
Melange:

Toward Better Persistent Storage for Serverless Applications

Kristen Eberts and Benjamin D. Lee

May 20, 2019

Abstract

Modern Function-as-a-Service (FaaS) offerings
from cloud providers lack the ability to share
state between functions. Functions can be ter-
minated at any time, so local storage is inher-
ently ephemeral. A common design pattern is
for serverless applications to use a cloud stor-
age layer to hold persistent state. However, cur-
rent storage offerings present distinct tradeoffs
in terms of cost, durability, consistency, and per-
formance. We describe the design of a serverless
storage layer that could autoscale along multi-
ple dimensions within the tradeoff space. Imple-
menting such a design within modern services
has many constraints and challenges; we discuss
possible solutions and current roadblocks.

1 Introduction

In serverless applications, computation and stor-
age are neither co-located nor co-provisioned.
As such, they scale independently [1]. Server-
less functions are inherently stateless; the local
storage they use is ephemeral and not shared
between functions. Therefore, they must store
durable state in a persistent storage layer [2].

Serverless computation is often used for ap-

plications with unpredictable or highly variable
load. This makes it difficult to use a server-
ful data store; serverful stores must be pre-
provisioned to handle expected load. A com-
mon design pattern, therefore, is to use a server-
less storage layer such as AWS Simple Storage
Service (S3) or DynamoDB to store persistent
state. However, S3 and DynamoDB exhibit very
different tradeoffs in cost and performance. Dy-
namoDB offers lower average latency than S3,
but at a higher throughput cost; S3 offers a lower
storage cost than DynamoDB, but costs more for
equivalent IOPS [3, 4, 5, 6].

Our project examines the possibility of com-
bining S3 and DynamoDB into a flexible server-
less object store. Our proposed design, dubbed
Melange, would use DynamoDB as a resizable
cache for S3. This would permit applications to
achieve an acceptable combination of cost, la-
tency and throughput anywhere within the sup-
ported range of the underlying services.

Our paper is structured as follows: Section
2 provides background on the problems with
serverless durable storage; Section 3 describes a
potential solution to that problem, a system we
call Melange; Section 4 discusses the challenges
we encountered trying to implement Melange;
Section 5 discusses our application of Melange

1



to a real-world system; Section 6 evaluates that
application and discusses its drawbacks; and sec-
tion 7 presents an overview of related work in
this area.

2 Background

Serverless computing has two primary com-
ponents: Functions-as-a-Service (FaaS) and
Backend-as-a-Service (BaaS). FaaS is a less ma-
ture market segment than BaaS. Amazon S3
provided a “serverless” infrastructure layer sev-
eral years before the concept of serverless com-
puting was introduced by Amazon Lambda [1].
FaaS offerings are more coherent and compat-
ible than BaaS options, perhaps because BaaS
was developed before serverless design patterns
were common. For example, Amazon’s server-
less computation offerings consist of Amazon
Lambda, Amazon Lambda@Edge (Lambda, but
in a CDN) and AWS IoT Greengrass (Lambda,
but in your fridge) [7]. The underlying frame-
work is still Amazon Lambda; the difference be-
tween these services is location and latency, not
functionality.

In contrast, Amazon’s BaaS offerings each
have a different tradeoff between cost, durabil-
ity and performance. There is some flexibility
within offerings; for instance, S3 allows users
to choose different tradeoffs based on their ex-
pected usage patterns [6]. But DynamoDB and
S3, or S3 and Amazon Elastic File System, can-
not interface with each other as easily as Amazon
Lambda can interface with Lambda@Edge and
Greengrass. (See Table 1 for an explanation of
the differences between CRUD operations in S3
Select and DynamoDB.)

Furthermore, BaaS options have different as-
sumptions about consistency, performance and

object size. Object stores are easy to scale and
inexpensive for data at rest. However, retrieving
data is usually a high-latency, expensive opera-
tion. Because of this, attaining high IOPS from
an object store like S3 is very costly. Conversely,
serverless key-value stores like DynamoDB are
capable of very high throughput–but have much
higher storage costs for data at rest [1]. Cur-
rently, there is no easy way to combine multi-
ple cloud storage offerings into a single, flexible
storage layer that mitigates the downsides of the
underlying technologies.

