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Abstract

Serverless computing provides a convenient in-
frastructure for performing computations in re-
sponse to certain triggers. In most common sev-
erless deployments, computations are executed
in virtual machines. As a result, the boot time
of a virtual machine is a primary component of
these services’ latency. We propose an alterna-
tive paradigm, in which incoming requests trig-
ger a flash-clone of an existing, pre-booted vir-
tual machine. Our implementation HyperFork
builds on top of KVM and utilizes the copy-on-
write functionality of the fork system call to im-
prove performance. We demonstrate that Hy-
perFork improves virtual machine start times by
nearly two orders of magnitude while maintain-
ing throughput. We find that copy-on-write per-
formance penalties are minimal for real-world
workloads and suggest methods for further im-
proving throughput.

1 Introduction

Serverless Computing. Serverless comput-
ing, also known as Function-as-a-Service (FaaS),
has become an increasingly prevalent platform
in the cloud computing ecosystem. In an at-
tempt to realize a vision of computation as a
utility, serverless computing allows users to run
application code in response to triggers with-
out provisioning infrastructure. In comparison
to current cloud computing platforms, clients
no longer have to maintain virtual machine im-
ages, are billed only for application computation
performed in response to requests, and bene-

fit from autoscaling to handle variable request
rates. [19] Platforms are available from all ma-
jor cloud computing vendors, including Amazon
Lambda [1], Azure Functions [2], and Google
Cloud Functions [3]. Several significant enter-
prise customers have moved parts of their ser-
vices onto serverless platforms, including the
news site The Guardian [4]. Serverless comput-
ing is currently an active area of research, with
many performance and theoretical improvements
to be made [24] [14] [17].

Serverless Infrastructure. The typical im-
plementation of a serverless computing platform
places user-submitted functions onto dynami-
cally created virtual machines (VMs). These
functions are intended to be light-weight state-
less programs. Because of the relatively short
run-times of serverless functions, a critical per-
formance constraint in serverless infrastructure
implementations is the scheduling latency of
functions—mainly comprised of the creation
time for instance VMs. A standard optimization
employed for start-up time is to keep instance
VMs running for a period of time, and schedule
function requests onto existing VMs. Another
property is the clear split in individual function
start-up latencies between warm-starts, in which
a function is scheduled to an already running in-
stance, and cold-starts, in which a new VM must
be created for the function. Functions from dif-
ferent customers are usually not placed in the
same VM for security and isolation reasons, but
one VM can host several instances of one cus-
tomer’s function.

Cold-start Latency. A central promise of
serverless computing services is rapid scalabil-
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ity. Meeting this demand at scale requires that
new function instances can be rapidly started to
service incoming requests. This is easy when
there remain available warm instances, but is
more difficult when a new cold instance must
be started. Prevous work has recorded Amazon
Lambda warm-start latencies of around 25ms,
and cold-start latencies of 250ms [24].

For cold-start, one significant bottleneck is the
boot time of a new VM. In the Amazon Fire-
cracker specification [5], new VMs are bench-
marked to boot in about 125ms, a significant
portion of cold-start latency. To improve cold-
start latencies, reductions in VM creation times
are needed. To create a VM, the host hypervisor
and virtual machine Monitor (VMM) must ini-
tialize virtual resources including vCPUs, mem-
ory, and other devices, then the guest kernel
must be loaded from disk and initialized in guest
memory. The guest kernel will then boot, and fi-
nally the function runtime can be started and the
request handled.

Flash-Cloning. Optimizing these steps could
dramatically reduce the startup latency of new
serverless functions. One technique to do so is to
employ flash-cloning. Instead of loading VM im-
ages from disk and booting a kernel, we propose
cloning existing reference VMs in memory. Addi-
tionally, we propose a copy-on-write mechanism
to reduce both the copy time and the memory
pressure of packing many VMs onto one host.
This method can be compared to the Unix fork
abstraction.

HyperFork. To create a new, isolated virtual
machine, we propose to re-create only the nec-
essarily distinct VMM components while cloning
the initialized guest memory and execution con-
text of pre-booted virtual machines. From this
insight we present HyperFork, a KVM-based
VM cloning implementation for serverless com-
puting. We demonstrate that HyperFork out-
performs standard VM creation latencies by
up to two orders of magnitude. We further
present a thorough analysis of the potential
performance degradation due to copy-on-write
memory sharing, and demonstrate that latency-
sensitive workloads display a marked improve-

ment in overall resource utilization without de-
graded performance.

