Pikachu: Serverless Message Passing

Yang Zhou
Harvard Univeristy

yangzhou@g.harvard.edu

Abstract

Serverless computing pioneered by AWS Lambda be-
comes popular due to its appealing fine-grain billing
and auto-scaling properties. Recent research has demon-
strated that moving big data processing (e.g., data ana-
lytics, video processing) to serverless will bring huge
benefits. However, this research heavily relies on non-
serverless components such as S3 and Redis to pass
messages between function instances during big data
processing, which is non-efficient and costly.

In this paper, we argue that current serverless plat-
forms lack the features of direct message passing and
addressability that are necessary to implement dis-
tributed data processing algorithms in an efficient man-
ner. To resolve these two missing features, we de-
signed a new serverless platform, Pikachu , that al-
lows function instances to find and communicate with
each other directly. The experiment results show that
Pikachu achieves up to 1070.4 times shorter messaging
passing time than using Redis. We open source the code
of Pikachu and evaluation scripts at GitHub [11].

1 Introduction

Serverless computing platforms offer a service to users
that is often more intuitive, lower maintenance, and
cheaper than cloud hosted VMs. Using a definition para-
phrased from the 2019 Berkeley View on Serverless
Computing [16], serverless computing is the combina-
tion of Functions as a Service (FaaS) and Backend as a
Service (BaaS). This structure eliminates the needs for
users to manage their own VMs, which abstracts away
most of the complications of managing resources and
auto-scaling.

Recent research has shown that big data processing
jobs can be implemented on serverless platforms and
reap the benefits of the fine-grained billing and auto-
scaling. In particular, numpywren [19] thoroughly ex-
amines the benefits and drawbacks of implementing a
system for linear algebra on AWS Lambda and using
Redis, a remote key-value object store, for runtime state-
store. The biggest constraint on numpywren’s overall

David Ralph Hughes

Harvard Univeristy
davidralphhughes@college.harvard.edu

efficiency is network latency due to the necessity of us-
ing a remote object store, which leads to a much higher
amount of data being read than their primary linear
algebra comparison, ScaLAPACK.

Another example that seeks to utilize serverless’ ca-
pabilities is Ex-Camera [13], which again uses AWS
Lambda to process video using "thousands of tiny
threads" to compute the highly parallel parts of video
processing. Though Ex-Camera’s performance results
are quite good, their framework requires two long-
running servers: a coordinator on an EC2 instance to
send RPC requests to each worker, and a rendezvous
server which relays messages from the workers to their
destination on an S3 instance. Not only do these poten-
tially complicated, long-running servers still require the
management of VMs, but using S3 and the rendezvous
server incurs significant latency.

Both numpywren and Ex-Camera’s workarounds of
using an in-memory or cloud store are due to the lack
for function instances to be addressable, send or receive
messages, or coordinate between multiple instances.
The storage solutions (either in-memory or on-disk)
not only make implementing algorithms potentially
more complicated, but also introduce significant over-
head for all data transferal, much of which comes from
the double data copies during forwarding data from one
function instance to another. Additionally, the attrac-
tiveness of fine-grained billing is significantly reduced,
since the heavy usage of a storage system incurs costs,
as well as utilizing a long running VM.

We argue that in current serverless platforms, two
features are lacked: direct message passing between
function instances, and the ability to address
function instances (i.e., addressability). To imple-
ment these two missing features in current serverless
platforms, we design and build a new serverless plat-
form named Pikachu on top of Apache OpenWhisk [3],
an open source serverless platform deployed in IBM
Cloud. Pikachu utilizes the Docker overlay network to
enable serverless function instances to directly commu-
nicate with each other. Further, Pikachu integrates a

CS260r Final Project, May 17, 2019

u,
'—'
CouchDB

Figure 1. OpenWhisk components.

highly scalable directory service into serverless plat-
form which enables instances to look up the address
and survival status of other instances.

Our experiment results show that Pikachu incurs
minimum overhead to the OpenWhisk serverless plat-
form, while bringing enormous benefits. For instance,
Pikachu increase the total completion time by —2.25% ~
3.0% compared with the original OpenWhisk. However,
it achieves up to 1070.4 times shorter messaging pass-
ing completion time than the original OpenWhisk using
Redis for messaging passing.

This paper proceeds as follows: In section 2, we pro-
vide a background for Apache OpenWhisk and two
Docker features that are utilized to provide direct mes-
sage passing and addressability. Section 3 summarizes
the architecture of Pikachu, and in Section 4 we pro-
vide the details of Pikachu’s design. Section 5 then de-
scribes the implementation, followed by an evaluation
of Pikachu’s performance in Section 6, and a discussion
of future work on Pikachu in Section 7. In Section 8, we
compare Pikachu with related work. We conclude this
paper in Section 9.

2 Background

2.1 OpenWhisk

Pikachu is built on top of Apache OpenWhisk [3] - an
open source serverless cloud platform which has been
deployed in IBM Cloud as IBM Cloud Functions [9].
Here, we briefly describe the components and workflow
of the OpenWhisk serverless platform.

OpenWhisk components: OpenWhisk stands on the
shoulders of giants, including Nginx [10], Kafka [2],

Yang Zhou, David Hughes

CouchDB [2], Zookeeper [4], Redis [12], Akka [1], and
Docker [5]; OpenWhisk builds its own controller and
invoker (developed in Scala) to glue these components
and forms an event-based, serverless programming ser-
vice, as shown in Figure 1. Note that all these compo-
nents (including the controller and invokers) run in
separate Docker containers.

