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Abstract

Pequod is a distributed application-level key-value
cache that supports declaratively defined, incremen-
tally maintained, dynamic, partially-materialized views.
These views, which we call cache joins, can simplify
application development by shifting the burden of view
maintenance onto the cache. Cache joins define relation-
ships among key ranges; using cache joins, Pequod cal-
culates views on demand, incrementally updates them
as required, and in many cases improves performance
by reducing client communication. To build Pequod, we
had to design a view abstraction for volatile, relationless
key-value caches and make it work across servers in a
distributed system. Pequod performs as well as other in-
memory key-value caches and, like those caches, outper-
forms databases with view support.

1 Introduction

Web developers use application-level key-value caches
such as memcached [2] to improve the performance of
database-backed sites. Caches can store base data, mean-
ing copies of database records; this improves perfor-
mance by offloading reads from a bottleneck persistent
store. More benefit can be gained by caching compu-
ted data, which derives from base data but is organized
more conveniently for readers. Unfortunately, neither ap-
proach is easy to program. Twitter and Facebook, for in-
stance, organize their persistent stores by posting user
and time [12, 20], but their primary read operations com-
bine and filter many users’ data streams into “timelines”
based on user subscriptions. A base-data cache for this
access pattern would make reads difficult: the applica-
tion would basically design and execute a query plan on
the cache. A computed-data cache that stored the results
of complex timeline queries would simplify reads, but
complicate writes: developers would have to invalidate
or update cached computed results as necessary to main-
tain freshness. Developers have even responded to these
challenges by building application-specific caching sys-
tems [12].

Pequod is a general-purpose distributed key-value
cache that transparently keeps computed results up to
date. Its central idea is the cache join abstraction, which
compactly expresses the transformations required to turn
input cached data into computed results. The developer
installs cache joins in advance. Pequod uses cache joins

both to compute data requested by clients, and to update
cached results in response to updates. Pequod handles
the complex task of updating cached computed data with
little developer effort.

A cache join is a materialized view [22] implemented
in a distributed key-value cache rather than a relational
database. It declaratively defines computed data in terms
of simple transformations of base data. We show that ma-
terialization, where the cache stores computed data and
keeps it up to date, is important for performance. Since
cached data is by definition partial, Pequod’s material-
ized views must be both partial and dynamic [28, 30].
Cache joins also offer control over data freshness, sup-
porting both periodic snapshots and incremental updates
that keep computed data fully up to date [19]. Pequod
thus combines many advanced features, supporting in
one system distributed, incrementally maintained, both
eager and lazy, dynamic, partially-materialized views.
Although Pequod builds on implementation strategies
from database materialized views, the non-relational,
distributed, key-value-cache context required changes
both to the cache join abstraction and to its implemen-
tation.

Cache joins help Pequod improve application perfor-
mance. Computing a result often involves reading extra
data; executing this computation in servers, rather than
clients, reduces network traffic. Pequod also uses depen-
dency records and hints to efficiently maintain its cache
in response to updates.

Our work offers several contributions. We observe that
simple joins, filters, and aggregations can express rela-
tionships among cached data for many applications, and
that can be applied to a distributed, ordered key-value
cache. We describe the cache join abstraction for key-
value materialized-view-like queries and query execu-
tion plans. We provide efficient policies for computing
these cache joins based on application queries. We de-
sign a distributed system that supports cache joins us-
ing cross-server data subscriptions and update notifica-
tions. Finally, we evaluate Pequod on two example ap-
plications inspired by popular websites, a Twitter-like
microblogging service and a Hacker News-like news ag-
gregator with user karma. We compare our system with
existing technologies and find that Pequod preserves key-
value cache performance, despite the addition of cache
join execution. We show that moving computation into



cache servers can improve overall system performance,
and demonstrate that a deployment of Pequod can be
scaled to handle Web-class workloads.

2 Design

Pequod is an ordered key-value cache with string keys
and values. It supports four basic operations: get(k) re-
turns a value; put(k, v) updates a value; remove(k) re-
moves a value; and the ordered scan(first, last) opera-
tion returns a lexicographically-ordered list of those key-
value pairs with keys in the given range. Pequod is not a
database and, as is usual for key-value caches, it doesn’t
support multi-key transactions.