Our implementation is open source and
available on Github at colavitam/hyperfork-
kvmtool. Benchmark utilities are available at
colavitam/hyperfork-dev.

The rest of the paper is organized as follows.
Section 2 provides a summary of related work.
Section 3 describes the technologies HyperFork
is built upon. Section 4 describes the design and
architecture of HyperFork. We evaluate its per-
formance in Section 5, and discuss the results
in Section 6. We conclude by outlining our im-
plementation’s current limitations and directions
for further research.

2 Related Work

Our work in this paper draws on concepts from
several lines of past research.

Virtualization Technology. Virtualization
technologies simulate the physical resources of
hardware in a software environment. This al-
lows multiple full operating system and applica-
tion stacks to be hosted on one physical machine.
Virtualization has numerous benefits, including
improving utilization for hosting providers who
can pack many virtual machines onto one physi-
cal machine, providing a strong isolation bound-
ary between mutually untrusting entities, and
adding a layer of fault tolerance since VMs are
not tied to a specific set of hardware and can
be moved if a physical machine fails. Modern
instruction set extensions from Intel and AMD
provide hardware-level support for virtualiza-
tion. [13]

A hypervisor is an entity which runs with full
privilege on the host system and coordinates vir-
tual machine guests. The Xen hypervisor [15],
which is widely used in the research community,
takes the place of a host operating system, and
coordinates paravirtualized guests1 through its

1The paravirtualization technique allows all guest in-
structions to run on the bare metal, but requires modifi-
cations to the guest operating system. This is contrasted
with full virtualization, where every instruction is emu-
lated by the hypervisor, or trap-and-emulate, where only
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special guest called Domain-0. The Linux ker-
nel supports virtualization through the module
KVM [20], which can be used through user-mode
virtual machine monitors such as QEMU [16],
kvmtool [6], or Amazon’s Firecracker [7].

Cold-start Reduction Efforts. A number of
different techniques have been proposed to re-
duce cold-start latencies. One broad technique
is to reduce the size and complexity of the VM
images which are used for serverless functions.
Because serverless functions in a cloud infras-
tructure run on a fairly limited and standard set
of physical machines, the number of specialized
drivers and kernel modules required to support
this hardware is vastly smaller than that in a
standard distribution. Additionally, because the
function will only need to run a single process, a
number of other optimizations can be made to re-
duce kernel size and boot time. Amazon utilizes
such a stripped down kernel in their Firecracker
VMM [7]. These kinds of operating system opti-
mizations have also been explored previously in a
more extreme form, with Unikernels [22] and the
Denali OS [25], where operating system features
are treated as dependencies of userland programs
and included conditionally.

Other approaches to efficient resource isola-
tion put the isolation boundary above the op-
erating system level. Containerization technolo-
gies such as Docker [8] utilize Linux cgroups [9]
and the seccomp [10] mechanism to isolate pro-
cesses. While these offer very fast startup times
compared to virtual machines, they are a weaker
form of isolation, as processes in containers still
share a kernel.

Another technique for reducing VM creation
latencies involves the process of flash-cloning, in
which new VMs are cloned from existing refer-
ence VMs. This is an analogous process to fork-
ing processes within Linux. One work which had
success with this technique was the Potemkin
Virtual Honeyfarm [23]. Lightweight VMs were
created as honeypots for detecting exploits in
the wild. Potemkin implements flash-cloning
within the Xen hypervisor [15] along with copy-
on-write memory sharing, but focuses on VM

privileged instructions are emulated.

density rather than start-up latency. We im-
plement flash-cloning within a KVM based in-
frastructure to more closely match with indus-
try standard serverless infrastructure and with
the goals of minimizing start-up latency and uti-
lizing native copy-on-write functionality within
the Linux kernel.

VM Live Migration. Flash-cloning relates
very closely to the more mature virtualization
technology of VM live migration [18] [21]. Cloud
infrastructure has long required the ability to ef-
ficiently migrate VMs across physical hosts. VM
live migration in general contains a superset of
the functionality needed for flash-cloning, but is
focused on efficiently supporting the migration
of VM state across a slow network with minimal
interruption to the VM. For serverless comput-
ing infrastructure, we are focused on extremely
low latency and therefore do not want the com-
plex techniques used for live-migration. How-
ever, we rely on features pioneered by live mi-
gration research in order to efficiently duplicate
virtual machine state.