What we described above is an optimization
problem, one that was solved decades ago by
the introduction of memory hierarchies. The
”ideal” hardware storage device would be very
inexpensive, very fast and very large. However,
no technology can be superior on all three di-
mensions. Every storage option has tradeoffs:
SSDs are faster than hard disks but also more
costly for the same capacity; SRAM has higher
throughput and lower latency than DRAM but
is so expensive that it’s typically only used for
registers. However, by combining multiple stor-
age options you can build a system that is closer
to the storage ideal than any of the underlying
technologies is [8]. That fact is the core premise
of Melange.

3 Melange: The Dream

It seemed logical, based on our background
knowledge, to suggest a new BaaS offering that
uses the memory hierarchy principle to overcome
the limitations of individual storage technolo-
gies. Essentially, we wanted to make a ver-
sion of ElastiCache that is truly elastic. In
its most ambitious form, our proposed solu-
tion would contain a large authoritative stor-

2



age layer and an faster-but-costlier autoscaling
cache layer. Melange’s control plane would au-
tomatically scale the cache layer up to satisfy
performance demands or down to meet cost con-
straints. If it were implemented by a cloud stor-
age provider, it would use a combination of SSDs
(slow, cheap, large) and DRAM (fast, expensive,
small) to provide a persistent cache/storage layer
for serverless applications.

Unfortunately, the authors of this paper are
not a cloud storage provider. So instead of im-
plementing our design on SSDs and DRAM, we
tried to implement it on S3 and DynamoDB. The
title of the next section, “Challenges,” hints at
our results.

4 Challenges

Implementing a serverless multi-service CRUD
data store requires a significant amount of de-
velopment to reconcile the incompatible APIs.
Each of the three serverless data stores we tested
(S3, Aurora Serverless, and DynamoDB) has a
completely different interface. Aurora Serverless
operates as a normal SQL database, while S3
Select uses a limited subset of SQL [9] and Dy-
namoDB is a NoSQL key-value and object store.

S3 select is one of the most interesting offerings
on the market due to the fact that it is not ex-
plicitly a serverless database offering, although it
can be used as one in certain cases. These cases
are limited, as S3 Select’s queries are themselves
limited to the SELECT statement and the FROM,
WHERE, and LIMIT clauses. Subqueries and joins
are not supported, nor is data modification. As
such, S3 Select is only feasible as a write-once
read-many storage system.

By far the most fully featured serverless data
store is AWS Aurora Serverless. However, by

Amazon’s own admission, Aurora Serverless’s
use case is for variable or infrequent loads.
This is due to the fact that while ”serverless”,
Aurora Serverless is a very crude implementa-
tion of a serverless computing system. Basi-
cally, Amazon turns the server on and off in
response to demand. After a query has been
completed, the server remains active for a con-
figurable amount of time, currently limited to no
less than five minutes. In practice, this system
results in a solution that is minimally simpler
than the regular serverful Aurora provisioned ca-
pacity at the expense of potentially slow scal-
ing (both up and down) [11]. Aurora Server-
less also has the “feature” of having a cooldown
period for scaling down but no cooldown pe-
riod for scaling up, and has erratic scaling be-
havior. For example, a simple select * from

information schema.tables; query uses two
capacity units instead of one, despite there be-
ing no load on the database other than that one
query. We therefore eliminated Aurora Server-
less as an option because we empirically deter-
mined that, when cold, its latency is worse than
that of S3 Select (on the order of tens of sec-
onds) and when hot, its latency is comparable
to DynamoDB.

DynamoDB is positioned as the serverless
database offering for AWS. However, its object
size limitation of 400 KB results in numerous
challenges. Indeed, the DynamoDB best prac-
tices documentation specifically recommends the
use of S3 to store objects that cannot fit into
DynamoDb [10]. However, despite this recom-
mendation, there is no type of official interface
between DynamoDB and S3, thereby requiring
each developer to implement their own. In an
effort to characterize the intersection between S3
Select and DynamoDB, we attempted to imple-
ment a shim that made use of DynamoDB for

3



Action S3 Select DynamoDB

Create data Create a bucket and upload
to the bucket in any standard
tabular format (e.g. CSV)

Create a table and put a
JSON-esque document in the
table via API

Read data Submit bucket identifier, file-
name, SQL query, and in-
put/output serialization meth-
ods

Submit a NoSQL JSON query
in DynamoDB-specific format

Update data Not supported in-place; must
upload a new version

Submit JSON containing
unique key and fields to
change in DynamoDB-specific
format

Delete data Automatic deletion as a con-
figurable bucket policy or
manual deletion via API

Automatic deletion via a de-
clared integer time-to-live at-
tribute or manual deletion via
API

Table 1: While both S3 with S3 Select and DynamoDB offer CRUD operations, their APIs are
drastically different [9, 10].

frequently accessed data and S3 Select for large
and infrequently used data.