Nginx serves as the SSL termination point and for-
wards appropriate HTTP requests to the controller.
The controller load balances the incoming function
instance invocation requests among all the alive in-
vokers and evenly hashes each request to each invoker
and pushes the invocation assignment to Kafka. Once
Kafka has confirmed that it gets the invocation mes-
sage, an Activationld will be responded to user via an
HTTP request; the user can later use this Activationld
to fetch the results of this specific invocation from the
CouchDB. By default, OpenWhisk only uses one central-
ized controller, but it also supports deploying multiple
controllers for scalability and fault-tolerance purpose.

Kafka (assisted by ZooKeeper) is a high-throughput,
distributed, publish-subscribe messaging system. Open-
Whisk uses Kafka to connect a controller to invokers:
a controller pushes function instance invocation mes-
sages to Kafka, while invokers pull them. Kafka is es-
sential to OpenWhisk when an invoker crashes, since
Kafka can ensure the reliable communication with "ex-
actly once" semantics for the messages sent between
controller and invokers. OpenWhisk uses the concept of
topic in Kafka to distinguish between message queues
belonging to different invokers, e.g., messages with
topic "invoker0" will be read by invoker0.

Each invoker continually pulls invocation messages
with specific topic from Kafka. Upon receiving a in-
vocation message, normally the invoker will fetch the
function code and parameters from CouchDB, create a
container using Docker, inspect the IP addresses of the
new created containers, and inject both the function
code and parameters into the new created container via
an HTTP connection. The container then will then start
running the function code as a cold start invocation. Af-
ter the function instances complete their executions,
invokers will either destroy or pause the containers,
the latter case results in a container waiting for new
function invocations that own the same function code.
The case where a container can be reuses is a warm
start invocation, which removes the overhead of fresh
container creation and function code initialization. The
function execution results and logs (i.e., the stdout and
stderr of the instance) will be returned to invokers via

Pikachu: Serverless Message Passing

wsk action create fib ./fib.py
created action fib

wsk action invoke fib -p number 39
invoked /_/fib with id
— ee21cba444fb401dalc6a444fb101d08

Figure 2. Function creation and direct invocation
commands.

an HTTP connection and finally sent to CouchDB by
the invoker. Thus, with CouchDB, the user can then
access the results of this function instance. Additionally,
each invoker frequently pushes heartbeat messages to
Kafka, which is pulled by controller and used for vali-
dating the survival status of that invoker.

Redis, an in-memory data store is used to store config-
urations and some run states of OpenWhisk. Akka is an
actor-based message-driven concurrency programming
model, and extensively used in OpenWhisk controllers
and invokers.

OpenWhisk workflow: OpenWhisk utilizes names-
paces with private keys to isolate different users. (One
user can also access multiple namespaces once that user
gets the corresponding namespace keys). Within their
own namespace, users can create triggers, rules, and
actions; rules are used to connect triggers with actions.
Users can specify how events (i.e., git push) will set
off triggers, and how fired triggers invoke action exe-
cutions via a set of rules. OpenWhisk provides a CLI
that allows for complete management of the system,
which translates each command into a proper HTTP
request and sends the request to Ngnix. Figure 2 shows
the action (i.e., function) creation and direct invoca-
tion commands, which will help the understanding
of Pikachu ’s design. wsk action create accepts the
function name (e.g., “fib”), function source code path
(e.g., “./fib.py”), and will eventually store the function
in CouchDB. wsk action invoke accepts the function
name (i.e., “fib”) and function parameter(s) (i.e., “number
39”) and will eventually push the function invocation
message to Kafka and return an Activationld to user.

2.2 Docker

OpenWhisk relies on Docker to create, destroy, pause,
and resume containers running function instances. Our
Pikachu explores two features — overlay network and
volume — provided by Docker but not yet employed by

Serverless Message Passing

Controller

Local Addr. Maps

Global Addr. Map

Bridge Net.
[Invokerl]

Overlay Network

Bridge Net.
[Invoker2]

Figure 3. Pikachu architecture.

OpenWhisk to realize the message passing functional-
ity. Thus, we briefly describe these two features here.

Container networking: Containers typically have
four networking modes: bridge mode, host mode,
macvlan mode, and overlay mode [6]. Bridge mode is
used specifically for container communication within a
single host, while the other three modes support cross-
host container communication. Recent research (i.e.,
SlimOS [20]) have shown that overlay network is cur-
rently the most popular choice for cross-host container
networking in the cloud environment since it requires
easier data center management and easier data center
network routing schemes as compared with the host
and macvlan modes.

The container overlay network creates a virtualized
network address space where each container can get a
unique virtual IP address. The overlay network supports
cross-host routing using a vSwitch in the host kernel
to do translations between the virtual IP address and
the host IP address.

Docker volume feature: Docker supports mounting
a directory within the container to a directory in the
host via the volume feature [8]. The volume feature
enables data generated by Docker containers to persist
between container instances and also allows file sharing
between the host and a container using this shared
directory. Different containers on the same host share
the same host directory.