3 Background

In this section we describe the platforms Hyper-
Fork is built upon, including an overview of the
KVM hypervisor and kvmtool virtual machine
monitor.

3.1 KVM Overview

KVM is a module within the Linux kernel which
provides virtualization support for running guest
machines within Linux processes. A full VMM
implementation will leverage functionality from
the KVM module within the kernel through
management layers in userspace. Figure 1 de-
picts such a system. The KVM kernel module
tracks and maintains most of the sensitive virtual
machine state. Each guest is isolated within a
standard Linux process, which encapsulates both
VMM management components and the running
guest. The VMM communicates with the KVM
kernel module via a set of ioctls performed on file
descriptors created through the KVM API. Out-
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side of the guest processes, VMMs often contain
CLI or http-based management programs for ad-
ministrators to manage VMs. For our implemen-
tation, the userspace VMM components are im-
plemented by kvmtool. These components are
conserved across a wide variety of KVM VMM
implementations including Firecracker [7].

3.2 kvmtool

kvmtool [6] is a VMM implementation for KVM
with the minimal functionality required to boot
a fully functional Linux kernel with very basic
virtualized devices. Supported devices include
block, network, filesystem, balloon, hardware
random number generation, and console virtual
devices, along with a legacy 8250 serial device.
kvmtool is provided as an alternative to heavier
VMM solutions such as QEMU [16], which sup-
ports a wide range of legacy devices and guest
configurations.

We selected kvmtool as our userspace VMM
as it offers a very similar set of functionality to
Firecracker, the VMM used to power Amazon
Lambda. Both VMMs are minimal KVM-based
implementations which make serverless sand-
boxes easy to deploy on Linux environments. By
using simple and minimalistic implementations,
startup times and memory footprints are mini-
mized. For increased security in the cloud, Fire-
cracker uses strict containerization schemes on
top of virtualization-based sandboxing and is im-
plemented in Rust. Firecracker offers a REST-
ful API for VM creation and management, and
provides no other ways to communicate with a
guest VM. In contrast, kvmtool uses a simple
command line interface and IPCs to communi-
cate with and manage guest VMs.

We chose kvmtool over Firecracker because
we found that Firecracker was more difficult to
work with due to its Rust codebase and con-
tainerization schemes. kvmtool provides a mini-
mal platform on which to test HyperFork applied
to Linux guests while closely approximating the
VMM of an industrial serverless platform.

To virtualize efficiently, kvmtool makes use of
a number of threads for managing vCPUs and
emulated devices. Userspace bookkeeping data

structures hold file descriptors which point to the
internal VM state maintained by the KVM ker-
nel module. When the virtual machine is started,
kvmtool creates a thread for each class of device,
including the terminal, 8250 serial console, block
devices, and other virtio devices. It then creates
several worker threads to handle arbitrary jobs
that may arise from the virtio devices. These
tasks include processing work items from vir-
tio queues and updating the console. In its de-
fault configuration, kvmtool allocates one worker
thread for each CPU on the host machine. As we
are virtualizing machines that are much smaller
than the host machine, we limited kvmtool to
one worker thread per VM. In addition to de-
vice threads, kvmtool also creates a thread to
manage the virtual machines through IPC calls.
This allows administrators to start, pause, stop,
and debug virtual machines using a simple com-
mand line interface. Finally, kvmtool creates one
thread per vCPU that proceeds in a loop, invok-
ing the KVM RUN ioctl, then handling any IO re-
quests or interrupts that may arise. Together,
this set of threads enables efficient virtualization
of the guest and its devices.

4 Implementation

We now describe the architecture and implemen-
tation of Hyperfork, along with our design deci-
sions regarding the flash-cloning operation.

For a KVM-based virtualization platform,
flash-cloning requires duplicating several pieces
of VM state. Where possible, we aim to make
heavy use of the Linux fork operation to du-
plicate this state, as it is highly optimized and
provides copy-on-write functionality for dupli-
cated pages. Specifically, guest memory will be
shared between the parent and child processes,
and will only be copied if written to. However,
the fork system call alone leaves kernelspace
management state unduplicated, cannot dupli-
cate all userspace VMM threads, and leaves
userspace bookkeeping file descriptors pointing
to the parent process’s KVM management struc-
tures, which are inaccessible in the child.