5 Implementation

As an experiment, we attempted to implement a
Melange-based system for DNA sequence visual-
ization. Specifically, we modified the DNAvisu-
alization.org serverless architecture [12] to sup-
port not only S3 Select but also DynamoDB.

DNAvisualization.org’s basic premise is that
it takes user-submitted DNA sequences, which
can range in size from one letter (or base) to
4.5 million bases, and transforms them into two-
dimensional visualizations for interactive explo-
ration. Due to the nature of DNA in which sin-
gle bases can have a drastic impact (the muta-
tion that causes sickle-cell anemia is caused by a
single-base difference), every base must be rep-

resented in the visualization. However, as the
number of bases increases, it is not possible to
display them all at once. Therefore, DNAvi-
sualization.org performs the transformation and
stores the visualization as a list of x and y co-
ordinates in S3. When a user zooms in on a re-
gion, their request is routed to a Lambda which
queries S3 via S3 Select for the coordinates in
the new region, downsamples the data to pre-
vent overloading the browser, and returns the
data to the client.

This architecture allows for the display of
DNA sequences whose lengths span six orders
of magnitude. However, the use of S3 as the sole
data store presents usability issues. While large
sequences are well served by S3, which has enor-
mous bandwidth for uploads, S3 is not ideal for
storing the transformations of small sequences,
which can comfortably fit in DynamoDB (or po-

4



tentially the user’s browser). Additionally, when
zooming in closely into a small region, the sys-
tem still routes queries to S3, despite the fact
the data was already fetched. We therefore im-
plemented a Melange cache for DNAvisualiza-
tion.org using DynamoDB.

Our implementation of Melange for DNA vi-
sualization centers around making the sequence
x range query API of the site faster without re-
quiring any changes to the client. In essence,
when a user requests a given x range for a se-
quence ID, Melange first checks to see if the size
of the x range puts it into the range of sequence
lengths capable of being stored in DynamoDB.
We empirically determined this this length to be
12,000 bases of DNA stored as a list of maps.
If the DNA could potentially be in DynamoDB,
we attempt to fetch it and, if there is any data
stored in DynamoDB matching the sequence ID,
validate that the data contains the requested x
range. If there is, Melange extends time to live
(TTL) of the object by one hour. If the is not any
data or the data does not match the requested
x range, Melange falls back on S3, which stores
all of the data. Once the requested x range is
located, if the x range can fit into DynamoDB,
it is cached with a one hour TTL and returned
to the user.

6 Evaluation and Discussion

We find that Melange is successful in reducing
query latency from 8 seconds for a 150 base sub-
sequence of a 4.1 million base sequence to 61 ms
from DynamoDB. Furthermore, our implemen-
tation of Melange is capable of correctly identi-
fying when a requested region is a subset of the
region stored in DynamoDB.

Despite successfully implementing a proof-of-

concept of Melange, there is presently no com-
pelling reason to use it over existing web tech-
nologies for DNAvisualization.org. Specifically,
the small size of DynamoDB documents limits
its usefulness as a cache for S3. The maximum
object size in S3 is 5 TB, whereas the largest
object size supported in DynamoDB is 400 KB
[13]. Because the objects are limited to stor-
ing 12,000 bases of DNA, the latency incurred
by invoking a Lambda via API Gateway, query-
ing DynamoDB, and updating the TTL for a
stored object is greater than the use of standard
web storage technologies such as the NoSQL In-
dexedDB [14], which supports greater than 10
MB of storage [15]. As such, for this application,
the use of DynamoDB increases the cost of op-
eration without increasing performance. There-
fore, future implementations of DNAvisualiza-
tion.org will focus on the use of caching in the
browser rather than in DynamoDB. Indeed, the
algorithm described in the implementation could
be implemented equally well in the browser with-
out incurring the cost of execution in a Lambda.
Unfortunately, not all users of serverless comput-
ing are connecting via browser with local storage
on which to rely. As such, the need for a service
which can handle a wide range of data scales is
still applicable.

