query evaluation) and only support And, Or,
and Not logic. We call this function bexp_to_query.
With this, we can then rewrite the user query to account
for the policy.

We will integrate the “if (boolean expression) then
(scrub with 0) else (original value)” in b_policy_map
as a into the user query expression using Or, And, and
Negation. Given a user query ug, and a policy that scrubs
out field if bool_exp is true, we can rewrite every
occurence of field inside the uqg with:

if field = 0 then
Or bexp_to_query (bool_exp) ug
else

And not (bexp_to_query (bool_exp)) uqg

After applying this for every field that the policy
scrubs, we now have an transformed user query that
accounts for the policy and can be run before the policy,
making it a suitable inner query. We then prove that this
inner query only accepts papers that would have been
accepted by the user query on a paper scrubbed by the
policy. The outer query is then just the True statement,
so it returns everything passed in to it. This is fine
since our inner query has a very strict paper acceptance
guarantee. These together make up our optimization,
which we proved correct.

V. PROOF STRATEGY

We want to prove that our optimizations do not let
leak any information by showing extra fields or papers
that should not be included or hiding any fields or papers
that should have been shown. The strongest statement of
correctness for an optimization might be expressed as
follows: let u be a user,uqg her query, pol the policy,
and db the database. Furthermore, let map_pol be a
function that takes in a list of papers and applies pol
to each paper, and filter be a function that takes in a
query and a list of papers and filters them by ug. Then
an (opt_outer, opt_inner) pair is correct iff:

forall u ug pol db,
filter (uq,
map_pol (filter (True, db))) =
filter (opt_outer (uqgq, u),
map_pol (filter (opt_inner (uqg,
db)) .

u),

That being said, this statement is actually stronger than
we need for correctness in this domain. In particular, we

forall u ugq pol p,
eval ug (pol p u) =
eval (opt_inner pol ug u) p u &&
eval (opt_outer pol ug u) (pol p u).

Listing 5. Simplified statement of correctness for optimizations.

only care about list membership, not order. As a result,
we instead prove the following weaker result, defined
using Coq’s In function:

forall u ugq pol db p,
In p filter (uqg,
map_pol (filter (True, db)))
In p filter (opt_outer (ug, u),
map_pol (filter (opt_inner (uqg,
db)) .

<=>

u),

Please see the footnote 2l

A. Layering Strategy

Our final lemma, as stated, is difficult to work with.
The optimization functions are nested below layers of
filter and map calls. Luckily, we can prove a simpler
statement that goes a long way to proving the mem-
bership inclusion version of correctness. The statement
is shown in Listing 5. The left hand side of the state-
ment represents the unoptimized version: every paper is
fetched from the database, then the policy is applied to
it, and then the user query is applied to it. The user only
sees the paper if the user query admits the sanitized
version of it. The right hand side represents the two
stages of the optimized query. First, the inner SQL query
must admit the raw paper. Next, the outer query must
admit the sanitized version of the paper. If both sides of
this statement are true for any paper, then we know that
any paper that the optimized query shows the user was
also shown by the unoptimized version, and Vice—versa

B. Queries

During our initial optimization tests, we found that not
having an explicit Not made generating the optimization
and proving it correct much easier, particularly for the

2Alas, we derped. This condition is actually not strong enough
to prove information confidentiality; in particular, the number of
occurrences is actually important. We didn’t realize this until the
wee hours of Tuesday morning, by which time it was too late ®.
(See the next footnote for why this isn’t so bad).

’In some ways, this is actually a stronger statement than the
original thing that we wanted to prove. We're pretty sure that we
can prove the original equality statement from this statement, but we
just ran out of time.

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 6

relaxing optimization. This is because the use of a Not
can invert the “relaxment” replacement which introduces
further complexity that isn’t needed. In order to safely
get rid of Not while preserving the possible complexity
of the original query language we must introduce a field
not equals type. This is because if there was a Not,
we can use DeMorgan’s law to push the Not all the
way down to the ends of the query, where it will hit
a True|False|Field_eq|Field_neq which can
be written as their negated counterparts, removing the
Not.

We then proved our optimizations on the Not-less
queries, and then showed that the definition of a query
without a Not is equivalent to the definition of a query
with a Not.

C. Policies

We employed a similar simplification strategy for
the proof of our blacklist and whitelist policies. We
found that the inclusion of the Not constructor in
the boolean expressions made inductions difficult. As a
result, we introduced simplified boolean expressions that
used Paper_field_neq, User_field_neq, and
Paper_user_field_neqg constructors. We proved
the blacklist optimization correct on this family of
simplified boolean expressions, and then wrote a function
to convert from simplified boolean expressions to our
original boolean expressions. After proving that transla-
tion correct, we were able to easily extend our previ-
ous correctness proofs to the policies with the original
boolean expressions.