Duplicating kernel state can either be per-
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Figure 1: KVM Software Architecture

formed within the kernel, by coping in-kernel
data structures, or in userspace by extracting
and saving guest-specific state in memory be-
fore forking. We predict a kernel implementa-
tion may have slightly higher performance, but
for simplicity we implement our flash-cloning en-
tirely in userspace within kvmtool.2 We also add
an ad-hoc guest-to-host communication channel
with an extension to kvmtool to enable our ex-
perimental evaluations.

4.1 Flash-Cloning Support in kvmtool

Our userspace HyperFork implementation for
kvmtool proceeds in a series of phases. At a
high level, these phases are a triggering event,
pre-fork extraction of kernel state, forking, and
post-fork reconstruction of VMM management
state in the child.

First, the fork is triggered, either by an admin-
istrator invoking the FORK IPC via the command
line interface, or by the guest sending a signal to
the host indicating that it is ready to fork. In
either case, the IPC thread receives this signal,
pauses the virtual machine, and calls the pre-fork
routines.

2Note that a kernel implementation would also need to
update file descriptors and their memory mappings. This
creates quite a mess in practice.

Because KVM state becomes inaccessible in
the child process after the VMM has forked,
all kernel state that must be restored in the
child needs to be recorded by the parent be-
fore forking. Alternatively, this could be imple-
mented by IPC between the parent and child, in
which the state is sent after the fork is complete.
We have adopted the former approach. The
pre-fork routine thus saves all individual vCPU
state for all vCPUs (registers, interrupt configu-
ration), global vCPU state (interrupt configura-
tion, clock), and then locks all mutexes that must
survive in the guest. Note that it is not neces-
sary for the pre-fork routine to save the mem-
ory of the virtual machine. As the memory is
mapped in the VMM process, it is unaffected by
the fork system call and remains accessible. It
will, however, need to be remapped in the guest
following the fork.

Once the pre-fork routine is complete, kvmtool
calls the system call fork. In the parent, all of
the locks acquired by the pre-fork routines are
released and execution proceeds. In the child,
the post-fork routine is invoked, performing the
following to reconstruct necessary VMM state:

1. Acquire new file descriptors for the KVM
device and virtual machine

2. Create new file descriptors for the vCPUs
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3. Restore individual and global vCPU state3

4. Replace all eventfds used for signaling

5. Create new threads to handle devices and
the execution of each vCPU

6. Release all mutexes locked in the pre-fork
routine, and replace all condition variables4

7. Attach the terminal device to a new pseudo-
terminal, or detach it to accept no further
input5

Once the post-fork routine is complete, the
vCPUs begin executing in the child and the
flash-clone operation is complete.

4.2 Guest-to-Host Signaling

For guests with more complex forking behavior,
the guest may need to inform the host when it is
ready to fork. For example, a virtual machine
running a python program may chose to fork
on boot, after python has started, after modules
are loaded, or after further program initialization
has completed. As the guest’s userspace state is
very difficult to detect from the VMM, we im-
plement a rudimentary system for guest-to-host
signaling.

The guest-to-host signal consists of sending a
message over one of the processor’s ports. This
allows for a simple and very efficient way to send
short messages to the host, without requiring any
modifications to the guest kernel. This function-
ality is accessible from userspace through the C
standard library. We define one message to in-
dicate that the guest is ready to fork, and one
message to indicate that the guest has completed

3In the process of restoring this state, we encountered
a bug in how KVM handles setting the control registers
when they change whether the guest is in long mode. We
intend to investigate this further and report it if necessary.

4Condition variables must be replaced, as in many
pthread implementations they contain an internal mutex
that cannot be locked in the pre-fork routine. If this mu-
tex is locked by another thread when the IPC thread per-
forms the fork, the mutex will be permanently locked in
the child process.

5Due to a bug in kvmtool, operating with a pseudoter-
minal with no slave is not supported.

its task. To support our evaluations, we include
in the guest images a fork and done executable
that signal the two events which can be easily ex-
ecuted by guest benchmarks. Further messages
could easily be defined for a more complex de-
ployment.

