
Verified DOM rendering proposal

Jason Goodman

April 17, 2017

1 Overview

This project is a verified model of an optimizing
browser renderer that creates raster images from
DOM trees. In particular, this renderer will opti-
mize for the case of rendering a DOM that is nearly
identical to a previously rendered one.

The renderer’s structure will be loosely based on
this description of Blink’s behavior: JavaScript and
CSS rules are assumed to have been evaluated and
some layout work done; the renderer then performs
remaining layout calculations and “paints” multi-
ple layers (e.g. absolute-positioned blocks) as raster
graphics which are then composited together.

A naive renderer could perform all layout com-
putations and paint each element recursively by com-
positing renderings of children. An immediate opti-
mization is to avoid rendering elements—and poten-
tially short circuit layout calculation—beyond the
bounds of an element with invisible overflow. This
targets the case of a large page with most content
off-screen.

Differential optimizations will assume a single
subtree has been replaced with a new subtree and
make use of the previous iteration’s layer paintings.
Different changes will then trigger only compositing,
repainting some layers and compositing, updating a
layer’s layout, repainting, and compositing, or com-
pletely starting over when conditions for optimiza-
tion aren’t detected.

As a concrete example, changing an absolute-
positioned box’s coordinates might only trigger a
new compositing of existing layers, changing its
background might cause its layer to be repainted,
changing its dimensions might cause its layer’s lay-
out to be recomputed (if it has children), and replac-

ing its children might entirely invalidate the previous
rendering.

2 Property verified

The property being verified is that for all DOMs and
subtree replacements, the optimizing renderer pro-
duces the same bitmap as an unoptimized reference
renderer.

3 Capstone theorem

For the simpler case of a non-differential renderer,
the correctness theorem is:

forall d : dom,

reference_render d = optimized_render d

The differential case is less clean, taking an op-
tional DOM diff (e.g. ([1; 3], d′) to replace the root’s
first child’s third child with d′) to apply paired with
the renderer’s output for the original DOM. This
renderer outputs layout calculations and layer ren-
derings in addition to the composited rendering, but
correctness only concerns a projection of the com-
posited rendering.

forall (d : dom) (diff : dom_diff),

reference_render (apply_diff d diff) =

extract (optimized_render d (Some (diff,

(optimized_render d None))))

1

https://developers.google.com/web/fundamentals/performance/rendering/


4 Project schedule

There are three weeks left. My goal is to have non-
absolute layouts, layering, and the overflow opti-
mization done the first week. I’ll aim to have some
differential optimizations working the second week
(getting the model right is going to be a pain) and
add more as time permits.

5 Division of labor

I will use this mapping from team members to shares
of work.

Definition division_of_labor person :=

match person with Jason => Everything end.

6 Risks

The biggest risk seems to be getting stuck trying to
model and use complicated structures in Coq, but
I think I have some idea of how to avoid painful
situations.

It also won’t possible empirically to analyze the
performance of the optimized renderer except to say
that it’s based on performant browser architectures,
since I’m not worrying about the performance of
unary computation, tree comparison used in place of
hashing, finite maps implemented with chained clo-
sures used in place of arrays, and other Coq-related
hacks.

7 Future work

Two ambitious extensions would be to verify an ac-
tual browser renderer against a reference and to ver-
ify a reference renderer against a formalization of the
CSS and HTML specifications.

2


	Overview
	Property verified
	Capstone theorem
	Project schedule
	Division of labor
	Risks
	Future work