Once we had that in place, we were almost immedi-
ately able to prove correct a set of whitelist policies as
well. A whitelist policy is just the opposite of a blacklist
policy; in particular, one can convert a whitelist policy
to a blacklist policy by just negating each clause of the
whitelist policy. With a generalized boolean expression
language, this is easy: the translation simply applies the
Not constructor to each boolean expression. We can thus
save a great deal of effort by simply translating whitelist
policies to blacklist policies and applying the blacklist
optimizations.

VI. EVALUATION
A. Experience

Our simplification strategies greatly reduced the
amount of proof effort necessary to prove our optimiza-
tions correct. We can say this with some degree of
anecdotal evidence, since we did not use our layering
strategy when proving our optimizations correct for
the simple strategy. As a result, although the simple

strategy is significantly simpler than either the blacklist
or whitelist policies, it took considerably more effort
and man-hours to prove our optimizations correct than
did the later optimizations with the layering strategy in
place.

We also have anecdotal evidence that removing the
Not constructor greatly simplified the proof process
and made it much more tractable. In particular, one
author spent roughly eight hours trying to force a proof
of the True optimization on the simple policy before
removing the Not constructor. After he removed the
Not constructor and proved the optimization correct on
the simplified query language, the other author was able
to write a translation and prove the optimizations on the
original queries correct with less than an hour of work
and roughly three lines of proof code.

Overall, our entire development consists of 2,291
lines of Coq code (not including 112 lines of graveyard
where we stored incorrect optimizations). Our proofs of
the optimization for the simple policy took roughly 27
man-hours to prove correct, and the final proof is 703
lines long, including helper lemmas. Our proofs of the
simplified blacklist policy took roughly 6 man-hours,
and the final proof is 464 lines long. The proofs of the
generalized blacklist and whitelist policies took roughly
2 man-hours, and the proofs are 66 lines long.

B. Incorrect Optimizations

Part of the reason why the optimizations for the simple
policy were so hard to prove is that it is in general
difficult to write a correct optimization function, even
with access to the author of HotCRP. In this section, we
provide some examples of incorrect optimizations that
we caught during the proof process.

In early iterations of our second optimization, we did
not realize the need for different replacements of field
equality/inequality based on what the user searched
for. In our first attempt at optimization, we tried
replacing every instance of paper.decision
= x with (paper.team = u.team) ||
(paper.decision = x && paper.team !=
u.team)). This optimization is incorrect if x # 0. In
this case, the user should not see any paper from their
own team, since the policy will scrub the decision field,
and paper.decision = x will evaluate to false.
Under this optimization, the user will see all papers
from their team.

We tried rectifying this incorrect optimization with
what turned out to be another incorrect optimization.
This time, we tried replacing every instance of
paper.decision = x with (paper.team

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 7

= u.team && paper.decision = 0) ||
(paper.decision = x && paper.team !=
u.team)). Again, this will show the user all of their
papers with decision 0, even if they ask for x # 0.

Our third incorrect optimization corrected this error,
but introduced more. We replaced every instance of
paper.decision = x with (paper.team =
u.team && x = 0) || (paper.decision =
X && paper.team != u.team)). This is the
closest that we came to a correct optimization before
finally arriving at the correct version presented earlier
in this paper. This latest optimization fails because if
the user searched for papers with decision 0, they will
not see any papers that do not belong to their team.

Later during the implementation of the correct spec,
we ran into another bug in the field comparison function
from user fields to paper fields. In comparing fields,
the type of the paper field being compared to was lost
via the use of the unserscore operator, which led to
an unprovable state. However, with a small change and
explicitly matching every case, the correct field matching
function was written and the proof went though.

C. Limitations

Although our blacklist and whitelist definitions are
powerful, there are some policies that they cannot cap-
ture. For example, they cannot capture policies that
depend on arbitrary (deterministic) computation. There
is no way to express an inequality such as paper.team
> x, for example, or paper.title.length > 10.
It is certainly possible to write policies and try to prove
optimizations about them in our framework; one simply
has to write a map function in Coq. However, it will
be difficult writing optimizations that can successfully
move entire user queries into the SQL layer with policies
such as these. Certainly our second optimization will be
unable to do so. It is possible that our first optimization
could work, but we did not have the time to try this.

VII. RELATED WORK

Another approach tackles security in HotCRP with
policy agnostic programming [7]. The problems in
HotCRP that were brought up were problems such as
indirect leaks (users executing a series of commands to
deduce information that they do not have privilege too
directly access), incorrect viewers (resolving permissions
for the wrong user) and policy spaghetti (policy code
getting mixed into other code which makes tracking
information flow annoying). The paper resolved the
problems by tracking information flow policies across
application code and database queries with their policy

agnostic framework and Jacqueline, which works with
out of box relational databases. Our work differs in that
we don’t provide a policy agnostic framework on which
to create applications with a smaller trusted computing
base. We care about a very specific problem, which is
the optimization of queries across the application code
and database boundary (since the policy is enforced in
application code but the query is a database query). We
then show, given a spec of queries, policies, papers, and
users, that the optimizations are correct; the optimization
function doesn’t leak any information.