5 Evaluation

We now describe the design of our benchmarks
for the kvmtool HyperFork implementation. We
have conducted both microbenchmarks, to test
the overhead of fork and copy-on-write page du-
plication, and end-to-end benchmarks to mea-
sure throughput and resource utilization im-
provements.

Experimental Setup. We perform all tests on
an m5.metal instance from Amazon Web Ser-
vices EC2, which features 96 logical processors
and 384 GB of memory. The file system image
used for all tests is a minimal Linux setup gen-
erated using the buildroot utility [11]. This spe-
cially generated image contains only the minimal
set of utilities and software needed for our bench-
marks. In typical use, the guest images used for
FaaS platforms may be more fully featured and
optimized, but such single purpose images have
no need for the flexibility of a general purpose
Linux distribution image. Since FaaS uses very
short-lived instances, there is no need for package
managers, update utilities, or other maintenance
software.

Using a minimal image also presents cold-boot
times in an idealistic environment, as a heav-
ier image would take longer to boot. We there-
fore show that our implementation offers sub-
stantial start time improvements over even best
case cold-boot scenarios.

5.1 Benchmarks

Fork Time. As HyperFork replaces the time
taken to boot a virtual machine with the time
taken to fork a virtual machine, we run several
experiments to test the time for a VM to fork.
These tests start a virtual machine, run basic
userspace initialization, and then fork. The child
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VMM marks a timestamp once it finishes restor-
ing KVM state.

As memory is duplicated through copy-on-
write in a Linux fork, memory is not physically
copied to the child process unitl it is modified.
However, it still takes time to walk through the
parent page table and mark shared memory as
read-only and to generate page tables for the
child process. For this reason we expect to see
fork times increase with the amount of memory
allocated to the virtual machine. We compare
the results of this fork time benchmark with the
time to cold-boot a VM.

Copy-on-Write. Though cloning VMs using
fork can decrease VM start times considerably,
the guest memory mapped in the parent and
child virtual machine share physical pages until
modified. As a result, modifications to memory
in each of the virtual machines can trigger page
faults and memory copies that may degrade per-
formance. We implement a benchmark to isolate
the performance degradation caused by copy-on-
write operations after cloning.

This program begins by requesting some
amount of memory using mmap, then writes 128
bytes of random data to each 4096-byte page al-
located. This forces pages to be allocated by the
host kernel. Next it signals to the host, which
forks the VM. Finally in each child the program
performs an additional pass, again writing ran-
dom data to each of those pages.

Each of those post-fork writes will trap into
the host kernel and induce a copy. To assess
copy-on-write overhead, we measure the time for
each of these memory passes. We compare passes
that trigger a page fault (either due to allocation
pre-fork, or copying post-fork). We also compare
passes that do not trigger a page fault (both pre-
fork and post-fork).

Python Function. In the lifecycle of a typi-
cal FaaS request a VM is started, any relevant
state is loaded, and the user-supplied function is
run. These services mostly use managed run-
times like NodeJS and Python. To simulate
a small latency-sensitive workload, we use the
numpy FFT correctness test, which runs in ap-
proximately 2.5 seconds. This represents a some-

what long latency-sensitive workload, and cap-
tures the typical scenario of a function which
starts an interpreter, loads external libraries, and
performs a CPU-bound computation.

We compare the total time of starting 64 sep-
arate VMs, and letting each run the benchmark
to completion, with the total time of forking an
equal number of VMs from one reference image
and letting them run to completion. We consider
the total CPU time savings of starting each of
these VMs by forking instead of booting. We also
consider a variety of different fork points, includ-
ing immediately after boot, after python loads,
and after packages are loaded. Finally, we verify
that benchmark performance is not degraded by
the forking process.

5.2 Results

Fork Time. Figure 2 shows the results for our
fork and boot time benchmarks. Error bars in-
dicate the 2.5- and 97.5-percentiles. Using the
small image constructed for our benchmarks, we
observed boot times of approximately 563 ms for
a 512 MB virtual machine. Boot times increased
slightly as memory size increased and overall ex-
hibited very low variance.

The fork operation, on the other hand, took
an average of 7.43 ms to complete a fork of a
512 MB virtual machine. This is an improve-
ment of nearly two orders of magnitude. Again,
we observed very little variance in our measure-
ments. Fork time appears to scale linearly with
the memory size of the virtual machine, likely be-
cause the number of page mappings to be dupli-
cated scales linearly with the memory size. How-
ever, even at large memory sizes, forking elimi-
nates more than 95% of the boot time.