To support freshness, base data in a Pequod cache
must be kept up to date relative to the persistent backing
store (typically a database). A convenient way to do this
is to connect Pequod with a database shard, instructing
Pequod that some keys can be found in the database and
instructing the database that updates to relevant tables
should be forwarded to Pequod (e.g., using Postgres’s
notify statement). If a request is made for a database-
sourced key, Pequod will query the database and cache
the result, and the database will keep Pequod abreast of
any changes. Pequod thus acts as a write-around cache:
application writes go directly to the database, and appli-
cations access Pequod only for reads. We describe the de-
sign of Pequod using a write-around deployment, though
other deployments are possible (such as write-through or
lookaside caching).

We describe Pequod with reference to Twip, an appli-
cation that models the core of Twitter, but its ideas apply
to many applications that use materialized views.

2.1 Caching Twip

A Twip user can post tweets, follow other users (sub-
scribe to their tweets), and check her timeline. This last
operation is the most complex: when user ann checks
her timeline, Twip returns, in a time-sorted list, all recent
posts made by any user ann follows.

A Twip database store might use two tables, p for posts
and s for subscriptions. p’s columns would be poster
(the user ID of the posting user), time, and tweet; s’s
columns would be user (the ID of the subscribing user)
and poster (the ID of the followed user). This query
satisfies a timeline check by user ann for all interesting
tweets posted after time 100:

select p.time, p.poster, p.tweet from s, p
where s.user="ann’ and s.poster=p.poster
and p.time>=100 order by p.time;

Timeline checks are frequent, routinely outnumbering
new posts by a factor of 100 [20]. They are also ex-
pensive. As the query makes clear, a single timeline

check must collect information from all a user’s subscrip-
tions, and Twitter users average more than 100 subscrip-
tions each [9]. Executing frequent, expensive, latency-
sensitive queries on a persistent database is inadvisable.
Timeline checks must be cached.

The cache could simply hold base data. For example,
the key-value pair p |bob | 100 — Hi might represent user
bob’s tweet of Hi at time 100, and the pair s |ann|bob —
1 might represent ann’s subscription to bob. However,
a base-data-only cache shifts the query planning burden
onto the application. To check ann’s timeline, Twip must
read her subscriptions with a scan on the s|ann| range,
and then, for each subscription, scan the corresponding
p| range for tweets. This involves at least two rounds
of RPCs (and, for typical users who follow many others,
hundreds of RPCs total).

To simplify timeline checks, the cache could store
computed data. Keys starting with t|ann| could store
ann’s timeline, with copies of tweets by the users ann
follows. For instance, the bob tweet above would corre-
spond to the key-value pair t |ann| 100 | bob - Hi. The
order of components in this key is semantically impor-
tant and follows from the lexicographic order of the scan
operation. Since each user has their own timeline and
tweets are sorted by time, the user and post time must
follow the t| prefix in that order. We assume multi-
ple followed users might post tweets at the same time,
so the key includes the poster to disambiguate them.
Ann’s timeline check at time 100 would be implemented
by a single scan on the half-open range [t|ann|100],
t]ann| *).1 This resembles Redis’s demonstration Twit-
ter [4] and to some extent the actual Twitter [20], though
these services store user timelines as Redis list values
(since Redis is not an ordered store) and Twitter stores
tweet IDs rather than texts.

Timeline checks are certainly simpler when compu-
ted data is cached, but posts and subscriptions are more
complicated. Any post must update all relevant timelines.
Performance will be good—shifting overhead from read
operations to writes is often useful—but implementation
remains complex. Furthermore, since the cache might
evict a timeline, the application must still contain code
to construct timelines from posts.