7 Related Work

The Pocket serverless storage service, like
Melange, places state on different tiers based on
performance and cost criteria. However, Pocket
is targeted toward ephemeral computation work-
loads, and is more fault-tolerant than Melange.
It uses distributed state to parallelize computa-
tions, whereas Melange’s distributed state is or-
ganized in a cache hierarchy [13].

5



Facebook’s use of memcached to create
memcache, a distributed key-value store with a
look-aside cache, was very influential in our early
attempts at building Melange. Like Melange,
memcache treats the main data store as the
authoritative version [16]. Unlike memcache,
Melange benefits from auto-scaling infrastruc-
ture and need not manually partition clusters.

The Anna distributed key-value store is a
highly advanced system that uses multiple ac-
tors to modify state that is stored in one or more
multi-core machines. Anna is not implemented
in a serverless style, though it is extremely scal-
able. Anna is a more advanced version of our
original ambition for Melange, which was to cre-
ate a highly-flexible KVS. Anna’s coordination-
free model, use of lattice data structures, and
consistency assumptions are all more advanced
than our design [17].

The most closely related project to Melange is
Tiera, a multi-tiered cloud object store. Melange
shares several key design characteristics with
Tiera, with the notable difference that Tiera
uses serverful storage tiers and requires clients
to attach provisioned instances of their desired
tiers. Like Melange, Tiera is restricted to an ob-
ject storage model because it is the only model
supported by all of its underlying tiers. The
Tiera design offers inspiration for future work on
Melange. For example, applications can assign
tags to objects in Tiera and declare policies for
objects with certain tags [18].

Our proposed Melange design, as well as the
related works discussed above, could mitigate
some of the constraints of existing serverless
storage options. But none of them address a
core limitation of serverless functions: the fact
that function instances cannot maintain persis-
tent local state. That may be a temporary
problem, though. Azure Durable Functions is

a FaaS extension that permits functions to call
other functions directly, and guarantees that lo-
cal state will be preserved in the event that a pro-
cess recycles or its container is rebooted. How-
ever, Durable Functions must be explicitly or-
chestrated, and does not automatically cache re-
sponses [19]. We hope that other cloud providers
will follow suit and enable durable local storage
for serverless functions.

8 Conclusion

Persistent storage for serverless apps is a persis-
tent problem for serverless developers. We pro-
pose a better solution than the current serverless
storage offerings, a system called Melange that
would be capable of seamlessly integrating the
various data storage options on the market. We
tested a prototype using S3 as the long-term and
large-object storage level with DynamoDB act-
ing as a cache on an existing serverless web app
architecture. We found that DynamoDB’s docu-
ment size restrictions are such that it is presently
no better than browser-based storage for the ap-
plication we tested. We believe that this prob-
lem is solvable, but not by combining existing
serverless storage products. A superior server-
less storage product would have to be developed
from the hardware up so that the storage tiers
are mutually compatible. We hope such a service
will become available in the future.

The source code for our prototype may be
found at https://git.io/fj8Ny.

References

[1] Eric Jonas et al. Cloud Programming
Simplified: A Berkeley View on Server-
less Computing. Tech. rep. UCB/EECS-

6

https://git.io/fj8Ny


2019-3. University of California at Berke-
ley, 2019. url: https : / / www2 . eecs .

berkeley . edu / Pubs / TechRpts / 2019 /

EECS-2019-3.pdf.

[2] Programming Model - AWS Lambda. 2019.
url: https : / / docs . aws . amazon .

com/lambda/latest/dg/programming-

model-v2.html.

[3] Amazon S3 Pricing. 2019. url: https://
aws.amazon.com/s3/pricing/.

[4] Amazon DynamoDB Pricing for On-
Demand Capacity. 2019. url: https://

aws . amazon . com / dynamodb / pricing /

on-demand/.

[5] Read/Write Capacity Mode - Amazon Dy-
namoDB. 2019. url: https : / / docs .

aws . amazon . com / amazondynamodb /

latest / developerguide / HowItWorks .

ReadWriteCapacityMode.html.

