
Real Fake DOMs: Verified Browser Rendering

Jeffrey Cai
jeffreycai@college.harvard.edu

Jason Goodman
jgoodman@college.harvard.edu

ABSTRACT
In this writeup we present Real Fake DOMs, the first
Coq development to our knowledge to model Document
Object Models or the graphics primitives necessary to
model browser rendering algorithms in a shallow em-
bedding.

As a first foray into verifying algorithms in this area, we
model simplified DOMs with representative background-
color, width, height, position, top, left, and overflow
attributes. Additional features could in theory be im-
plemented in terms of these, though it would be imprac-
tical to support a richer set of features in an exploratory
development.

Building on these models, we define and verify a series
of renderers inspired by basic optimiations used in web
browsers. We prove correctness by showing functional
equivalence to an unoptimized reference renderer. Per-
haps our biggest takeaway is a reminder that straight-
forward facts can require immense effort to prove if al-
gorithms are not designed with verification in mind.

1. INTRODUCTION
As web applications have grown more sophisticated and
browser optimizations more aggressive, browser render-
ing glitches have emerged as the consistent top concern
in the Gallup “Most Important Problem” poll.1 With
this peeve as motivation, we set out to create mock ren-
derers in Coq with optimizations that are proved not to
affect their functional behavior.

The result of this effort is a model of graphics opera-
tions, a datatype for expressing a subset of DOM fea-
tures, an unoptimized reference implementation of a
DOM renderer, a renderer that paints directly onto a
single graphic without compositing and skips out-of-

1Not actually true, with high probability.

bounds elements, and renderer that groups elements
into layers for memoizable rendering in the common
case of local DOM updates. Admittedly, this last ren-
derer’s correctness proof contains an unproven arith-
metic fact that we believe to be true but beyond our
late-night abilities.

Because our Coq programs can only generate textual
output, we have additionally created a exporter that
transfers rendered graphics to an HTML canvas. We
have not verified that this exporter or our browsers are
correct.

2. MODELING GRAPHICS
It was not immediately clear how to model graphics
in Coq. At a high level, our first choice was between
mapping pixel coordinates to color values—simulating
arrays—or modeling sequences of primitive drawing com-
mands, which might be a more direct representation of
a browser renderer’s output.

We are confident that the pixel model is preferable,
given that the sense of equivalence we sought concerns
exactly the mapping from coordinates to colors. Prim-
itive drawing operations, such as painting boxes, are
easy to implement using this model, and the alternative
would require a manual definition of equivalence—likely
defining a mapping to pixels—in the trusted computing
base.

An additional design decision with our graphics model
was the choice of data structure used to represent pixel
arrays. Given that our goal is to model rather than im-
plement data structures used in practice, we primarily
sought out expressiveness and ease of programming. To
motivate our claims of tedium, consider the seemingly
straightforward composite operation that stamps one
graphic onto another, deferring to the original graphic
where the new one is transparent.

Lists of lists are perhaps the closest conceptual analog
to C arrays in the Coq library, but manipulating them
would be tedious. Compositing and similar operations
would require recursion on their arguments, necessitat-
ing inductive proofs of basic properties and potentially
bug-laden handling of graphics with different dimen-
sions. Fatally, lists do not naturally support pixels in
negative coordinates, a feature that is not used by ac-

tual renderers but which we found to be useful in spec-
ifying a straightforward reference renderer.

Perhaps the most efficient option, a tree accessed through
Coq’s finite map interface, would allow for negative co-
ordinates and make compositing outside of a graphic’s
bounds easier to reason about. However, the remaining
problems with lists still apply.

For this reason, we chose to model graphics as Coq
functions from unbounded integer coordinates to col-
ors, adding the axiom of functional extensionality so
that equivalent graphics created by different algorithms
can be satisfyingly claimed equal. We did not model
alpha values but included a “None” color for use outside
of a graphic’s bounds or for transparency.