Copy-on-Write. Figure 3 shows the results of
our copy-on-write test. Each graph shows the
performance before and after the fork operation.
Error bars indicate 2.5- and 97.5-percentiles.
When memory writes do not trigger a page
fault (left plot), performance does not appear to
change before or after a fork. This means that
after pages have been allocated (or reallocated
after being copied on write), there is no signifi-
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Figure 4: Cumulative CPU time for 64 runs of python benchmark

Fork Point Benchmark Time (ms) Relative Time

None 2500 ± 9.14 100%

After Boot 2433 ± 8.36 97.3%

After Interpreter 2409 ± 8.36 96.4%

After Packages 2401 ± 8.04 96.0%

Figure 5: Mean benchmark completion time (with 95% confidence interval)

cant memory performance penalty.

When writes do trigger a page fault (right
plot), we observe a considerable difference before
and after the fork operation. Before the fork op-
eration, page faults occur when we write to pages
that have not yet been allocated. The kernel
then allocates a zeroed page and returns. Af-
ter the fork operation, page faults trigger a page
copy. We observe a roughly 28% performance
penalty for the memory benchmark when pages
must be copied. As expected, the benchmark
time scales roughly linearly with the number of
pages for which a page fault is triggered.

Python Function. Figure 4 displays the cumu-
lative CPU time required for the python bench-
mark. The margins of error are negligible (less
than 0.2%). We see a significant improvement
when forking compared to booting 64 indepen-
dent virtual machines. Forking after boot im-
mediately results in a 24.8% CPU time sav-
ings across the 64 benchmarks. Forking after
starting the python interpreter saves 26.7% over

not forking. Forking after packages are loaded
saves 30.2% over not forking. Thus forking in-
stead of booting new virtual machines can result
in significant resource savings for servers run-
ning short duration or latency sensitive serverless
workloads. This effect would be accentuated for
shorter jobs and more minor for longer ones.

Figure 5 shows the mean benchmark comple-
tion times for each forking scheme. Interestingly,
we do not observe any performance degradation
when forking instead of booting. In fact, forking
exhibits a slight (but statistically significant) re-
duction in benchmark completion time. We sus-
pect this may be due to increased memory local-
ity due to shared pages after forking.

6 Discussion

Our fork time benchmarks demonstrate an im-
provement of roughly two orders of magnitude
in VM start time. This can shave hundreds of
milliseconds off of serverless latencies and make
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serverless a more attractive platform for latency-
sensitive workloads such as web hosting. Fur-
thermore, we observe some overhead from copy-
on-write page faults, but note that these over-
heads are a one-time cost per virtual machine:
once a page is duplicated, further writes do not
incur duplication overhead. Furthermore, when
booting a virtual machine, writing to a page for
the first time would trigger a page fault for al-
location anyway. Therefore, the performance re-
duction is only relative to a page fault for allo-
cation. Our benchmark estimates this overhead
to be in the range of 28–33%.

We may be able to improve this result by du-
plicating pages in the background in a similar
manner to Snowflock [21]. Furthermore, with
guest cooperation, the guest kernel can signal
what pages are likely to be duplicated, such as
those mapped writeable in userland processes.
Additionally, some pages can avoid being copied
at all, such as those used for the kernel slab al-
locator. We suspect these optimizations can re-
duce the overhead imposed by copy-on-write du-
plication.

While we invested limited time in optimizing
the Linux kernel we used for testing, we were not
able to reproduce the reported 125 ms boot time
of Amazon’s microVMs [5]. Though the time
required for Hyperfork to fork a virtual machine
is still considerably less than this, reproducing a
microVM environment would provide a state-of-
the-art baseline for comparison. It may also be
instructive to benchmark start times for Docker
and other alternative isolation methods.

Current Limitations. While our current Hy-
perFork implementation provides a reliable fork
primitive for our basic benchmarks, it has sev-
eral limitations that would need to be addressed
before production deployment. Currently, only
read-only root filesystems are supported. Read-
write filesystems can cause corruption when mul-
tiple forked virtual machines have contradictory
state. We observed this several times in prac-
tice. This could be addressed by adding an over-
lay layer to the block device driver that stores
writes to the file system in VMM memory in-
stead of persisting them to disk, making writes

from different virtual machines invisible to each
other.