3 Architecture

As shown in Figure 3, Pikachu is built on top of Open-
Whisk, and introduces several changes to the existing
OpenWhisk invoker and controller. When invoking
function instances, the invokers in Pikachu attach the

CS260r Final Project, May 17, 2019

created containers to the overlay network correspond-
ing to this user. Each invoker then injects function code
and parameters to its created local containers through
an HTTP request over bridge network. Additionally, the
invoker inspects the instance IDs and overlay network
IP addresses of containers and constructs the local ad-
dress map (i.e., the <instance ID, IP address> mappings).
The invokers then periodically send their local address
maps to the controller via Kafka(s). Upon receiving the
local address maps from invokers, the controller con-
structs a global address map and periodically send the
map back to all the healthy invokers with Kaftka. When
invokers get the global address map, they share it to
each running function instance in its local host. In this
way, different function instances can address each other
using the global address map provided by its local in-
voker and instances can communicate with each other
over the overlay network.

4 Design

This section describes the system design details of
Pikachu, including the usage of our system (§4.1), data
transmission directed between containers on different
hosts (§4.2), addressability support via a built-in direc-
tory service (§4.3), and security considerations (§4.5).

4.1 User Interface

In Pikachu, users can specify a function instance ID
when invoking function instances by passing the in-
stance ID string as an additional parameter to the
function. The new function invocation command is
shown in Figure 4. Users can invoke hundreds or thou-
sands of function instances at the same time to do data
processing jobs [13, 15, 17-19]. Previous work all use
in-memory key-value stores (i.e., Redis, Memcached)
in long-running VMs or cloud storage services (i.e.,
AWS S3) to perform inter-instance communication. In
Pikachu, each running function instance can directly
address others using the instance ID. Specifically, one
instance can get the <instance ID, IP address> mapping
of all survived instances belonging to the same user in
the system. These mappings are exactly the the local
address map mentioned in §3. The instance can then, for
example, create a socket connection and transfer data
with its peers. Besides this, running function instances
can also get the survival status of other instances from
this address map, avoiding the timeout cost of trying
to connect to terminated instance.

Yang Zhou, David Hughes

wsk action invoke fib -p number 39 -p
— instanceID myname®

Figure 4. Function invocation commands in Pikachu.

4.2 Message Passing on the Overlay Network

The current OpenWhisk code only uses the Docker
bridge network for invokers to inject function code and
parameters into newly created or resumed’ containers
within the local host.

One function instance can use the IP addresses in
the local bridge network to communicate with other
instances on the same host; however, bridge network
IP addresses do not support cross-host communication.

In order to provide cross-host communication in
OpenWhisk, we open and utilize the overlay network
feature provided by Docker. When a user registers in a
Pikachu deployment, in addition to generating a names-
pace with a private key, Pikachu creates an overlay net-
work bind with that namespace. When the user invokes
a function instance, the invoker in Pikachu will attach
the newly created container? to the overlay network
corresponding to that user. In this way, once one func-
tion instance knows the overlay network IP addresses
of its peers, it can directly communicate with those
peers through the overlay network.

The next section will show how Pikachu lets one
function instance knows its peers’ IP addresses in the
overlay network, which requires a directory service
built into the serverless platform.

4.3 Build-In Directory Service

The built-in directory service in Pikachu provides the
translation from Instance IDs to overlay network IP
addresses and enables a fast query for the survival sta-
tus of function instances. There is a natural division of
labor in our directory service design: individual invok-
ers collect overlay network IP addresses and construct
the local address map, while a centralized controller
gathers all the local address maps and constructs the
global address map.

IThese containers were paused with function code retained, serving
for warm-start function instances with only parameters injected
(for details, please refer to §2).

2Warm-start function instances are already attached to the overlay
network.

Pikachu: Serverless Message Passing

Local address map construction: When inspecting
container IP addresses in the bridge network and inject-
ing function code and parameters into the container,
the invoker in Pikachu additionally inspects the con-
tainer IP address in the overlay network, and extracts
the instance ID from the function parameters. Thus,
the invoker obtains the <instance ID, IP address> map-
ping for this function instance, and constructs the lo-
cal address map for this host. When the function in-
stance completes its execution and returns, the invoker
in Pikachu will remove the <instance ID, IP address>
mapping from its local address map.

Encoding the local address map into heartbeat
messages: One possible solution of sending a local
address map to the controller is by creating a new topic
in Kafka (e.g., “addrMap”): invokers send their local
address maps to this message queue and the controller
pulls the maps from this queue. This is a workable solu-
tion, but it requires additional overhead to maintain the
message queue in Kafka. Instead, to remove this over-
head, invokers in Pikachu encode the local address map
into the periodic heartbeat messages sent to the con-
troller’. In this way, we efficiently send all local address
maps to the controller with nearly no overhead.
Besides encoding the local address map into the heart-
beat messages, Pikachu invokers only send changes of
the local address maps to the controller. This means if
there are no local address map updates since the last
heartbeat message, no address map message is sent to
the controller. In the case of a large number of function
instances running in the cloud, sending only the deltas
can enormously reduce the message sending overhead.

Global address map construction: The centralized
controller gathers local address maps from invokers and
constructs the global address map. The controller can
determine the frequency of synchronizing the global
address map to the invokers by considering the extent
of local address map changes, current system load, etc..
By default, the controller sends back the global address
map every second. It follows then that each function in-
stance can know its peers’ survival status with 1 second
granularity. In the rare case where an invoker crashes,
the controller removes all the <instance ID, IP address>
mappings belonging to that invoker from the global ad-
dress map. The controller then only needs to maintain
the latest local address map for each invoker.