Intriguingly, our reliance on a small set of functions for
compositing, clipping, and box drawing means we have
effectively modeled traces of primitive operations in a
structure of closures.

One abandoned idea was to model graphics of fixed size
using dependent types. This proved to require signifi-
cantly more effort than writing proofs to reason about
the bounds used by individual functions, and we found
that the size of a graphic is rarely of interest for our
purposes.

Definition composite base overlay offset : graphic
:= fun coord =>

match offset, coord with
| Coord x y, Coord x’ y’ =>
let overlay_color := overlay (Coord (-x + x’)

(-y + y’)) in
match overlay_color with
| None_c => base coord
| _ => overlay_color
end

end.

Listing 1: The composite function

3. MODELING DOMS
We aimed to model a number of DOM attributes at
a sufficient level of detail to capture the spirit of web
rendering and optimizations without creating too big of
an undertaking. This section contains brief descriptions
of the supported fields, which are interpreted according
to the CSS specification, as well as a discussion of our
inductive data structure.

3.1 Attributes
3.1.1 Position

Elements can be positioned in vertical (block) static
layout, relative to their static positions, or in absolute
coordinates from the origin of the closest non-static an-
cestor. Non-static coordinates are in pixels from the top
and left.

Note that in general, a child or later sibling is drawn on
top of earlier elements in the DOM, but non-static ele-

ments are drawn above their associated layers of statically-
positioned elements.

3.1.2 Width and height
Every element has specified dimensions in pixels. An
interesting extension of our work would be to add hor-
izontal layouts and compute heights dynamically.

3.1.3 Overflow
Elements can have overflow either visible or hidden. If
the overflow is hidden, then renderings of descendants
are clipped outside of the element’s width and height.

3.1.4 Background color
Every element has an RGB or “none” background.

3.2 Data Structure
Our initial attempt to model DOMs in Coq had each
node contain a list of children and an optional color.
This followed from an intuitive conception of DOMs
and seemed to allow for the use of map, fold, and other
library functions in implementing algorithms.

Unfortunately, Coq does not automatically support in-
duction and recursion with this use of types, so we re-
sorted instead to having an element “contain” its child
and next sibling. As a side-effect, our recursive algo-
rithms mostly operate not only on an element and its
subtree, but its siblings’ subtrees as well.

Inductive position := Static | Relative | Absolute.
Inductive overflow := Visible | Hidden.
Inductive attributes :=
Attributes : forall
(left top width height : Z)
(color : color)
(pos : position)
(ovf : overflow),
attributes.

Inductive dom : Set :=
| Dom : attributes -> forall (child sibling : dom),

dom
| None_d.

Listing 2: The DOM model

4. PROOF STRATEGY
4.1 Overview
We defined a straightforward reference renderer in terms
of simple graphics operations (draw box and composite)
and a “dumb” inefficient recursion that would translate
to creating a new graphic for each DOM element.

After proving facts to act as unit tests, and hours of
manual testing—the state of the art in browser development—
we deemed the reference render “trusted.” We then
proved that our optimized renderers produce the same
renderings as this one.

4.2 Structure
We essentially used two layers in our proofs:

1. Prove lemmas concerning properties of different
graphics operations: for instance, that composit-
ing the blank graphic onto a graphic leaves it un-
changed, or that translating two rectangles trans-
lates their intersection without changing the di-
mensions.

2. Prove the equivalence of the renderers by applying
the lemmas.

This has a twofold advantage: We are not bogged down
with“trivial”goals while dealing with more complicated
proof strategies, and the two models are decoupled to
the extent that either could be swapped out in a con-
tinuation of our work.

4.3 Graphics Proofs
One proof tactic we used was extensionality: when
faced with a goal of proving that two graphics were
equal, we could simply prove that the rendered color
was equal at every test point. This allowed us to make
progress by unfolding the definitions of graphics prim-
itives, which are written in terms of what they do to
pixels.

