
Making Events Less Slippery With eel

Ryan Cunningham and Eddie Kohler
University of California, Los Angeles

rcunning@gmail.com, kohler@cs.ucla.edu

Abstract

Event-driven programming divides a program’s logical
control flow into a series of callback functions, making
its behavior difficult to follow. However, current program
analysis techniques can preserve the event model while
making event-driven code easier to read, write, debug
and maintain. We designed the Explicit Event Library
(libeel) to be amenable to program analysis, and created
tools to graphically expose control flow, verify resource
safety properties, and simplify debugging. The result sus-
tains the advantages of event-driven programming while
adding the important advantage of programmability.

1 Introduction

Coping with asynchronous events generated by unpre-
dictable sources is a fundamental systems problem,
with two fundamentally dual solutions [12]: threads and
event-driven programming. Despite controversy old and
new [8, 14, 18, 19], both models have their place—and
in particular, event-driven programming is here to stay.
In some contexts, such as interrupt handlers and embed-
ded systems, a connection-oriented thread model doesn’t
fit the problem or isn’t supported by underlying layers.
In others, such as Web serving, event-driven programs
achieve the best published performance [11, 17] and ex-
pose important information, such as blocking points [8].

Unfortunately, event-driven programs remain diffi-
cult to understand. Control flow is divided into many
cooperatively-scheduled callback functions, obscuring
context and programmer intent. This makes it hard to
write event-driven programs and, worse, hard to analyze
and debug them when they go wrong. Although threaded
programs have their own difficulties, particularly with
synchronization, threading doesn’t obfuscate programs
in the same way. So are threads the only model suitable
for dependable software? Put another way, must tools for
improving event-driven programmability “effectively du-
plicate the syntax and run-time behavior of threads” [18]?

We show that current program analysis techniques
can preserve the event-driven programming model while
making event-driven programs easier to read, write, de-
bug, and maintain. We designed a simple event library—
libeel, the Explicit Event Library—to be amenable to
program analysis. All relevant arguments are presented
directly to the library, rather than stored in heap struc-
tures requiring pointer analysis. Also, agroup identifier

argument encourages the programmer to group callbacks
dealing with the same conceptual connection, enabling
easy discovery of the program’s logical control flow. With
the help of this library, we built tools that graphically ex-
pose the event-driven control flow; that verify program
properties, such as that all resources allocated on a path
are freed; and that simplify debugging. Two programs,
crawl-0.4 [15] and plb-0.3 [5], were ported tolibeel from
the libeventlibrary [16]. Theeel tools helped us under-
stand these programs and uncovered several bugs, while
preserving the advantages of event-driven programming.

Our contributions arelibeel, an event notification li-
brary that facilitates readable programming and (through
its group identifiers) easy analysis, and theeelstatechart,
eelverify, andeelgdbtools built above it.

2 Event Programming

This section explores some typical event-driven code
for fetching an HTTP document, demonstrating com-
mon problems with event-driven software’s readability,
writability, and debuggability. The code is in Figure 1.

First, we try to understand the code. The control path
clearly proceeds fromhttp_fetch toreadheadercb fol-
lowing a read readiness event, or totimeoutcb after a
timeout expiration. However, it is not clear what happens
following the return on line 29. One would have to read
the functionhttp_parseheader, and any functions it
calls, in order to determine the next callback in the chain,
if any. Determining the control flow of event-driven pro-
grams often requires reading the entire function call graph
to assemble the callback chain.

Determining where files, memory, and other resources
are reclaimed also becomes a complicated process. Call-
back functions can allocate either local resources, which
last only as long as the callback function itself, or long-
lived resources, which are passed to the next callback
as part of the connection state. Furthermore, one callback
function can free resources passed to it by a prior callback.
When reading the code, it’s difficult to tell how resources
should be categorized—and, for example, whether the
absence of a “free” function represents a memory leak.