Distributing global address map: Pikachu employs
Kafka’s "group" feature to efficiently distribute the

3The default interval between heartbeat messages is 1 second

Serverless Message Passing

global address map to multiple invokers. Kafka supports
dividing consumers into multiple consumer groups and
each consumer group receives a copy of each message
pushed by the producer. In Pikachu, we consider each
individual invoker as a consumer group and the con-
troller as the only producer. In this way, every global
address map the controller pushes to Kafka can be re-
ceived by every invoker. Note that we also only send the
changes of the global address map from the controller
to the invokers to reduce message sending overhead.

Invokers sharing global address map to function
instances: After each individual invoker obtains the
global address map from the controller via Kafka, it
shares the address map to all the function instances
running in its host. Pikachu employs the volume fea-
ture supported by Docker to share the global address
map as a file to all the running containers. The main
reasons we chose a shared file is that file systems ex-
hibit generic behavior, are ubiquitous, and are easy to
use. Serverless platforms run function instances writ-
ten in a variety of programming languages and almost
every language has sufficient support for file opera-
tions. In contrast, although a shared memory segment
is more efficient than shared files, it is not generally
supported by every language. For instance, Scala* runs
on the JVM, and the JVM itself has no official API to
manipulate a shared memory segment. The only way
shared memory segments can be utilized in IPC on the
JVM is by resorting to a helper library/DDL and JNI to
use native libraries written in other languages such as
C, C++, etc. Another difficulty of using shared memory
for IPC appears when crossing the boundary of contain-
ers, since all the components in OpenWhisk, including
invokers and function instances, are running in Docker
containers.

Future work for sharing the global address map po-
tentially would use RPC requests to reduce the overhead
of file operations.

So far, we have described the complete design of the
directory service in Pikachu. In the next section, we
outline several potential alternative design choices and
compare them with our current design.

4.4 Alternative Directory Service Designs

Using dedicated servers for directory service: In
the cloud, we might be able to assign several servers
the responsibility of handling the directory service. Ev-
ery time a function instance is created or terminated, it

4The development language of OpenWhisk

CS260r Final Project, May 17, 2019

would contact the directory service and update its own
<instance ID, IP address> mapping entry. Every time a
function instance wants to get the IP addresses of its
peers, it would contact the directory service to get the
results. To reduce the directory service lookup over-
head, each function instance could have a local cache
for frequently used mapping entries, which would syn-
chronize with the global address map in the directory
servers periodically. Microsoft used this design to vir-
tualize its own multi-tenant VM-based data center net-
work [14] due to its ease of management and high scal-
ability guarantee (e.g., simply adding more directory
servers when expanding data centers).

However, we argue that this might not be a good fit
for serverless computing due to the following two rea-
sons: 1) Function instances are much more ephemeral
than VMs, which causes much more mapping entry up-
dates on the directory servers, and requires much more
timely synchronization. 2) In the context of serverless
computing, this design requires more long-running ded-
icated directory servers and costs more. At the concep-
tual level, putting more long-running dedicated servers
in serverless platforms runs in the opposite direction
of “serverless”.

Instead, Pikachu seek provides a scalable directory
service built into serverless platform itself (i.e., no need
for additional long-running servers). Our design scales
well because the directory service in Pikachu easily
scales as the number of invokers (and controller) in-
creases, due to the design only requiring the invokers
and controller to do a small amount of additional work.

Using the embedded DNS service in Docker over-
lay network: Docker engine has a local DNS service
maintaining the <container name, IP address> map-
pings for the overlay network, which could serve as
directory service in OpenWhisk if we set the container
name to the instance ID users specified.

We think this still might not be a good fit for server-
less computing due to security complications, lowered
genericity, and higher maintenance overhead. 1) The
design using Docker’s embedded DNS service exposes
the entire container namespace to users, while the con-
tainer namespace is shared among all the containers
running in the overlay network (not just the contain-
ers running in a single host). We argue that exposing
too many cloud details to users might cause potential
security vulnerability, e.g., Denial of Service attacks for
a namespace. 2) Not every serverless platform has the
local DNS service in its VM hypervisor or container

Yang Zhou, David Hughes

engines. This would hurt the genericity of using embed-
ded DNS service. 3) The DNS services in Docker engines
must maintain a consistent global network view (i.e.,
container name to overlay network IP mappings) across
hosts. Given the ephemerality of serverless function
instances, this might incur significant overhead for the
hosts.

However, we do consider a purely network-based so-
lution for the serverless directory service as a promising
direction, but it would require a brand new design that
targets the above three concerns instead of just using
the existing Docker overlay network DNS service.

4.5 Security Considerations

In Pikachu, each user has its own overlay network
(i.e., virtualized network address space) which is cre-
ated during user registration process (§4.2). There-
fore, each user’s networking is fully isolated. Further,
Pikachu could support an access control interface in the
centralized controller which has a global view of the
network. Additionally, if we install traffic meters into
the invokers and use the controller to gather the traffic
statistics of different users, Pikachu could be extended
to support rate limiting and adjusted quality of service.
We leave the detailed design and implementation for
the security aspect of Pikachu for future work.