Our model of SQL is very simple. Richer models of
relational databases may yield more expressive policies
and more powerful optimizations. Bezaken et. al. have
proposed a Coq formulation of the relational database
model and have used it to prove a number of theorems
about relational databases. Such a formalization might
be beneficial for our approach.

Our framework also does not make any claims about
the actual running HotCRP system. The system is written
in PHP and relies on a fairly massive trusted computing
base. There has been some work in proving parts of
this trusted base correct, however. Malecha et. al. have
built a lightweight, verified relational database system
in Coq [6]. This system is much less feature-complete
than many conventional enterprise database systems, but
the subset of SQL that we model is simple enough that
we could run our framework on top of this system.
On the other end, Filaretti and Maffeis have developed
an executable formal semantics for a core of PHP.
Using these semantics, one could potentially prove some
functionality on the PHP side of HotCRP correct.

VIII. FUTURE WORK

Although our development and framework have al-
lowed us to prove optimizations correct on a large family
of policies, our work is by no means complete. In the
immediate future, we would like to prove strict list
equality, as stated in We believe this is eminently
possible given the strength of the statements that we
have already proven. We would also like to extend our
blacklist and whitelist policies to allow hybrid combina-
tions of blacklist and whitelist conditions. It should be
fairly straightforward to prove optimizations about these
by translating the hybrid lists into straight blacklists.

In the longer term, we would like to extend the
blacklist conditions past boolean expressions into the
realm of general computation. With robust intermedi-
ate theorems about which fields a general computation
depends on, along with stronger use of the inner/outer
optimization divide, we believe that we can create signif-

PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 8 MAY 2017. 8

icant optimizations for policies that incorporate general
computation.

Our development is also not very closely tied to
any concrete instatiation of HotCRP. While we have
proposed optimizations and proved them correct, we do
not know whether these optimizations or similar variants
are employed by the actual HotCRP system. Thus, even
though we have proven our optimizations correct, the
actual system might theoretically be leaking information
left and right[] In the future, we would like to either
implement our policies in the native HotCRP or prove
HotCRP’s actual optimizations correct in our framework.
In a similar vein, we would like to write export functions
to export functionality from our framework to PHP or
SQL. This is another way we could ensure that the code
running in the HotCRP system is correct.

Another issue that we would like to tackle in the
future is whether these optimizations actually result in
better performance. The overriding assumption through
our entire project has been that moving query burden
to the SQL server is beneficial. However, we have seen
that, for some optimizations, this results in more complex
queries than the original user queries. It is thus an open
question whether the tradeoff in more complex queries
is worth moving the query burden to the SQL server.

Finally, and perhaps most importantly, we would like
to name our system. A few promising candidates have
come to mind—HotCRP+Coq, HotCRP In Coq, CoqCRP,
and HotCoq, among others. Of these, we feel that Co-
qCRP most accurately captures the engineering quality
of our development. However, we feel that it is slightly
misleading, given that we have not actually written a
CRP system in Coq. We feel that such a system could
be an interesting direction for future work, however.

HotCRP In Coq is also promising, since it almost
describes what we did, i.e. write a formal model of parts
of HotCRP in Coq. However, we again feel that name
to be misleading, since we did not model the entirety of
HotCRP in Coq. We run into a similar issue with the
name HotCoq. The Hot in HotCRP comes from the Hot
Topics in Networks conference; alas, we have reproduced
neither this conference nor anything about networks in
our development. [5] We are left with HotCRP+Coq,
which, to be frank, is just not as interesting as the other
options. In lieu of a better option, we have simply elected
to leave our framework unnamed for the time being.

REFERENCES

[1] V. Benzaken, E.Contejean, S.Dumbrava. A Coq Formalization
of the Relational Data Model. In: Shao Z. (eds) Programming
Languages and Systems. ESOP 2014.

*That being said, we are pretty sure it isn’t...

[2] https://coq.inria.fr/.

[3] D. Filaretti and S. Maffeis. An executable formal semantics of
PHP. Published in ECOOP’14 European Conference on Object-
Oriented Programming, 2014.

[4] E. Kohler. HotCRP. https://hotcrp.com/.

[5] E. Kohler. Hot Crap! Published in WOWCS’08 Proceedings
of the conference on Organizing Workshops, Conferences, and
Symposia for Computer Systems, April 2008.

[6] G. Malecha, G. Morrisett, A. Shinnar, R. Wisnesky. Published in
POPL’10 Principles of Programming Languages, January 2009.

[7]1 J. Yang. Preventing Information Leaks with Policy-Agnostic
Programming. PhD Thesis, MIT. September 2015.

https://coq.inria.fr/
https://hotcrp.com/

	Introduction
	Background
	Basic Model
	Policies and Optimizations
	Policies
	Optimizations

	Proof Strategy
	Layering Strategy
	Queries
	Policies

	Evaluation
	Experience
	Incorrect Optimizations
	Limitations

	Related Work
	Future Work
	References