Another common theme among graphics proofs was the
use of Z (the module implementing integers) and ring

tactics. Since there was a lot of arithmetic and inequal-
ities involved in computing bounds, we quickly became
adept at manipulating integers in various ways.

Listing 3: An example of a graphics lemma: clip-
ping distributes over compositing. Note the use
of extensionality and ring tactics.
Lemma clip_composite_distr g1 g2 offset pos dim:
clip (g1 CC g2 @ offset) pos dim =
(clip g1 pos dim) CC (clip g2 (subtr_c pos

offset) dim) @ offset.
Proof.
extensionality x.
destruct x as [xt yt], pos as [x y], dim as [w

h], offset as [x’ y’].
simpl.
repeat destruct in_box_dec; auto.
- apply (in_box_shift _ _ _ _ _ _ (-x’) (-y’)) in

i.
ring_simplify (x + - x’) in i.
ring_simplify (y + - y’) in i.
replace (xt + - x’) with (- x’ + xt) in i by

ring.
replace (yt + - y’) with (- y’ + yt) in i by

ring.
contradiction.

- apply (in_box_shift _ _ _ _ _ _ x’ y’) in i.
ring_simplify in i.
ring_simplify (x - x’ + x’) (y - y’ + y’) in i.
contradiction.

Qed.

4.4 Rendering Proofs
The first thing that we did when writing a rendering
proof was to induct on the DOM (possibly generaliz-
ing some variables first), generating inductive hypothe-
ses that we could apply to children and siblings. Once

Figure 1: A test example written in Coq and
exported to the HTML renderer.

we had done that, the next step was generally to de-

struct the position-type (Static | Relative | Abso-

lute) and the overflow type (Visible | Hidden), gen-
erating a variety of different cases. Usually by this
point, everything could be fully expanded and we could
see plainly what we were trying to prove equal in this
case.

The next step was generally to fire a barrage of graphics
lemmas in order to simplify and normalize the expres-
sions. Unfortunately, much of the normalization had to
be done manually (using rewrite and pinpointing spe-
cific expressions). Also, the work leftover from applying
the graphics lemmas usually involved some ring arith-
metic, which again had to be done manually. It is very
likely that if we had the know-how to create sophisti-
cated Ltacs to automate our proofs, they could be made
much shorter.

5. RENDERERS
Here, we describe the three kinds of renderers that we
implemented: the reference renderer, the incremental
renderer, and the layering renderer. It was interesting
to see firsthand the many different ways that graphics
could be drawn, clipped, and composited together to
produce equivalent end results.

5.1 Reference Renderer
Making the reference renderer ended up being quite
awkward, primarily because of several technical details
in the specification: for example, static elements should
be rendered underneath non-static elements, and abso-
lute positioning is relative to the position of the nearest
non-static ancestor. Due to these issues, we split up
the reference renderer into a render0 function which
rendered static elements only, then render’ which used
render0 as a subroutine and rendered the rest of the
elements.

Additionally, we performed some tests and sanity checks
on the reference renderer. We created an HTML page

that would take a printed Coq structure and render the
pixels. This was also awkward, however: our “testing”
involved manually creating test DOMs in Coq and copy-
pasting the exported structure to a browser. Further-
more, some of the properties noted above are subtle and
bugs manifest only when nesting deeply with a variety
of overflow and position settings.

To partially remedy this, we proved some lemmas about
the reference renderer to act as sanity checks. For ex-
ample, we showed that the left and top attributes for a
Static element were irrelevant to the rendered result.
We also showed that if a color exists in the rendered
graphic, then it must exist in some DOM element.

Function render0 dom pos : graphic :=
match dom, pos with
| None_d, _ => blank
| Dom (Attributes l t w h c p o) child sib, Coord

x y =>
match p with
| Static =>
blank CC (box (Dim w h) c) @ pos

C0 (clip_ovf o pos (Dim w h) (render0
child pos))

C0 (render0 sib (Coord x (y + h)))
| Relative =>
render0 sib (Coord x (y + h))

| Absolute =>
render0 sib pos

end
end.