5 Implementation

We implemented our Pikachu system on top
of the existing OpenWhisk platform by adding
over 500 lines of Scala code across 17 files. We
hacked on the OpenWhisk commit version of
7ecael76c4c02fa789cee644dc24eeel1317c0256, which
was the latest version when we started our project.
Our Pikachu’s implementation runs successfully
and stably on top of Ubuntu 16.04, and executes
user-provided serverless functions correctly. We only
use the Scala standard library, the Java NIO library
for file operations, and the Akka library for efficient
concurrent programming’. We expect Pikachu to run
on other platforms without any change, since our
implementation is purely based on the JVM without
any OS-related dependencies. All the related source
code and evaluation scripts can be found at GitHub
[11].

Our implementation for maintaining local and global
address maps is thread-safe, by employing the Akka
actor-based, message-driven concurrency model with

> Akka is also written in Scala

https://github.com/apache/incubator-openwhisk/tree/7ecae176c4c02fa789cee644dc24eee1317c0256

Pikachu: Serverless Message Passing

case class IDIPpair(val id: String, val ip: String)
case class addAddrMsg(idip: IDIPpair)
case class rmAddrMsg(idip: IDIPpair)

class localAddrMap extends Actor {
val addrMap: Set[IDIPpair] = Set[IDIPpair]()
val lastAddrMap: Set[IDIPpair] = Set[IDIPpair]()

def receive: Receive = {
case addAddrMsg(idip) => {addrMap += idip}
case rmAddrMsg(idip) =>{addrMap -= idip}
case "getAddrMapMsg" =>{
val rmAddrs = lastAddrMap diff addrMap
val newAddrs = addrMap diff lastAddrMap
lastAddrMap.clear()
lastAddrMap ++= addrMap
sender ! (rmAddrs, newAddrs)
}
3
3

object DockerContainer {

val updatelLocalAddrMap: ActorRef =
< actorSystem.actorOf (Props(new localAddrMap))

def addAddr(idip: IDIPpair): Future[Unit] = {
updateLocalAddrMap ! addAddrMsg(idip)
Future.successful(())

}

def rmAddr(idip: IDIPpair): Future[Unit] = {
updateLocalAddrMap ! rmAddrMsg(idip)
Future.successful(())

}

def getDiffAddrMap(): (Set[IDIPpair], Set[IDIPpair]) = {
val timeout = Timeout(Duration(1, TimeUnit.SECONDS))
val futureRes = updatelLocalAddrMap ? "getAddrMapMsg"
val diffAddrs = Await.result(futureRes,
< timeout.duration).asInstanceOf[(Set[IDIPpair],
— Set[IDIPpair])]
diffAddrs

Figure 5. Address map maintenance in Pikachu.

the Scala Future library. Specifically, all necessary data
structures and methods are encapsulated into a class
inheriting from the Akka Actor class, and use Akka’s
message passing to invoke these methods and obtain re-
sults. Figure 5 shows how we maintain the local address
map on individual invoker®. We declare the localAd-
drMap class for maintaining local address map, and use
Akka symbols “1” and “?” to send methods invoking
messages in the DockerContainer object.

SFor conciseness, we use Set to denote scala.collection.mutable.Set
in Figure 5

Serverless Message Passing

We retain most of the implementation logic of Open-
Whisk, except that we make the following two changes:

1. DockerClientWithFileAccess.scala: We inspect
the IP addresses of new created containers using
Docker commands instead of reading from container
configuration files. We make this change because
these configuration files do not contain the overlay
network IP addresses of containers.

2. DockerClient.scala: We explicitly connect all new
created containers to the Docker overlay network
that we created. The reason is that Docker only al-
lows containers to attach to one network during cre-
ation time. We choose to first attach containers to
the default bridge network during creation time for
communicating with invokers, then explicitly (i.e.,
the connectOverlay() function) attach them to the
overlay network.

6 Evaluation
6.1 Experiment Setup

We conduct all the experiments on a cluster of five
bare-metal servers from CloudLab, each with Ubuntu
16.04.6 LTS (4.4.0-145-generic kernel), 160GB memory,
two Intel E5-2660 v3 10-core CPUs at 2.60 GHz, and a
dual-port 10G Intel X520 NIC. We deploy Pikachu (or
OpenWhisk) on this cluster: one server hosting con-
troller, crouchDB, redis, zookeeper, nginx, and kafka;
each of the other four servers hosting one invoker.

We write a Fibonacci calculation function in Python
to test the overhead of Pikachu compared with the orig-
inal OpenWhisk by varying the number of concurrent
invocations (§6.2). We randomly choose function names
from a name pool to make sure the function invoca-
tions are distributed to the four servers evenly, since
OpenWhisk uses hashes on function name to distribute
invocations among invokers. We calculate the average
completion time of concurrent invocations. We run 10
trials, and show results in median value with 5! and
95" percentile error bars.