We have not added support for all of kvmtool’s
devices to Hyperfork. Specifically, the network
device and virtio balloon device are not sup-
ported. Additionally, kvmtool has an outstand-
ing bug in its terminal emulation that manifests
in degraded performance after forking. We have
worked around this in our current implementa-
tion.

Additionally, there is an race condition in the
kvm-clock feature, a paravirtualized clock acces-
sible from the guest virtual machine. This mani-
fests itself as occasional non-monotonicity in the
guest, causing prolonged kernel-level stalls in the
guest virtual machine. For our tests, we have
disabled kvm-clock to avoid these problems. We
suspect it can be resolved by careful adjustment
of the clock when restoring virtual machine state.

We have made no attempts to support ar-
chitectures other than 32/64-bit x86. As some
serverless deployments begin to utilize ARM for
certain workloads, support for other architec-
tures is becoming increasingly important. We
do not anticipate much difficulty in porting our
implementation to other architectures due to the
regularity of the KVM API.

Additional Research. Currently, HyperFork
operates entirely in userspace by serializing all
KVM state pre-fork and then recreating it post-
fork. We suspect that a kernel-mode implemen-
tation may offer further performance benefits.
This avoids the overhead of copying KVM state
into userpace and then back into the kernel, in-
stead just passing the state directly between the
KVM backing structures for the parent and child
processes. We began an implementation of such
a kernel-mode HyperFork primitive, but aban-
doned it due to ballooning complexity. As the
total state copied from KVM to userspace is on
the order of several kilobytes, we suspect savings
would be insufficient to justify the complexity.

Furthermore, for virtual machines with larger
memory footprints, the linear scaling of fork time
cuts into performance improvements due to the
large pagetables which must be duplicated. One
potential solution is to use hugepages, a Linux
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feature that enables using page table mappings
larger than the standard 4096-byte pages. By
using 2 MB pages, we can reduce the number of
mappings to be copied by a factor of 512. This
may significantly reduce the linear component
of the fork operation. Note, however, that this
may have implications for memory performance,
as larger pages must be duplicated in their en-
tirety in the case of a page fault (absent a more
complex copy-on-write mechanism) [12].

There are several serious security concerns
with cloning virtual machines in production.
ASLR and KASLR are defeated, since the guest
memory is copied exactly. It is also not desirable
for two guest VMs to share a source of random-
ness, so any random generators would need to
be re-seeded in the child VM. A more thorough
analysis of security risks introduced by flash-
cloning of virtual machines is needed. These
results can motivate decisions as to whether
serverless instances for different customers can
be forked from the same reference virtual ma-
chine.

7 Conclusion

We have presented HyperFork, a virtual machine
flash-cloning implementation for serverless com-
puting. Our evaluation demonstrated that Hy-
perFork reduces virtual machine start time by
up to two orders of magnitude while maintain-
ing end-to-end performance. Furthermore, over-
all system utilization is drastically reduced for
simultaneous latency-sensitive workloads. Vir-
tual machine cloning is an effective method for
reducing the latency and resource cost of server-
less deployments.

References

[1] https://aws.amazon.com/lambda/, ac-
cessed 2019.

[2] https://azure.microsoft.com/en-us/

services/functions/, accessed 2019.

[3] https://cloud.google.com/functions/,
accessed 2019.

[4] https://aws.amazon.com/solutions/

case-studies/the-guardian/, accessed
2019.

[5] https://github.com/

firecracker-microvm/firecracker/

blob/master/SPECIFICATION.md, accessed
2019.

[6] https://github.com/clearlinux/

kvmtool, accessed 2019.

[7] https://lwn.net/Articles/775736/, ac-
cessed 2019.

[8] https://www.docker.com/, accessed 2019.

[9] https://www.kernel.org/doc/

Documentation/cgroup-v1/cgroups.txt,
accessed 2019.

[10] https://www.kernel.org/doc/

Documentation/prctl/seccomp_filter.

txt, accessed 2019.

[11] https://buildroot.org/, accessed 2019.

[12] https://www.kernel.org/doc/

Documentation/vm/hugetlbpage.txt,
accessed 2019.