Function render’ dom pos : graphic :=
match dom, pos with
| None_d, _ => blank
| Dom (Attributes l t w h c p o) child sib, Coord

x y =>
match p with
| Static =>
(clip_ovf o pos (Dim w h) (render’ child pos))
C0 (render’ sib (Coord x (y + h)))

| Relative =>
let pos’ := Coord (x + l) (y + t) in
clip_ovf o pos’ (Dim w h)
(blank CC (box (Dim w h) c) @ pos’

CC (render0 child c0) @ pos’
CC (render’ child c0) @ pos’)

C0 (render’ sib (Coord x (y + h)))
| Absolute =>
let pos’ := Coord l t in
clip_ovf o pos’ (Dim w h)
(blank CC (box (Dim w h) c) @ pos’

CC (render0 child c0) @ pos’
CC (render’ child c0) @ pos’)

C0 (render’ sib pos)
end

end.

Listing 4: The reference renderer, defined first
for static layers. C0 and CC are compositing
operations.

5.2 Incremental Renderer
This optimization of the reference renderer moves in
the opposite extreme by painting boxes onto a single
graphic that is threaded through recursive function calls.
Essentially, we never composite together two complex

graphics or clip a complex graphic; we only ever paste
boxes onto an accumulating graphic. To do so correctly
requires not only another level of contextual arithmetic
but local observation of hidden overflow boundaries higher
in the element tree.

Function inc_render’ dom pos cd g offset : graphic
:=

match dom, pos with
| None_d, _ => g
| Dom (Attributes l t w h c p o) child sib, Coord

x y =>
match p with
(* ... snipped ... *)
| Absolute => (* Do a static pass, then a

positioned pass. *)
let pos’ := Coord l t in
let (bg_pos, bg_dim) := clip_box cd (add_c

pos’ offset) (Dim w h) in
let g := g C0 (box_at bg_pos bg_dim c) in
(* Do a static pass, then a positioned pass.

*)
let child_cd := restrict_clip cd o (add_c

pos’ offset) (Dim w h) in
let g := inc_render0 child c0 child_cd g

(add_c pos’ offset) in
let g := inc_render’ child c0 child_cd g

(add_c pos’ offset) in
inc_render’ sib pos cd g offset

Listing 5: A sample case in the incremental
renderer.

The call inc_render’ dom pos cd g offset indicates
that the element dom is to be rendered at position pos,
then clipped according to a clipping directive cd before
being pasted onto a base graphic g at an offset offset.
Note that clip_box is used in order to compute bounds
for a clipped background box, to render the current
DOM element; and restrict_clip is used to compute
clipping bounds to be passed to the child subtree. Both
functions are based on the primitive box_intersect,
which uses a well-known formula involving Z.max and
Z.min in order to compute the intersection of two rect-
angles.

5.3 Layering Renderer
This renderer takes a more conventional approach in
painting the DOM in layers that group static descen-
dents of positioned elements. This allows for the layer
renderings to be retained and reused if the DOM is
slightly modified in the future. Changes to non-static
positions only require re-compositing layers at the cor-
rect offsets, while more disruptive changes still only re-
quire re-rendering affected layers.

It should be noted that our implementation does not
“memoize” the result of rendering a layer, although we
did attempt to syntactically mirror the idea by extend-
ing the layer rendering function with particular values
that had been computed. We abandoned the idea be-
cause threading this non-inductive output through the
renderer broke our correctness proof.

Function paint_layer d :=

match d with
| None_d => blank
| Dom (Attributes _ _ w h c p o) child _ =>

let g := box (Dim w h) c in
inc_render0 (normalize child) c0 Don’t_clip g

c0
end.