We compare socket-based message passing in
Pikachu vs. message passing via Redis in the original
OpenWhisk, by varying the message size and message
number (§6.3). Both testing functions for message pass-
ing are written in Python using socket package and
redis package, respectively. By message passing, we
mean that one function instance as a client wants to
send messages to another function instance as a server.
We randomly generate the function names of function

CS260r Final Project, May 17, 2019

Yang Zhou, David Hughes

90

Execution time
Initialization time
Wait time

80+

iy

70+

Time (Seconds)
Now bW
o o o o

|
]
|
]
|
]
|
]
|
]
|
]

=
o

o

N 2 L 2 (D
S AP G L oV ¥

Y ¥

O A0 L Al B o 2 1%
NN DD 0,0 A% A
OV gV W

Figure 6. Function instance completion time breakdown, when varying the number of concurrent invocations.
Here, the serverless function simply calculates the 39" Fibonacci number in Python. We compare the original
OpenWhisk (i.e., OW) with Pikachu (i.e., Pik) in terms of invocation wait time, container initialization time, and

function instance execution time.

-
[

Messaging
Redis

Transferal time (Seconds)
[T
N B o 00 o N B (=

(9MB 32MB 64MB 96MB 128MB 160MB 192MB 224MB 256MB
Message size

Figure 7. Data transferal time comparison of
Pikachu vs. using Redis, when varying the message
size.

pairs to test different co-location cases (i.e., client and
server are in the same server or different servers). All
experiments are run in 10 trials, and results are shown
in median value with 5t and 95!" percentile error bars.

6.2 Overhead of Pikachu

Figure 6 shows the function completion time compari-
son of the original OpenWhisk vs. Pikachu, by varying
the number of current invocations. Here, wait time
refers to the time spent waiting in the internal Open-
Whisk system, or more preciously, the time spent be-
tween the controller receiving the activation request
and when the invoker begins to provision a container

Messaging
Redis

0 10t

c

o

@

@ 10°

v

£

=

s 107t

Q@

7]

g

=107

1072
0 32 64 96 128 160 192 224 256

64B-messages

Figure 8. Data transferal time comparison of
Pikachu vs. using Redis, when varying the number of
64B-messages sent.

for this action. Initialization time refers to the time of
creating containers, and injecting code and parameters
(there is no container creation time in warm-start cases).
Execution time refers to the time spent on executing
the serverless function.

We find that Pikachu increases function instance wait
time by 55.8% ~ 128.9%, since attaching containers
to overlay network and inspect their addresses bring
additional overhead. We also find that the function ex-
ecution time remains almost the same or even slightly
better than the origin OpenWhisk (i.e., 0.87% ~ 9.7%
decremental). The reason is that the extent of overlap
of concurrently running instances is decreased; each

Pikachu: Serverless Message Passing

function instance can get relatively more CPU time and
thus the execution time will shrink. Pikachu increase
the total completion time by —3.0% ~ 2.25% compared
with the original OpenWhisk.

6.3 Comparison to using in-memory store

Figure 7 shows the data transferal time comparison of
Pikachu vs. using Redis, while varying the message size.
We find that: when message size is small (i.e., smaller
than 16MB), the data transferal time of Pikachu is up tp
2 times shorter than the original OpenWhisk with Redis;
when message size is large (i.e., larger than 16MB), the
data transferal time of Pikachu is up to 9.03 times longer
than the original OpenWhisk with Redis. We think the
reason comes from two parts: 1) overlay network relies
on the host kernel to transfer data; larger volume of
data would incur the buffer pressure in kernel, leading
to worse performance; 2) Redis should have optimized
the I/O operation during data transferal, while we only
use simple socket send() and recv() due to project time
limit.

Figure 8 shows the data transferal time comparison
of Pikachu vs. using Redis, while varying the number
of small messages sent. We find that the data transferal
time of Pikachu is 62.4 ~ 1070.4 times shorter than
the original OpenWhisk using Redis. We consider the
huge benefits as normal cases, since 1) Pikachu avoids
the socket initialization overhead each time function
instances send messages; 2) Pikachu avoids the double-
copy overhead of message passing compared with using
Redis. Note that Pikachu achieves these huge benefits
without relying on any dedicated long-running server.

7 Discussion

We describe several points that currently are not sup-
ported by our system and serve as future work.

Exposing more function instance states via the
directory service to serverless platform and ap-
plications, thus assisting instance scheduling and
application coordinating. Currently Pikachu only
supports exposing the survival status of each func-
tion instance; however, we believe that exposing more
states about function instance could help the serverless
platform schedule instances more efficiently and al-
low applications to coordinate different instances more
effectively. For instance, one function instance might
tell the platform that it is waiting for other instances
and has no work to do currently. The platform then
could pause the instance, store its state to the disk, and

Serverless Message Passing

once the wait condition is satisfied, restore the instance
to memory and wake it. An evaluation of the disk re-
source overhead of pausing instances would be required
to determine billing adjustments (perhaps paused and
stored instances would incur a smaller fee than run-
ning instances). Overall, though, this would make the
fine-grained billing feature of serverless more flexible
and let more applications fit in the serverless comput-
ing model. For another example, one function instance
might announce its estimated time to be killed to its
peers, which would give an application another vec-
tor to assign an appropriate amount of work to that
instance (i.e., better coordination for applications).
Generalizing Pikachu to other platforms.
Pikachu is currently built on top of OpenWhisk,
an open source project. We hope to materialize the
spirit of direct message passing in more severless
platforms, e.g., Amazon Lambda, Azure Functions, and
Google Cloud Functions.

Supporting multiple controllers. Pikachu currently
only supports one centralized controller and we hope in
the future to extend it to support multiple controllers.
To this end, we might need to implement gossiping
protocols for multiple controllers to synchronize their
global address maps. We expect to see a (new) gossiping
protocol with fast convergence speed, considering the
ephemerality of serverless function instances.

