
CS260 Project Proposal

Rob Bowden, David Holland, Eric Lu

April 17, 2017

1 Introduction

We are interested in file system crash recovery.
Both the FSCQ and the Yggdrasil logic is single-
threaded, so only one file system operation can
be in progress at once, and FSCQ also needs to
sync (repeatedly!) during/after each operation.
These restrictions, particularly the latter, are un-
fortunate and we believe we can lift them.

The interesting part of this is verifying the
post-crash recovery logic and functional correct-
ness in the presence of concurrent execution. In
the all-singing, all-dancing version of this project
we verify full functional correctness of a com-
plete file system, including crash recovery, and
output C code that can be run in a kernel. This
is not feasible in the amount of time available.

In order to finish something this semester we
are taking at least the following simplification
steps: (a) Using a small list of file system op-
erations.1 (b) Working with a model of a file
system; in particular, allowing blocks to store
Coq data structures directly. (c) Ignoring live-
ness. (d) Probably, admitting non-crash portions
of the functional correctness proofs.

We are prepared to ruthlessly simplify the file
system and the model further as needed to pre-
serve the core goals.

2 Goals

There are two things we want to prove. One
is correctness, specifically crash correctness; the

1Currently lookup, create, unlink, read, write, truncate,
fsync, and sync.

other is serializability.
For crash correctness, the proof for each file

system operation is a proof of its correspond-
ing Hoare triple, including a proof of the crash
condition. At the level of talking to the file sys-
tem, operations on files like e.g. write should
be specified in terms of traces of file operations.
(These can then be shown to be a refinement of
lower-level traces.) Such a trace can be written

Inductive fileop: Set :=
| FileWrite: bytes(*data+length*) ->

nat (*offset*) -> fileop
| FileTruncate: nat (*filesize*) -> fileop
end.
Inductive file_trace nat (list fileop) :=
| FileTrace: forall j ops:

j <= length(ops) -> file_trace j ops.

which has this crash condition:

forall f j ops,
exists k, j <= k /\ k <= length ops,
{{ trace_of_file f = file_trace j ops }}
crash
{{ trace_of_file f = file_trace k (take k ops) }}

The last operation guaranteed to be on disk is
j but we may retain more than that in a crash.
The Hoare triples for write and fsync can be
written as

forall f j ops bytes len,
{{ trace_of_file f = file_trace j ops }}
write f bytes len
{{ trace_of_file f =

file_trace j (ops ++ [FileWrite bytes len]) }}

forall f j ops,
{{ trace_of_file f = file_trace j ops }}
fsync f
{{ trace_of_file f = file_trace (length ops) ops }}

The complete correctness theorem is /\ over
all the file system operations. Serializability:

1



Inductive vfsop: Set := ...
Inductive vfsx (*execution*): Set :=
| VfsOp: vfsop -> vfsx
| VfsSeq: vfsx -> vfsx -> vfsx
| VfsPar: vfsx -> vfsx -> vfsx
end.
Inductive Serial (*no VfsPar*):

vfsx -> Prop := ...
Definition Serializes:

vfsx -> vfsx -> Prop := ...
Definition Equivalent:

vfsx -> vfsx -> Prop := ...
Theorem vfs_serializable:

forall execution,
exists execution’,

Equivalent execution execution’ /\
Serial execution’ /\
Serializes execution execution’.

Serializes is like Permutation but more
complicated, so it’s not immediately clear up
front how best to represent it. Equivalent
should be expressed in terms of file traces over
all files.

3 Schedule

There are three separate goals that will be split
amongst the three team members:

1. Writing the file system (David)

2. Proving the file system is correct according
to our concurrent crash Hoare logic (Rob)

3. Proving that the concurrent crash Hoare
logic is sound (Eric)

These assignments will not be strict, given that
the tasks are not of equal size.

There are four weeks remaining before the
deadline of May 8th. The goal for the first two
weeks is to have a “proof of concept” working,
whereby a single operation is verified correct
under a very simplified file system model. This
includes concurrency, asynchronous write back
caching, write ahead logging, and recovery.

Then, for the third week, we will work on ver-
ifying the remaining operations. At this point,
ideally the concurrent crash Hoare logic will
have been proven sound, so Eric can move to

proving things about the file system. Hopefully,
the proof of concept will provide a template from
which the remaining operations can be verified.

Finally, with all of the operations verified in-
dividually, in the final week we aim to prove the
serializability of operations run in parallel. There
are enough pieces that we hope to be able to get
something verified, even if it means cutting mul-
tiple operations and features.

4 Future Work

Everything we don’t get done in the course of the
semester (toward the full version of the project)
or that we’ve simplified away is future work:
handling bit encoding of file system metadata,
supporting subdirectories and the full set of di-
rectory operations, generating C code, generat-
ing C code that will fit into a real kernel, etc.

It might be interesting to emit Frama-C nota-
tions into the C output to allow crosschecking it.

An underlying goal is to produce a framework
that can be used with more than one file system
model, so in addition to modeling a very basic
made-up file system like we’re starting with, we
might model one or more real file systems. Prov-
ing the recovery theorem in the original FFS pa-
per would be an interesting exercise, but pos-
sibly maddening since it requires a much more
relaxed notion of correctness than we’re aiming
for and that increases the complexity.

It would be interesting to reason about the
complete state of the file system as seen by dif-
ferent processes and whether or not the state we
recover to is consistent with all views, including
possibly with side channels inducing additional
ordering constraints.

Then there’s the question of different disk
models, and different degrees of control over the
on-disk cache. One could look into proving tem-
poral bounds on data loss and could also try to
prove the absence of degenerate performance.

And of course, one should prove liveness,
since without that it’s correct to just fail after ev-
ery crash.

2