[13] K. Adams and O. Agesen. A compari-
son of software and hardware techniques for
x86 virtualization. In Proceedings of the
12th International Conference on Architec-
tural Support for Programming Languages
and Operating Systems, ASPLOS XII, pages
2–13, New York, NY, USA, 2006. ACM.

[14] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell,
V. Muthusamy, R. Rabbah, P. Suter, and
O. Tardieu. The serverless trilemma: Func-
tion composition for serverless computing.
In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas,
New Paradigms, and Reflections on Pro-
gramming and Software, Onward! 2017,
pages 89–103, New York, NY, USA, 2017.
ACM.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt,

11

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://aws.amazon.com/solutions/case-studies/the-guardian/
https://aws.amazon.com/solutions/case-studies/the-guardian/
https://github.com/firecracker-microvm/firecracker/blob/master/SPECIFICATION.md
https://github.com/firecracker-microvm/firecracker/blob/master/SPECIFICATION.md
https://github.com/firecracker-microvm/firecracker/blob/master/SPECIFICATION.md
https://github.com/clearlinux/kvmtool
https://github.com/clearlinux/kvmtool
https://lwn.net/Articles/775736/
https://www.docker.com/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://buildroot.org/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt


and A. Warfield. Xen and the art of vir-
tualization. In Proceedings of the Nine-
teenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’03, pages 164–177,
New York, NY, USA, 2003. ACM.

[16] F. Bellard. Qemu, a fast and portable dy-
namic translator. pages 41–46, 01 2005.

[17] J. M. Hellerstein, J. M. Faleiro, J. E. Gonza-
lez, J. Schleier-Smith, V. Sreekanti, A. Tu-
manov, and C. Wu. Serverless computing:
One step forward, two steps back. CoRR,
abs/1812.03651, 2018.

[18] M. R. Hines and K. Gopalan. Post-copy
based live virtual machine migration us-
ing adaptive pre-paging and dynamic self-
ballooning. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments,
VEE ’09, pages 51–60, New York, NY, USA,
2009. ACM.

[19] E. Jonas, J. Schleier-Smith, V. Sreekanti,
C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yad-
wadkar, J. Gonzalez, R. Ada Popa, I. Sto-
ica, and D. A. Patterson. Cloud program-
ming simplified: A berkeley view on server-
less computing, 02 2019.

[20] A. Kivity Qumranet, Y. Kamay Qumranet,
D. Laor Qumranet, U. Lublin Qumranet,
and A. Liguori. Kvm: The linux virtual
machine monitor. Proceedings Linux Sym-
posium, 15, 01 2007.

[21] H. A. Lagar-Cavilla, J. A. Whitney, A. M.
Scannell, P. Patchin, S. M. Rumble,
E. de Lara, M. Brudno, and M. Satya-
narayanan. Snowflock: Rapid virtual ma-
chine cloning for cloud computing. In Pro-
ceedings of the 4th ACM European Confer-
ence on Computer Systems, EuroSys ’09,
pages 1–12, New York, NY, USA, 2009.
ACM.

[22] A. Madhavapeddy and D. J. Scott. Uniker-
nels: Rise of the virtual library operating

system. Queue, 11(11):30:30–30:44, Dec.
2013.

[23] M. Vrable, J. Ma, J. Chen, D. Moore,
E. Vandekieft, A. C. Snoeren, G. M.
Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual
honeyfarm. In Proceedings of the Twenti-
eth ACM Symposium on Operating Systems
Principles, SOSP ’05, pages 148–162, New
York, NY, USA, 2005. ACM.

[24] L. Wang, M. Li, Y. Zhang, T. Ristenpart,
and M. Swift. Peeking behind the curtains
of serverless platforms. In Proceedings of the
2018 USENIX Conference on Usenix An-
nual Technical Conference, USENIX ATC
’18, pages 133–145, Berkeley, CA, USA,
2018. USENIX Association.

[25] A. Whitaker, M. Shaw, and S. D. Grib-
ble. Denali: A scalable isolation kernel.
In Proceedings of the 10th Workshop on
ACM SIGOPS European Workshop, EW 10,
pages 10–15, New York, NY, USA, 2002.
ACM.

12


	Introduction
	Related Work
	Background
	KVM Overview
	kvmtool

	Implementation
	Flash-Cloning Support in kvmtool
	Guest-to-Host Signaling

	Evaluation
	Benchmarks
	Results

	Discussion
	Conclusion