“Stack ripping” [6] makes this even worse. When a
sequential, blocking function is modified to wait for an
event, it must move all of its relevant state information,
possibly including stack variables, to the heap structure
passed to the next callback. For example, Figure 1’s line 6
writes an HTTP request to a file descriptor using a nor-

1

1 // assumeuri->fd is ready for write
2 void http_fetch(struct uri *uri, eel_group_id gid) {
3 char req[1024];
4 // create the HTTP request and write it touri->fd
5 snprintf(req, sizeof(req), "%s %s HTTP/1.0\r\n" ...);
6 atomicio(write, uri->fd, req, strlen(req));
7 // wait for a read event onuri->fd or timeout
8 eel_add_read_timeout(gid, readheadercb,

timeoutcb, uri, uri->fd, HTTP_READTIMEOUT);
9 }

10 // the timeout occurred beforeuri->fd was ready to read
11 void timeoutcb(eel_group_id gid, void *arg, int fd) {
12 // clean up all resources; ends the callback chain
13 uri_free_gid((struct uri *)arg, gid);
14 }

15 // uri->fd is ready to read
16 void readheadercb(eel_group_id gid, void *arg, int fd) {
17 char line[2048];
18 struct uri *uri = arg;
19 // read some data fromuri->fd
20 ssize_t n = read(uri->fd, line, sizeof(line));
21 if (n == -1) {
22 if (errno == EINTR || errno == EAGAIN)
23 goto readmore; // wait for another read event
24 uri_free_gid(uri, gid); // real error: free and return
25 return;
26 } else if (n == 0) // ... handle other conditions
27 // ... copy unparsed header info intouri structure
28 http_parseheader(uri, gid);
29 return; // What callback is next???
30 readmore:
31 // wait for another read event or timeout
32 eel_add_read_timeout(gid, readheadercb,

timeoutcb, uri, uri->fd, HTTP_READTIMEOUT);
33 }

Figure 1: Code from a version of crawl-0.4 [15] ported tolibeel, show-
ing part of a typical HTTP document fetch.

mal, non-blockingwrite. While this particular write is ex-
tremely unlikely to block in practice, true non-blocking
I/O would require that any unused portion ofreq be
passed on to the next callback.

Stack ripping complicates writing as well as read-
ing. Consider a programmer writing Figure 1’s code
in top-down order. Once she finishes writingread-
headercb, she might writehttp_parseheader. Un-
fortunately, this involves cleaning up some subset of
readheadercb’s state; and wheneverreadheadercb’s
state changes,http_parseheadermust change too.

Say the programmer now wishes to debug by stepping
line by line through the source code, observing variable
values. She runs the program in a debugger and sets a
breakpoint at line 6 to begin the process. After stepping a
few lines to the end ofhttp_fetch, the debugger steps to
the calling function—but this is the dispatch loop. There
is no convenient way to continue stepping on to the next
line of logical program flow (11 or 16). Debuggers don’t
follow the logical control flow of event-driven programs,
making stepping inconvenient.

In practice, programmers have avoided these prob-
lems primarily by turning to threads, whose explicit con-
trol flow improves programmability. Memory is more eas-
ily managed because stack variables can be used across
blocking calls. Other resources are more easily managed

because control paths that exit the function are more vis-
ible. Debugging is easier (assuming the debugger has
thread support). Programmers that choose to use events,
often for performance reasons, suffer through with ad-hoc
solutions. For instance, separate documentation might be
manually created to show the callback chain; memory
and resource management is most likely done manually;
printf debugging rules the day. Some systems combine
events’ cooperatively-scheduled execution model with
thread-like code via automatic stack management [6, 19];
but this may not support multiple outstanding callbacks
on the same connection,and still requires the programmer
to revalidate shared state after each blocking call [6].

3 The eel Tools

Our eel tools and a library framework attack all these
problems at their common source: the difficulty of fol-
lowing an event-driven program’s control flow. Thelibeel
library simultaneously facilitates event-driven program-
ming and program analysis: we designed the library
specifically to avoid the aliasing and state issues that typ-
ically complicate analysis of C-based programs. Never-
theless,libeelprograms are truly event-driven, not event-
based programs in threaded clothing.

The tools leveragelibeelto extract control-flow infor-
mation from arbitrary event-driven programs. The results
are displayed or used to verify program properties.eel-
statechartvisualizes the program’s control flow in the
form of a simple chart. Theeelverifyframework can de-
tect resource leaks and other mistakes common to event-
driven programs. Lastly, a modifiedgdblets the program-
mer transparently step through the callback chain, simpli-
fying debugging. Each tool plays a role in the program-
ming process:eelstatechartin program comprehension,
eelverifyin checking, andeelgdbin debugging.