2.2 Basic cache joins

Pequod aims to help applications avoid this complexity.
A Twip application using Pequod can write posts to the
database and read timelines directly from the cache with-
out worrying about subscriptions, and with performance
as high as that of a typical application cache. The key

I'The notation t |ann|* represents the upper bound of the t|ann|
range: [t|ann|, t|ann|*) contains exactly those keys starting with
t|ann|. In the Pequod implementation, this upper bound is imple-
mented by the unsightly string t | ann}.



idea is Pequod’s declarative cache join specifications,
which relate computed data (such as timelines) to base
data (such as posts and subscriptions). The Twip time-
line cache join

t|user|time|poster = check s]|user|poster
copy plposter|time;

defines the value of t |user|time|poster as a copy of the
value of p|poster|time whenever s |user|poster exists.
Cache join semantics are that of a simple SPJ database
query; the syntax is inspired by Datalog [14] “t(user,
time, poster, tweet) :- s(user, poster), p(poster, time,
tweet).” However, where Datalog and database queries
treat all columns alike, cache joins distinguish keys and
values. The poster’s tweet, which is the fweet column in
Datalog and SQL, is implicitly referenced in Pequod by
the cache join’s copy operator.

Pequod computes cache joins using strategies effec-
tive for application caches. When the timeline cache join
is installed, Pequod contains no t| keys. Instead, Pe-
quod dynamically materializes the required results in re-
sponse to scans of the t| range. A timeline scan on
[t]ann|100,t|ann|*) would (in a write-around deploy-
ment) ensure that the s|ann subscriptions and all rele-
vant p| posts were cached, then join those keys to pro-
duce the relevant timeline. In addition to returning to
the client, Pequod caches the computed timeline and in-
stalls updaters that keeps it up to date. If bob tweets
again at time 120, the database will notify Pequod, which
will put the new tweet into key p|bob|120. This put
triggers a process that automatically copies the tweet to
key t|ann| 120 | bob. Since Pequod is eagerly and incre-
mentally maintaining ann’s timeline, her later timeline
checks can execute without additional computation. Pe-
quod also handles subscription changes: modifications to
the s|ann| range cause incremental recomputation.

2.3 Advanced cache joins

Cache joins can specify query plans and types of main-
tenance as required by the application. For example,
Twitter celebrities can have tens of millions of follow-
ers. Copying their posts into so many timelines will use
a lot of memory. Since there are relatively few such
celebrities and relatively few celebrity posts, it can be
more memory-efficient to handle their posts in a differ-
ent way [26]. For instance:

ct|time|poster = copy cp|poster|time;
t|user|time|poster = check s|user|poster

copy plposter|time; // (1) non-celeb, same as above
t|user|time|poster = pull copy ct|time|poster

check s|user|poster; // (2) celebrity

Here each user’s timeline is calculated from fwo cache
joins with different execution strategies. The first, for

non-celebrities, is eagerly maintained. The second, for
celebrities, is not: the pull annotation tells Pequod to
recompute the join on each request without caching the
results. Celebrity users store their posts under cp| keys,
rather than the usual p|; a helper range, ct|, combines
all celebrity posts in time-primary order. To compute the
celebrity portion of a timeline, Pequod checks the ct
range for celebrity posts, then filters the results through
the user’s subscriptions. If no celebrities have posted in
a time range (a common case), Pequod will complete
the celebrity join with a single fast scan. In our tests,
celebrity timelines don’t offer performance advantages,
but they do save memory.

Cache joins can also colocate different classes of val-
ues into the same range of keys. This powerful use case
doesn’t fit easily into a relational model. For instance,
consider a Hacker News-like news application with user
karma [1]; we call our version Newp. Users can author
new articles, comment and vote on articles, and read arti-
cle pages. An article page shows the article’s vote count,
its comments, and the “karma” for each user who com-
mented on the article, where a user’s karma is the count
of votes on the articles that user authored. A cache for
Newp might store articles in one key range, comments
in another, and votes in another. Karma, which involves
an expensive sum over all of a user’s votes, should be
precalculated and cached as well. Thus, the data neces-
sary to render an article would be spread over many key
ranges. But in Pequod, separate cache joins can bring
these disparate objects into a single page| scan range,
as shown in Figure 1. As a result, Newp can issue one
scan on [page|bob|101,page|bob|101]*) to retrieve
all of the disparate data needed to render an article page.
We call cache joins like this interleaved since they inter-
leave results from logically different computations in a
single output range.