[6] Object Storage Classes - Amazon S3. 2019.
url: https : / / aws . amazon . com / s3 /

storage-classes/?nc=sn&loc=3.

[7] Serverless Computing fffdfffdfffd Amazon
Web Services. 2019. url: https://aws.
amazon.com/serverless/.

[8] David Money Harris and Sarah L. Har-
ris. Digital Design and Computer Architec-
ture. Second edition. New York, NY, USA:
Morgan Kaufmann, 2013. isbn: 978-0-12-
394424-5.

[9] SQL Reference for Amazon S3 Select and
Glacier Select. 2019. url: https://docs.
aws.amazon.com/AmazonS3/latest/dev/

s3 - glacier - select - sql - reference.

html.

[10] Best Practices for Storing Large Items and
Attributes. 2019. url: https : / / docs .

aws . amazon . com / amazondynamodb /

latest / developerguide / bp - use - s3 -

too.html.

[11] How Aurora Serverless Works. 2019. url:
https : / / docs . aws . amazon . com /

AmazonRDS / latest / AuroraUserGuide /

aurora - serverless . how - it - works .

html.

[12] Benjamin D. Lee, Michael A. Timony, and
Pablo R. Ruiz. “DNAvisualization.org: A
Serverless Web Tool for DNA Sequence
Visualization”. In: Nucleic Acids Research
(2019). doi: 10.1093/nar/gkz404.

[13] Ana Klimovic et al. “Pocket: Elastic
Ephemeral Storage for Serverless Analyt-
ics”. In: Proceedings of the 13th USENIX
Symposium on Operating Systems Design
and Implementation. OSDI ’18. Carlsbad,
CA: USENIX Association, 2018, pp. 427–
444. url: https : / / www . usenix . org /

system/files/osdi18-klimovic.pdf.

[14] ndexed Database API 3.0. 2019. url:
https://w3c.github.io/IndexedDB/.

[15] Browser storage limits and eviction cri-
teria. 2019. url: https : / / developer .

mozilla . org / en - US / docs / Web / API /

IndexedDB _ API / Browser _ storage _

limits_and_eviction_criteria.

[16] Rajesh Nishtala et al. “Scaling Memcache
at Facebook”. In: Proceedings of the 10th
USENIX Symposium on Networked Sys-
tems Design and Implementation. NSDI
’13. Lombard, IL: USENIX Association,
2013, pp. 385–398. url: https://www.

usenix.org/system/files/conference/

nsdi13/nsdi13-final170_update.pdf.

7

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://aws.amazon.com/s3/storage-classes/?nc=sn&loc=3
https://aws.amazon.com/s3/storage-classes/?nc=sn&loc=3
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
http://dx.doi.org/10.1093/nar/gkz404
https://www.usenix.org/system/files/osdi18-klimovic.pdf
https://www.usenix.org/system/files/osdi18-klimovic.pdf
https://w3c.github.io/IndexedDB/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf


[17] Chenggang Wu et al. “Anna: A KVS For
Any Scale”. In: IKDE (Feb. 2019). url:
http : / / db . cs . berkeley . edu / jmh /

papers/anna_ieee18.pdf.

[18] Ajaykrishna Raghavan, Abhishek Chan-
dra, and Jon B Weissman. “Tiera: Towards
Flexible Multi-Tiered Cloud Storage In-
stances”. In: Proceedings of the 15th Inter-
national Middleware Conference. Middle-
ware ’14. Bordeaux, France: ACM, 2014.
doi: 10 . 1145 / 2663165 . 2663333. url:
http : / / dcsg . cs . umn . edu / Papers /

tiera_middleware14.pdf.

[19] What are Durable Functions? 2019. url:
https : / / docs . microsoft . com / en -

us/azure/azure- functions/durable/

durable-functions-overview.

8

http://db.cs.berkeley.edu/jmh/papers/anna_ieee18.pdf
http://db.cs.berkeley.edu/jmh/papers/anna_ieee18.pdf
http://dx.doi.org/10.1145/2663165.2663333
http://dcsg.cs.umn.edu/Papers/tiera_middleware14.pdf
http://dcsg.cs.umn.edu/Papers/tiera_middleware14.pdf
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

	Introduction
	Background
	Melange: The Dream
	Challenges
	Implementation
	Evaluation and Discussion
	Related Work
	Conclusion