Thelibeel library was initially based onlibevent[16],
another event library, although it has considerably di-
verged. Theeeltools were built using the C Intermediate
Language (CIL) framework for C program manipulation
and analysis [2], the BLAST software verification sys-
tem [1],gdb[4], and Graphviz’sdot [3].

3.1 Thelibeel interface

The libeel library, like other existing event libraries [8,
16], provides a single unified interface for registering,
canceling, and dispatching callbacks. It abstracts system
dependencies, such as the choice ofselector a more-
scalable variant [7, 13]. Figure 2 shows part of its in-
terface. The event functions register a callback for an
I/O event on the given file descriptor, or for a timer that
goes off after a certain number of milliseconds. Other
functions combine I/O with timeout events. The design
challenge was to provide a usable, minimal interface that
simultaneously enables analysis.

2

// Group operations
eel_group_id eel_new_group_id(void);
void eel_delete_group_id(eel_group_id gid);
// Event functions
eel_event_id eel_add_timer(eel_group_id gid, eel_callback cb, void *cb_arg, int timeout_milliseconds);
eel_event_id eel_add_read(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);
eel_event_id eel_add_write(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);
eel_event_id eel_add_error(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);

Figure 2: Some of thelibeel interface, including showing group identifier new and delete calls and event registration functions.

libeel’s interface is simpler than some other event
notification libraries in that the callback functions are ex-
plicitly named for each event registration, and there is
a one to one pairing of registrations and callback calls.
libeelalso requires the programmer to specify the logical
connection to which an event applies, via group identifier
arguments in all event registration calls. Explicit func-
tions create and destroy group identifiers. It is typically
easy to add group identifiers to an event-driven program:
context data and resources passed along the call chain are
usually allocated in a single location and deallocated in
another; the group identifier can be created and released at
these sites as well. Group identifiers somewhat resemble
thread identifiers, but differ in that there can be multiple
callbacks outstanding for the same group. The othereel
tools trace group identifier values through the program’s
callbacks to extract logical code paths.

Initially, we considered usinglibeventdirectly, but
doing so proved difficult. Event registration inlibevent
requires two library calls, one to set up a parameter data
structure and one to actually register:

event_set(&ev, fd, EV_READ|EV_WRITE|EV_PERSIST,
callback, NULL);

... // analysis must check whetherev has changed
event_add(&ev, &timeout);

This allows persistent (automatically recurring) registra-
tions and multiple event types registered to the same call-
back function, and encourages persistentev structures.
For example, oneev might be initialized at the beginning
of the program, then reused liberally throughout. Thus,
whole-program alias analysis might be necessary to de-
termine the callback function registered by a particular
event_add, complicating both control flow analysis and
human understanding.

libeelavoids these issues by requiring that all param-
eters be presented as explicit arguments, and by disal-
lowing recurring registrations. The resulting one-to-one
correspondence between a single event registration and
a single callback firing decouples the semantic cases.
These interface design differences keep thelibeelseman-
tics simple enough for program analysis and as flexi-
ble aslibevent (although the latter is less verbose and
marginally more efficient). Porting alibeventprogram to
libeel is straightforward: separate out the multiple event

types and persistent event registrations into independent
callback functions and registrations. However, in cases
where registration parameters are set distant from actual
registrations (typically because the parameter structure
is reused throughout the program), one must do whole
program reasoning to determine what events are being
registered to what callback function.

3.2 eelstatechart: visualizing the callback chain

eelstatecharthelpslibeelprogrammers better understand
a program’s control flow. Short of modifying C syntax
in a non-trivial way, asynchronous execution can best be
visualized using a graph. The chart we generate here is
equivalent to the graph described by Lauer and Needham
in 1978 [12] and the blocking graph described by von
Behren et al. [18] Nodes in aneelstatechartare labeled
with callback function names and edges with abbrevi-
ations for I/O or timer events. The purpose is to make
the program’s underlying structure more obvious, help-
ing the programmer understand the common paths and
how connections progress. Callbacks obscure even sim-
ple programs by removingcontext;eelstatechartrecovers
each callback’s context in the program.

eelstatechartperforms a static analysis; the tree of
event registrations and their associated callbacks is de-
termined while following the creation, use and release
of group identifiers through the static callgraph of the
program.eelstatechartstarts by visiting all function defi-
nitions and their static function calls to build a call graph.
When alibeel call is encountered it marks the calling
function with a label indicating the operation performed.
The source of the group identifier is located and added to
the label as well. Finally, these labels are percolated all
the way up the callgraph. To export the chart, the labels
are traversed from callback to callback beginning with
the program entry point.