Newp also shows that Pequod cache joins can aggre-
gate input data. The karma join uses a count operator
to reduce a range of inputs (all keys starting with vote |
author) into a single value, namely the count of the num-
ber of inputs. Pequod supports several simple aggrega-
tion functions, including sum, count, min, and max. Ag-
gregated data is kept up to date just like copied data, and
aggregations are easy to add.

2.4 Distributed Pequod

Distributed Pequod supports workloads too large, or too
compute-intensive, for a single server to handle. Base
data is replicated across servers as necessary to support
the maintenance of computed data (cache join outputs).
Each base key has a home server to which updates are
directed (a partition function maps key ranges to home
servers). When a base key k is read from a server S
other than its home server H, S requests k’s value from



karma | author = count vote|author|id|voter;
rank |author|id = count vote|author|id|voter;
page | author|id|a = copy article|author|id;
page |author|id|r = copy rank|author|id;
page | author|id| c|cid| commenter =

copy comment |author|id|cid|commenter;
page | author|id| K| cid| commenter =

check comment |author|id|cid| commenter

copy karma|commenter

Figure 1: Interleaved cache joins bring the data necessary to
render a Newp article into one contiguous range. Key tags like
|a and |r help the application distinguish types of data.

H. In addition to returning the value, H installs a sub-
scription for S to k. When H receives an update to k’s
value, it will send the new value to S. Pequod thus main-
tains eventually-consistent replicas of base data. Compu-
ted data is distributed across servers according to client
requests. To compute a cache join, a server first fetches
all relevant base data into memory (possibly accessing
home servers or the backing store, and possibly work-
ing through intermediate cache joins), then runs without
further communication.

Since cache joins can execute anywhere, adding
servers to a Pequod deployment increases its compu-
tational capacity. Base data subscriptions also make
replication-based load balancing possible: directing
reads for popular data ranges to multiple Pequod servers
establishes incrementally-maintained replicas that can
distribute query load. Adding more servers to a deploy-
ment also increases the system’s storage capacity, but due
to the data duplication and subscription overhead inher-
ent in our design, a Pequod cache’s storage capacity does
not necessarily rise linearly with the number of servers.
Data duplication is reduced when clients send their re-
quests to appropriate servers. Twip clients avoid redun-
dant timeline storage by sending all timeline checks for
user u to a specific server S («). This is especially impor-
tant since timelines make up the large majority of system
data (each tweet is stored once in the poster’s p| range
and many, many times in followers’ t| ranges). But
some duplication is unavoidable—for instance, a popular
user’s tweets are copied to all servers, inducing network
overhead—and other applications might be unpartition-
able.

Our initial design goal for distributed Pequod has been
simplicity rather than completeness, and we do not focus
on consistency or resilience to failure. Pequod is eventu-
ally consistent: every update to base data eventually be-
comes visible to all interested servers, but since update
propagation is asynchronous, different servers might see
updates at different times. The maximum update delay
depends on network properties, and is relatively low for
our expected deployments (several servers within a sin-

gle data center). Many Web applications are tolerant of
this kind of inconsistency. For some applications, the cur-
rent Pequod prototype can also support “read-your-own-
writes” consistency, where writes made by a client are al-
ways visible to later reads by the same client. To achieve
this level of consistency, clients must read from and write
to a single Pequod cache server (base data are written
directly to Pequod to avoid the asynchrony of database
notification).

2.5 Eviction

Pequod can evict data under memory pressure. Three
types of data can be evicted: data computed by a cache
join, remote data copied from another Pequod server via
subscription, and cached base data, which in our ex-
pected deployment is loaded on demand from a database.
Eviction requires modifying the store and invalidating
all dependent computed data (which can have transi-
tive effects). At present, an overloaded Pequod server
simply evicts the least recently used data ranges. This
could be improved by considering the expected costs of
reloading a range (the latency of fetching base data from
the database, the CPU cost of recomputing dependent
ranges, and so forth).