Fault-tolerance when the controller crashes.
Pikachu only considers the case of invoker crashing.
However, in the context of multiple controllers, we
need to consider the case of controller crashing. In
particular, we need to guarantee the correctness of the
global address map when some controller crashes.

Other fault-tolerance cases. Serverless platforms
do not guarantee that every function instance survives
for the intended duration given its code. numpywren
discusses a fault-tolerance system with a task lease
mechanism, but in numpywren, the "disaggregation of
compute and storage" makes this easier to achieve [19].
With Pikachu , checkpointing and recovery becomes
much more difficult, because intermediate data within
an algorithm only kept in transient storage. Further, it
becomes incredibly difficult or even impossible for a
serverless system to generically determine if a function
instance has made only idempotent external changes,
meaning that blindly restarting crashed function in-
stances is unsafe. Of course, it is possible for a user to
implement an algorithm that includes manual check-
pointing, but keeping with the spirit of serverless, we

CS260r Final Project, May 17, 2019

believe a proper HPC serverless offering would have
some level of automatic fault-tolerance and at the very
least would also expose an API so the user could detect
and handle crashed function instances. We leave this
functionality for future work.

Handling the Docker overlay network bug.
Docker currently has a bug that, when simultaneously
attaching too many (around 100 according to our
testing) containers within a host to the overlay
network, will cause a “Context deadline exceeded
error” [7]. We currently do not handle this Docker bug
in Pikachu.

8 Related Work

8.1 Big Data Processing on Serverless Platform

PyWren [15], numpywren [19], and Ex-Camera [13] all
similarly tackle the problem of moving a large amount
of data between workers in highly parallel tasks. How-
ever, all of these solutions require the usage of storage
on long-running servers to move data between function
invocations.

PyWren uses S3 to deliver an entire pickled python
program to an already-running function instance to ex-
tend the limitations of AWS Lambda. This means that
PyWren can spin up many lambdas and send somewhat
arbitrary Python code to them to be executed. PyWren
sees significant time improvements to invocation, com-
putation, S3 read/write, and Redis read/write as more
lambdas and Redis shards are started prior to compu-
tation. The S3 and Redis read/write improvements are
particularly interesting with regards to Pikachu ’s goals,
however we still believe that the departure from the
spirit of serverless is a disappointing trade-off in Py-
Wren. Further, the PyWren paper’s section on the gen-
erality of PyWren is thorough, the design prohibits
coordination among the various tasks, a problem easily
solved when function instances can directly communi-
cate with each other. Lastly, PyWren’s functionality is
dependant on Python’s pickling ability, meaning this
design cannot be easily extended to other languages or
runtimes, which of course is extremely restrictive.

numpywren provides a linear algebra system for use
on serverless platforms, in particular on AWS Lambda.
numpywren uses Redis for application state storage,
AWS’ Simple Queue Service (SQS) for a task queue,
and S3 for object storage. Although numpywren does
not perform very favorably compared to the domain
specific language (LAmbdaPACK) the paper’s team
also developed, the proof-of-concept that numpywren

10

Yang Zhou, David Hughes

achieves is still promising for other high computation
workloads on serverless platforms. Though numpy-
wren’s goals are not congruent with Pikachu ’s goals,
the overall design of that project has still been influen-
tial for Pikachu. Still, numpywren’s design and usage
of S3 and Redis in particular suffer from latencies that
Pikachu seeks to resolve.

Ex-Camera utilizes S3, a long-running server called
the coordinator, and a long-running rendezvous server.
Although at the time of Ex-Camera’s publication, the
cost to encode a 15 minute movie is only $5.40, they
do admit that some function instances are idle at the
beginning of their invocation, and cost could be saved
without sacrificing performance by delaying starting
these instances. More importantly, however, is that
Ex-Camera still requires the usage of S3 and and two
servers running on an AWS EC2 instance. This means
there are costs incurred with every operation on S3,
which is the primary method of data transferal in Ex-
Camera, and costs of running the EC2 instance. Not
only does Pikachu seek to avoid requiring the user to
implement a separate long-running server by extend-
ing the functionality of serverless functions, but the
double-billing as a result of Ex-Camera’s design given
the current capabilities of serverless offerings is unap-
pealing.

8.2 Storage System for Serverless Computing

Pocket [17] seeks an improvement for ephemeral stor-
age which is more suitable for the very short-running
functions on serverless platforms. Although S3 and Re-
dis have been shown to be somewhat suitable to imple-
ment big data processing onto the current AWS Lambda
platform, they incur large latency penalty (Redis-like in-
memory store in the cloud, e.g., ElasticCache, is quite ex-
pensive in serverless context). Pocket is able to achieve
similar performance to Redis for serverless analytics
applications while reducing costs by 60%. Pocket uti-
lizes AWS EC2 instances to run their controller and
cluster storage, and is probably the best way to repli-
cate the behavior of Redis while being cost optimized
for serverless workloads when the existing serverless
platform cannot be modified. However, while Pocket
shows an improvement in existing object stores for the
ephemeral functions in serverless platforms, Pocket still
has drawbacks that Pikachu seeks to resolve. For one,
Pocket does not provide a way to send data directly
between function instances, so a copy of the data has
to be duplicated in the storage cluster, even if that data

Pikachu: Serverless Message Passing

is never used again. Secondly, Pocket still requires ded-
icated long-running servers for hosting storage system,
although the paper argues that this overhead can be
paid by the cloud. Last, because Pocket is just an ob-
ject store, applications using Pocket would still have to
translate the algorithm to utilize the data store, which
isn’t always natural, and also lacks the internal coordi-
nation abilities that message passing provides.