Figure 3 shows the primaryeelstatechartfor crawl-
0.4 [15], a simple Web crawler. The code from Figure 1
appears on the right side of the figure.http_fetch is
called byhttp_connectioncb, creating the read readi-
ness event and timeout event seen heading down and right
from http_connectioncb. Once inreadheadercb, the
chart shows arrows indicating the callback registrations
from line 31. It also shows an arrow to “delete”, indicat-

3

Chart g0: main - New(tmp@http.c:595)

main -g0-g1

delete

http_connectioncb -g0

W

http_connectioncb_timeout -g0

TO

dns_write

W

W

TO

W readheadercb -g0

R

timeoutcb -g0

TO

W

TO

W

dns_read

R

R

TO

http_readbody_timeout -g0

TO http_readbody -g0

RW

TO

TO

R

Figure 3: The primaryeelstatechartfor crawl-0.4 [15]. Each rectangle names a callback function. Each arrow indicates the next callback in the
chain. Arrows are labeled with abbreviations of the event causing the callback to be fired: “W” is write, for example. Arrows pointing to “delete”
indicate the end of the callback chain. Gray rectangles and arrows indicate timeout or delete paths, which typically correspond to errors.

ing that the callback chain can end, in this case from a
call touri_free_gidon line 24 or elsewhere. The call to
http_parseheaderon line 28 extends the callback chain
to http_readbody or http_readbody_timeout, which
go on to repeat back tohttp_readbodyor end the chain.
By just reading the code it is not apparent what callbacks
might be generated inside the call tohttp_parseheader;
eelstatechartclearly conveys this information.

eelstatechartwill generate an approximation of the
true chart, rather than the true chart, if an event registra-
tion uses a variable to name a callback function (rather
than a naming a callback function directly), or due to
complex use of function pointers elsewhere in the code.
This hasn’t happened in the programs we’ve converted
so far. One remaining challenge is to create a chart that
is easily read but also contains all pertinent information.
For example, it would be especially nice to show what
lines generated which events. We collect enough detail
to provide this information, but it would clutter the chart
beyond easy readability. Another challenge is visualizing
cases where more than one next callback is registered,
i.e. the control proceeds down both callback chains in an
unspecified order—a particularly flexible pattern.

3.3 eelverify: a verification framework

eelverifyis a framework for verifying properties oflibeel
programs. It provides a set of program transformations
and instrumentation points forlibeel programs, as well
as verifiers that use these transformations. For instance,
eelverifycan verify that group identifiers are not leaked

anywherealong the callback chain. It first performsa sim-
ple program transformationso that callback functions can
be verified independent of each other. Then BLAST [10]
is used to instrument theeel_group_id type,libeelcalls,
and callback function returns such that if a group identi-
fier is leaked, an error label is reached. Other properties
can be verified using a similar approach.

Using eelverifywe found a few actual bugs (and a
few false positives) from two programs that, together,
had about 15,000 lines of uncommented C code. One
interesting bug stands out in plb-0.3 [5], an HTTP load
balancer. The offending code segment is in a callback
function, client_forward_request, executed follow-
ing a read readiness event. It then attempts to execute
the read call. On an error read result it checks forEINTR,
which indicates that a signal interrupted the read attempt.
Typically this situation is handled by waiting again for
a read readiness event, but the callback simply returns
without registering any callback or releasing resources.
Here,EINTR would result in a failure to forward HTTP
POST data from the client to the server.eelverifyfound
this bug because the group identifier passed into the call-
back function was not used or released along the call
path. It’s worth noting that this bug might be hard for an
automatic checker to detect [9]. Since different callbacks
were set on different paths, some exit points deleted the
group identifier, while others did not.

eelverify implicitly assumes thatlibeel is correct; it
uses thelibeel semantics but acts on its functions as
if they were language keywords.libeel cannot be veri-
fied directly because it uses function pointers and com-

4

plex data structures to manage callback dispatch. Under
this assumption its analysis is sound, however, mean-
ing eelverifynever will report a false negative. Function
pointer usage inside callback functions can lead to false
positives, however.

eelverifyprovides a framework for verifying a broader
class of resource properties, including those that follow
a paired calling pattern such as create/release, alloc/free,
or open/close, within the context of alibeel event-driven
program. For example, it might ensure that file descrip-
tors are always closed after being opened, or that they
are not used after being closed. However,eelverifycan
currently verify properties only along a single instance of
the callback chain; it ignores any dependencies between
instances or between separate chains.