2.6 Discussion

Pequod simplifies application design by adding intelli-
gence to the caching layer. But databases already sup-
port that intelligence; why not just use one? Applica-
tions couldn’t afford to use the main persistent database,
but perhaps, as in DBProxy [7, 8], another relational
database could be used as a cache. This kind of deploy-
ment would be an excellent choice if it performed well.
Since Web applications already rely on key-value cache
performance, and since some of that performance derives
from the key-value model, we chose instead to add intel-
ligence to a key-value cache.

3 Cache joins

A cache join declares how to calculate some output key-
value pairs from input key-value pairs, which we call
sources. Since cache joins are expressed in terms of key-
value pairs, which have a single meaningful index or-
dering (namely, lexicographic key ordering), cache joins
also expose meaningful server performance properties,
making them resemble both database views and query
plans.

A cache join specification has four parts. (1) An output
pattern, such as t|user|time|poster, defines the format
of output keys. (2) One or more source patterns, such as
copy plposter|time, select keys whose values are used
to compute results, and define the operators applied to
these keys. (3) Optional performance annotations (in-
cluding the order of source patterns) guide query exe-



<cachejoin> ::= <key> "=" ["push" | "pull" |
"snapshot <T>"] <sources>;

<sources> ::= <source> | <sources> <source>;

<source> ::= <operator> <key>;

<operator> ::= "copy" | "min" | "max" | "count"
| "sum" | "check";

Figure 2: Cache join grammar.

cution; see §3.4. (4) Slot definitions tell Pequod how to
unpack a key into its component slots—for example, by
looking for vertical bars, or by taking fixed numbers of
bytes. We don’t explain slot definitions further.

Pequod supports several source operators. Copy tells
Pequod to copy the corresponding source’s value to the
output key. Check marks sources whose values aren’t in-
teresting. (For example, in the timeline join, subscrip-
tions like s|user|poster are used only for the con-
tents of their keys.) There are also several aggregate
functions; like SQL’s aggregate functions, they combine
many source values into a single output.

Unlike a database query, a cache join exposes the
performance properties of key ordering (in relational
databases index structure is specified elsewhere), and ex-
poses more performance properties through annotations,
but has less flexibility. For instance, cache joins must not
be recursive (a cache join’s output cannot be used as one
of its sources), and relationships between “tables” must
be expressed entirely through keys.

Users define cache joins in textual form (Figure 2 sum-
marizes the grammar) and install them using an “add-
join” RPC. Multiple cache joins may be installed over the
same range of keys. One cache join can act as a source for
another; this can be useful, for example to permute keys
into a more convenient order, but risks cascading inval-
idations. Performance annotations such as snapshot T
(§3.4) can mitigate this problem somewhat. Users should
not install circular cache joins.

Pequod checks for errors (such as recursive queries) at
cache join installation time, but some errors are difficult
to identify in advance. For instance, consider the time-
line join variant t|user|time = check s|user|poster
copy p|poster|time. Since this lacks the “|poster” suf-
fix for timeline keys, it produces undefined results when
two or more posters post tweets at the same time. (A
corresponding database query would produce one tuple
per relevant tweet, but Pequod values are strings, not tu-
ples, and the copy operator doesn’t know how to com-
bine multiple values into a single string.) But it’s not
necessarily appropriate to reject such joins out of hand;
perhaps the application ensures that no two tweets have
the same time. Thus Pequod’s users are left responsible
for avoiding ambiguous cache joins, either by prevent-
ing output collisions or by using aggregate functions with

well-defined behavior.

We currently impose additional technical require-
ments on cache joins. For instance, in a join with n
sources, exactly n— 1 of the operators must equal check,
and we constrain the use of count and sum operators to
simple cases.

3.1 Cache join query execution

When Pequod receives a scan(first, last) or get(key) re-
quest that overlaps with one or more cache joins, it must
execute the queries they represent. This section describes
the semantics and implementation of cache join query
execution. We focus on forward query execution, which
starts from base data. The algorithm used by Pequod is
a key-value variant of the classical nested-loop imple-
mentation for database join queries. The next section de-
scribes how incremental maintenance works.

Cache join execution logically enumerates all tuples
of source keys and selects those that match the join’s
constraints. The selection step ensures that there’s one
key per source, that the key formats match the source
patterns, and that slots common to multiple source keys
have consistent values. Pequod then combines the se-
lected values according to the join’s operators and in-
stalls the results.