Function layer_render dom pos cd g offset : graphic
:=

match dom, pos with
| None_d, _ => g
| Dom (Attributes l t w h c p o) child sib, Coord

x y =>
match p with
| Static =>
let child_cd := restrict_clip cd o (add_c pos

offset) (Dim w h) in
let g := layer_render child pos child_cd g

offset in
layer_render sib (Coord x (y + h)) cd g offset

| Relative =>
let pos’ := Coord (x + l) (y + t) in
let child_cd := restrict_clip cd o (add_c

pos’ offset) (Dim w h) in
let g_child := paint_layer dom in
let g_child := blank CC g_child @ (add_c pos’

offset) in
let g_child := restrict_clip_g child_cd

g_child in
let g := g C0 g_child in
let g := layer_render child c0 child_cd g

(add_c pos’ offset) in
layer_render sib (Coord x (y + h)) cd g offset

| Absolute =>
let pos’ := Coord l t in
let child_cd := restrict_clip cd o (add_c

pos’ offset) (Dim w h) in
let g_child := paint_layer dom in
let g_child := blank CC g_child @ (add_c pos’

offset) in
let g_child := restrict_clip_g child_cd

g_child in
let g := g C0 g_child in
let g := layer_render child c0 child_cd g

(add_c pos’ offset) in
layer_render sib pos cd g offset

end
end.

Listing 6: The layer renderer, first defined in
terms of rendering a single static layer with the
incremental renderer

6. PROOF WALKTHROUGHS
In order to demonstrate what the proof structure is like,
as well as to share a more detailed look at what’s going
on in our Coq development, we provide a moderately-
detailed look at some sample cases in our proofs.

6.1 A graphics lemma
We step through the proof of a simple graphics lemma,
clip_composite_distr:

(* Clipping distributes over compositing. *)
Lemma clip_composite_distr g1 g2 offset pos dim:
clip (g1 CC g2 @ offset) pos dim =
(clip g1 pos dim) CC (clip g2 (subtr_c pos

offset) dim) @ offset.

First, we notice that we are trying to prove two graph-
ics equal, so the natural first tactic is extensionality.
Then, in order to get everything to simplify, we de-

struct all of the coordinates and dimensions.

extensionality x.
destruct x as [xt yt], pos as [x y], dim as [w

h], offset as [x’ y’].
simpl.

At this point, we have unfolded clip into a series of
in_box_dec computations. The only way to proceed
now is to destruct them.

repeat destruct in_box_dec; auto.

Now we have two cases; they are essentially the same,
so we only consider the first. The goal does not matter,
as we have two contradicting hypotheses:

i : in_box x y w h xt yt
n : ~ in_box (x - x’) (y - y’) w h (- x’ + xt) (-

y’ + yt)

We apply the lemma in_box_shift and some ring sim-
plifications to derive a contradiction.

- apply (in_box_shift _ _ _ _ _ _ (-x’) (-y’)) in
i.

ring_simplify (x + - x’) in i.
ring_simplify (y + - y’) in i.
replace (xt + - x’) with (- x’ + xt) in i by

ring.
replace (yt + - y’) with (- y’ + yt) in i by

ring.
contradiction.

6.2 A render equivalence proof
Here, we step through a section of the main proof that
inc_render is equivalent to the reference renderer.

Lemma inc_render’_equiv d pos cd g offset:
inc_render’ d pos cd g offset =
g CC apply_clip (translate_clip cd offset)

(inc_render’ d pos Don’t_clip blank c0) @
offset.

Listing 7: An essential lemma for inc_render’s
equivalence proof.

Instead of proving that inc_render is equivalent to ren-

der directly, we found it easier to first prove a semantic
claim about inc_render that we called “paste equiva-
lence.” Essentially, the lemma statement says that call-
ing inc_render’ is equivalent to rendering on top of a
blank graphic, clipping the result, and pasting onto the
base graphic. The paste equivalence lemma bore the
brunt of the proof difficulty, and the actual correctness
theorem was fairly short by comparison. Hence, we step
through a section of the paste equivalence lemma now.