3.4 Debugging witheel

eelgdb’s extensions consist of a few new commands that
allow stepping line by line through alibeelcallback chain.
‘Cnext’ is similar to thegdb‘next’ command, except that
if the current line matches a pattern indicating the ad-
dition of a libeel event, it will create a new temporary
conditional breakpoint at that callback function’s header.
These breakpoints will only stop the program if the group
identifier argumentequals that of the currently active call-
back. Thus, program executioncan continue until the next
breakpoint in the logical connection, allowing for trans-
parent stepping to the next logical point in the program.
The result is that the debugger allows callbacks for other
connections to be dispatched while it is waiting for the
next relevant event, but returns control to the user once
an event for the current connection has triggered. The
analogous situation in the threaded model is that when
an I/O call blocks, the debugger executes code on other
threads while it waits for the I/O call to complete.

For example, consider debugging the code:

1 ...
2 atomicio(write, uri->fd, req, strlen(req));
3 eel_add_read(gid1, readheadercb, uri, uri->fd, 1000);
4 }
5 void readheadercb(eel_group_id gid2, void *arg, int fd) {
6 ...

Assume the program is run ineelgdb, which hits a break-
point on line 2. The user executes ‘cnext’, which causes
the debugger to step to line 3, just as ‘next’ would. When
‘cnext’ is applied to line 3, alibeel pattern matches the
line of source code, extracting the expressiongid1 and
the identifierreadheadercb. (As with the othereeltools,
eelgdbdoes not currently handle function pointer usage
in event registrations.) Next it evaluatesgid1’s value at
line 3 (e.g.0x007A224F) and sets a conditional break-
point as follows:tbreak readheadercb when (gid2
== 0x007A224F). Then it steps over line 3 to line 4. The
user can then ‘continue’ to allow the program to proceed

or step back to the calling function. Once the program
is continued, if the read event is triggered on the same
group identifier, thelibeel dispatch loop will callread-
headercb and hit the breakpoint on line 5. The user then
proceeds debugging the same instance.

4 Related Work

In 1978, Lauer and Needham proved that threads and
events are duals [12]. Most still researches believe that
one or the other is better, however. Ousterhout argued
that threads are a bad idea because they perform poorly,
and concurrency issues make them error-prone [14]. Von
Behren et al. argue, in contrast, that event-basedprograms
are too difficult to write, for the reasons we have ex-
plained [18]. They aimed to improve the performance of
threads to match that of events; Capriccio’s compiler anal-
yses and runtime techniques change a threaded program’s
runtime behavior into that of a cooperatively-scheduled
event-driven program [19]. Even here, events and threads
are dual: events need no compiler help for performance,
since they perform well already; instead, we use analyses
andstatic techniques to improve the programmability of
events to match that of threads (or, arguably, better that
of preemptively-scheduled threads, because there are no
concurrency issues). Adya et al. named “stack ripping”,
identified it as a major issue with event-driven program-
ming, and introduced a mechanism for automatically
managing multiple stacks [6]. Thelibeel library leaves
the user to manage the stack manually, and the existing
eel tools address the problems that result.Eel-like tools
for a system with automatic stack management would
address its problems instead—for instance, by checking
that any stack copies of global state are revalidated after
each blocking call.

Several projects focus on building fast web servers,
or fair web servers, using events [11, 17] or a combina-
tion of events and threads, as in SEDA [20]. Dabek et
al. describe a C++ library,libasync, for building robust
event-driven software [8].libasyncprimarily addresses
callback safety by using C++ templates to cross-check
callback function types and context data. It also adds
reference-counted objects to ameliorate some resource
management issues. We focused on enabling and building
static tools that check safety issues and facilitate program
clarity; reference counting and type checking would be
complementary.