9 Conclusion

Pikachu opens the door for direct messaging pass-
ing among function instances in serverless comput-
ing. Pikachu utilizes the Docker overlay network to en-
able serverless function instances directly communicate
with each other. It further integrates a highly scalable
directory service into serverless platform itself to solve
the addressability problem among function instances.
The experiment results show that Pikachu incurs mini-
mum overhead to serverless platform but brings enor-
mous benefits for applications.

Acknowledgments

We would like to thank Eddie Kohler for his insightful
comments and suggestions on the project along the
semester, and also his great contributions to CS260r
that make it full of enlightenment and fun. We also
would like to thank Xinyin Song for helping setting up
Ceph cluster, although we eventually have not got time
to test on it.

References

[1] [n.d.]. Akka. https://akka.io/. Accessed May 12, 2019.

[2] [n. d.]. Apache Kafka. https://kafka.apache.org/. Accessed
May 12, 2019.

[3] [n.d.]. Apache OpenWhisk. https://openwhisk.apache.org/.
Accessed May 12, 2019.

[4] [n. d.]. Apache Zookeeper. https://zookeeper.apache.org/.
Accessed May 12, 2019.

[5] [n.d.]. Docker. https://www.docker.com/. Accessed May 12,
2019.

[6] [n. d.]. Docker container networking. https://docs.docker.
com/v17.09/engine/userguide/networking/. Accessed May 13,
2019.

7] n. d.]. Docker overlay network
https://success.docker.com/article/context-deadline-
exceeded-error-observed-while-starting-container-on-
drained-node. Accessed May 15, 2019.

[8] [n. d.]. Docker volume. https://docs.docker.com/storage/
volumes/. Accessed May 13, 2019.

[9] [n. d.]. IBM Cloud Functions. https://www.ibm.com/cloud/
functions. Accessed May 12, 2019.

bug.

11

Serverless Message Passing

[10] [n.d.]. Nginx. https://www.nginx.com/. Accessed May 12,
2019.

[11] [n. d.]. Pikachu open source. https://github.com/
YangZhou1997/openwhisk-lambda-mpi. Accessed May 17,
2019.

[12] [n.d.]. Redis. https://redis.io/. Accessed May 12, 2019.

[13] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,

Karthikeyan Vasuki Balasubramaniam, William Zeng,

Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith

Winstein. 2017. Encoding, fast and slow: Low-latency video

processing using thousands of tiny threads. In 14th { USENIX}

Symposium on Networked Systems Design and Implementation

((NSDI} 17). 363-376.

Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth

Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,

Parveen Patel, and Sudipta Sengupta. 2009. VL2: a scalable

and flexible data center network. In ACM SIGCOMM computer

communication review, Vol. 39. ACM, 51-62.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and

Benjamin Recht. 2017. Occupy the cloud: Distributed comput-

ing for the 99%. In Proceedings of the 2017 Symposium on Cloud

Computing. ACM, 445-451.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-

Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar,

Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. 2019.

Cloud Programming Simplified: A Berkeley View on Serverless

Computing. arXiv preprint arXiv:1902.03383 (2019).

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,

Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic

ephemeral storage for serverless analytics. In 13th { USENIX}

Symposium on Operating Systems Design and Implementation

({OSDI} 18). 427-444.

[18] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuf-

fling, fast and slow: scalable analytics on serverless infras-

tructure. In 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 19). 193-206.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shiv-

aram Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan

Ragan-Kelley. 2018. numpywren: serverless linear algebra.

arXiv preprint arXiv:1810.09679 (2018).

Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry

Liu, Matthew Rockett, Arvind Krishnamurthy, and Thomas

Anderson. 2019. Slim:{OS} Kernel Support for a Low-

Overhead Container Overlay Network. In 16th {USENIX}

Symposium on Networked Systems Design and Implementation

({NSDI} 19). 331-344.

[14

[aaw

—
—_
o

—_

—
—_
(=)

[

[19

—

[20

—

https://akka.io/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://zookeeper.apache.org/
https://www.docker.com/
https://docs.docker.com/v17.09/engine/userguide/networking/
https://docs.docker.com/v17.09/engine/userguide/networking/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.nginx.com/
https://github.com/YangZhou1997/openwhisk-lambda-mpi
https://github.com/YangZhou1997/openwhisk-lambda-mpi
https://redis.io/

	Abstract
	1 Introduction
	2 Background
	2.1 OpenWhisk
	2.2 Docker

	3 Architecture
	4 Design
	4.1 User Interface
	4.2 Message Passing on the Overlay Network
	4.3 Build-In Directory Service
	4.4 Alternative Directory Service Designs
	4.5 Security Considerations

	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Overhead of Pikachu
	6.3 Comparison to using in-memory store

	7 Discussion
	8 Related Work
	8.1 Big Data Processing on Serverless Platform
	8.2 Storage System for Serverless Computing

	9 Conclusion
	Acknowledgments
	References