The example is the Relative position case. The goal
we have is the following:

(let (bg_pos, bg_dim) :=
clip_box cd (Coord (x + l + x’) (y + t + y’))

(Dim w h) in
inc_render’ d2 (Coord x (y + h)) cd
(inc_render’ d1 c0

(restrict_clip cd o (Coord (x + l + x’) (y +
t + y’)) (Dim w h))

(inc_render0 d1 c0
(restrict_clip cd o (Coord (x + l + x’) (y

+ t + y’)) (Dim w h))
(g C0 box_at bg_pos bg_dim c) (Coord (x + l

+ x’) (y + t + y’)))
(Coord (x + l + x’) (y + t + y’))) (Coord x’

y’)) =
composite g
(apply_clip (translate_clip cd (Coord x’ y’))

(inc_render’ d2 (Coord x (y + h)) Don’t_clip
(inc_render’ d1 c0

(restrict_clip Don’t_clip o (Coord (x + l
+ 0) (y + t + 0))

(Dim w h))
(inc_render0 d1 c0

(restrict_clip Don’t_clip o (Coord (x
+ l + 0) (y + t + 0))

(Dim w h))
(blank C0 box_at (Coord (x + l + 0) (y

+ t + 0)) (Dim w h) c)
(Coord (x + l + 0) (y + t + 0)))

(Coord (x + l + 0) (y + t + 0))) c0))
(Coord x’ y’)

First, to get rid of the annoying let...in syntax, we
use a remember tactic.

- remember (clip_box cd (Coord (x + l + x’) (y +
t + y’)) (Dim w h)) as bg;

destruct bg as [bg_pos bg_dim].

Then we apply several simplifications. composite_onto_blank
says that compositing onto a blank graphic at the zero
offset is a no-op. The inductive hypotheses IHd1, IHd2

allow us to normalize calls to inc_render’, replacing
the clip-directive parameter and the base graphic with
concrete clips and concrete compositing onto a base
graphic, respectively. We have to apply IHd1 with ex-
plicit arguments to pinpoint what we want to rewrite,
since rewrite IHd1 after the first would uselessly re-
expand when the clip-directive is already Don’t_clip

and the base graphic is already blank.

unfold composite0.
rewrite composite_onto_blank.
ring_simplify (x + l + 0) (y + t + 0).
rewrite IHd1.
rewrite IHd2.
rewrite inc_render0_equiv.
rewrite (IHd1 _ (restrict_clip Don’t_clip o (Coord

(x + l) (y + t))
(Dim w h))).

rewrite (inc_render0_equiv _ _
(restrict_clip Don’t_clip o (Coord (x + l) (y +

t)) (Dim w h))).
rewrite (IHd2 _ _ (_ CC _ @ _ CC _ @ _)).

At this point we can’t go much further without splitting
into case-analysis. We split into the cases where the
clip-directive is Don’t_clip versus Clip_to. We omit
the former since it is strictly easier. Then, as a first
step, we distribute clip over composite and normalize
associativity for composite.

destruct cd as [|[cx cy] [cw ch]]; simpl.
+ (* -- Don’t_clip case snipped -- *)
+ repeat rewrite clip_composite_distr.
repeat rewrite composite_assoc.