5 Conclusion

The eel library and program analysis tools help pro-
grammers evade common problems with the event-driven
model, while remaining inside that model. We are work-
ing on further improvements to visualization to differen-
tiate success and error execution paths, and on verifying

5

other properties such as proper file descriptor usage. We
are also working on a program transformation, in con-
junction with modifications to BLAST, that would allow
verification using regular BLAST specifications, instead
of those phrased to verify properties of callback func-
tions independent of each other. This would let us ver-
ify properties that require simultaneous analysis of more
than one callback. As well, collecting profiling informa-
tion tagged with group identifiers could aid in debugging
resource bottlenecks inlibeelprograms. Even now, how-
ever, theeeltools make it easier to read, write, debug and
maintain event-driven programs. Code will be available
athttp://read.cs.ucla.edu/.

Acknowledgements

We gratefully acknowledge Rupak Majumdar for discus-
sions and BLAST aid, and the anonymous reviewers for
helpful comments. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. 0427202.

References

[1] BLAST: Berkeley Lazy Abstraction Software Verifica-
tion Tool. URLhttp://www-cad.eecs.berkeley.edu/
∼rupak/blast/.

[2] CIL—Infrastructure for C program analysis and transfor-
mation. URLhttp://manju.cs.berkeley.edu/cil/.

[3] Graphviz—graph visualization software. URLhttp://
graphviz.org/.

[4] GDB: The GNU Project Debugger. URLhttp://www.
gnu.org/software/gdb/gdb.html.

[5] PLB—Pure Load Balancer: A free high-performance load
balancer for Unix. URLhttp://plb.sunsite.dk/.

[6] A. Adya, J. Howell, M. Theimer, B. Bolosky, and
J. Douceur. Cooperative task management without man-
ual stack management. InProceedings of the General
Track: 2002 USENIX Annual Technical Conference, June
2002.

[7] G. Banga, J. C. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX. InProc.
1999 USENIX Annual Technical Conference, pages 253–
265, Monterey, California, June 1999.

[8] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and
R. Morris. Event-driven programming for robust software.
In Proceedings of the 2002 SIGOPS European Workshop,
September 2002.

[9] D. Engler, D. Yu Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. InProc. 18th ACM Symposium
on Operating Systems Principles, pages 57–72, Château
Lake Louise, Alberta, Canada, Oct. 2001.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with BLAST. InProceedings of the
Tenth International Workshop on Model Checking of Soft-
ware (SPIN), pages 235–239. Lecture Notes in Computer
Science 2648, Springer-Verlag, 2003.

[11] M. Krohn. Building secure high-performance web ser-
vices with OKWS. InProc. 2004 USENIX Annual Tech-
nical Conference, Boston, Massachusetts, June 2004.

[12] H. C. Lauer and R. M. Needham. On the duality of operat-
ing system structures. InSecond International Symposium
on Operating Systems, pages 408–423. INRIA, October
1978.

[13] J. Lemon. Kqueue: A generic and scalable event noti-
fication facility. In Proceedings of the FREENIX Track
(USENIX-01), June 2001.

[14] J. K. Ousterhout. Why threads are a bad idea (for most pur-
poses). Presentation at the 1996 USENIX Annual Tech-
nical Conference, Jan. 1996.

[15] N. Provos. crawl—a small and efficient HTTP crawler.
URL http://www.monkey.org/∼provos/crawl/.

[16] N. Provos. libevent—an event notification library. URL
http://www.monkey.org/∼provos/libevent/.

[17] Y. Ruan and V. Pai. Making the “box” transparent: Sys-
tem call performance as a first-class result. InProc. 2004
USENIX Annual Technical Conference, Boston, Mas-
sachusetts, June 2004.

[18] R. von Behren, J. Condit, and E. Brewer. Why events
are a bad idea (for high-concurrency servers). InProc.
HotOS-IX: The 9th Workshop on Hot Topics in Operating
Systems, Lihue, Hawaii, May 2003.

[19] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable threads for Internet ser-
vices. InProc. 19th ACM Symposium on Operating Sys-
tems Principles, pages 268–281, Bolton Landing, Lake
George, New York, Oct. 2003.

[20] M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable Internet services.
In Proc. 18th ACM Symposium on Operating Systems
Principles, pages 230–243, Château Lake Louise, Alberta,
Canada, Oct. 2001.

6