The next step is to prove that the background boxes
we render are the same on both sides. First, we rewrite
using clip_box_correct, which states that clipping a
box graphic gives a new box graphic at the right bounds
computed by box_intersect. Then, we use a lemma,
box_intersect_shift, to prove that the intersection
of two translated boxes equals the translation of the
intersection of the two original boxes.

rewrite clip_box_correct.
unfold clip_box in Heqbg.
remember (box_intersect (Coord (cx - x’) (cy -

y’)) (Dim cw ch)
(Coord (x + l) (y + t)) (Dim w h)) as bg’;

destruct bg’ as [bg_pos’ bg_dim’].
rewrite (composite_box_shift _ _ _ _ (Coord x’

y’)).
rewrite add_c0_r, sub_c0.
pose (box_intersect_shift
(Coord cx cy) (Dim cw ch)
(Coord (x + l + x’) (y + t + y’)) (Dim w h)
(Coord (-x’) (-y’))).

rewrite <- Heqbg in e.
unfold add_c at 1 2 in e.
ring_simplify (cx + - x’) (cy + - y’)
(x + l + x’ + - x’) (y + t + y’ + - y’) in e.

rewrite <- Heqbg’ in e.
apply pair_eq in e; destruct e.
rewrite H, H0.
clear - IHd1 IHd2.
destruct bg_pos; simpl.
ring_simplify (x0 + - x’ + x’) (y0 + - y’ + y’).

With this step complete, we turn our attention to prov-
ing that the child graphic has the correct clipping bounds,
which might be restricted depending on overflow. Hence,
we split into Visible | Hidden cases, the former of
which is fairly straightforward:

destruct o;
repeat rewrite clip_composite_distr;
repeat rewrite composite_assoc.

* simpl.
(* -- ring simplifications, snipped -- *)
auto.

Finally, the Hidden case; this is quite similar to the ear-
lier section showing that the background boxes are the
same on both sides, but using nested_clip_correct in-
stead of clip_box_correct. Notice that box_intersect_shift
is used in essentially the same way as before:

* unfold restrict_clip, clip_intersect.

remember (box_intersect (Coord cx cy) _ _ _) as
z;

destruct z as [[cx1 cy1] [cw1 ch1]].
unfold translate_clip, apply_clip, subtr_c.
repeat rewrite nested_clip_correct.
remember (box_intersect (Coord (x + l - (x +

l)) _) _ _ _) as z’;
destruct z’ as [[cx2 cy2] [cw2 ch2]].

rewrite box_intersect_comm in Heqz’.
pose (box_intersect_shift (Coord (cx - x’ - (x

+ l)) (cy - y’ - (y + t)))
(Dim cw ch) (Coord (x + l - (x + l)) (y + t -

(y + t))) (Dim w h)
(Coord (x + l + x’) (y + t + y’))).

unfold add_c in e.
rewrite <- Heqz’ in e.
(* -- ring simplifications, snipped -- *)
rewrite <- Heqz in e.
inversion_clear e.
clear - IHd1 IHd2.
(* -- ring simplifications, snipped -- *)
auto.

7. CONCLUSION/FUTURE WORK
7.1 Source Code
The source code for our Coq development is currently
available at https://github.com/jcai1/coq-dom.

7.2 Local Differential Renderer
A planned renderer we were unable to complete, but
within grasp of, is a differential renderer that not only
renders in layers but conservatively identifies changes
that can be made by repainting a subtree on top of a
previous rendering of its layer. For example, if the only
change to a layer is the solid background color of an
element, that element’s subtree can be redrawn instead
of making an entirely new rendering of its layer.

7.3 Future Work
Some future directions might include:

• Supporting alpha and transparency

• Simplifying many of the proofs by creating Ltacs
that automate some processes

• Proving more results about the reference renderer,
or that it conforms to an explicit specification

• Generalizing DOM elements to other things than
solid-colored boxes.

https://github.com/jcai1/coq-dom

	Introduction
	Modeling Graphics
	Modeling DOMs
	Attributes
	Position
	Width and height
	Overflow
	Background color

	Data Structure

	Proof strategy
	Overview
	Structure
	Graphics Proofs
	Rendering Proofs

	Renderers
	Reference Renderer
	Incremental Renderer
	Layering Renderer

	Proof walkthroughs
	A graphics lemma
	A render equivalence proof

	Conclusion/future work
	Source Code
	Local Differential Renderer
	Future Work