For the timeline join t|user|time|poster =
check s|user|poster copy plposter|time, the keys
(s|ann|bob,p|bob|100) match the source patterns:
the first key matches the first source, the second key
matches the second source, and the shared poster slot
has a consistent value in both keys (bob). An output key
can be derived from the output pattern and the source
keys; here, that key would be t|ann|100|bob. The
join’s operators (check for the s source and copy for
the p source) indicate that p|bob | 100’s value should be
copied to t|ann| 100 | bob.

The main optimization strategy for nested-loop
queries moves selection operators as early as possible,
since this avoids enumerating irrelevant tuples. In re-
lational databases, selection operators are functions on
columns. In Pequod, selection operators are functions on
ranges, especially as they map to the “columns” defined
by pattern slots. For example, when given a scan query
over the timeline range [t|ann|100,t|ann|200), Pe-
quod can limit its examination of subscriptions to the
range [s|ann|,s|ann|*); and for each resulting sub-
scription s |ann|poster, it can examine the limited post
range [p | poster| 100,p | poster| 200).

Figure 3 outlines our query execution algorithm;
though our implementation is generic, the pseudocode
uses the timeline join for concreteness. Two related con-
cepts, slot sets and containing ranges, help move selec-
tion early. A slot set is a set of slot assignments derived
from a cache join and a key or key range. For example, in



compute timeline(first, last):
ss := timelinejoin.slotset(t, first, last)
[ks™,ks™) := ss.containingrange(s, first, last)
for each ks — vs where ks € [ks™, ks*)
and ks matches s |user|poster:
ss’ := ss.addslots(s, ks)
kp~,kp*) := ss’ .containingrange(p, first, last)
for each kp — vp where kp € [kp~,kp*)
and kp matches p | poster | time:
yield t | user|time | poster — vp

Figure 3: Query execution for the timeline cache join.

the timeline join, the key s |ann|bob corresponds to the
slot set {user — ann, poster — bob}. Query execution be-
gins by deriving a slot set from the requested output key
range; for example, given scan(t|ann| 100, t|ann|™),
Pequod creates the slot set {user — ann}. Slot sets are
augmented with additional slot assignments as Pequod
works through source keys. A containing range is effec-
tively the inverse of a slot set. Given a slot set, a source
pattern, and the requested output key range, Pequod can
calculate a minimal range of source keys that might af-
fect the scan’s results. For example, given the scan re-
quest above and the slot set {user — ann, poster — bob},
the minimal containing range for the p source would be
[plbob|100,p|bob|*). Any post outside that contain-
ing range would either not match the required poster, or
not map to an output key in the requested output key
range. But even with containing ranges, the algorithm
must compare the source range keys with their patterns.
As a schema-free key-value store, Pequod might have
keys in the range that don’t match the source patterns.
Figure 4 shows a sample execution of this algorithm for
the timeline join.

Since Pequod should support any application and pro-
vide general key-value cache semantics, we took care
to handle any range query. Thus, for example, we cor-
rectly implement queries like [t |ann| 100, t |bob|200)
and [t|a, t|b) that cross multiple timelines. Correct and
minimal containing ranges are generated in each case.

3.2 Incremental maintenance

Pequod can keep computed data up to date as sources
change. Eager incremental maintenance transfers work
from read queries to writes and saves computation on
exact re-requests. The view selection problem [22] is
easy in Pequod: since all queries are range scans, pre-
computed ranges naturally benefit queries that partially
or completely overlap.

Pequod implements incremental maintenance through
two auxiliary data structures. A join status range indi-
cates whether a range of keys is up to date with respect
to the cache joins whose outputs overlap that range. Join

Scanned Range:
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Figure 4: Example query execution of the timeline join. The
scanned range provides context used when scanning source
ranges. The keys and values in the output key range comprise
elements of the original scan range and both source ranges.

compute timeline(first, last):
for each subrange [x~,x") C [first, last) where
joinstatus([x~,x")) # VALID:

Js := new join status range for [x~,x")
add updater from [ks~,ks*) to js

add updater from [kp~,kp*) to js

install js as VALID

Figure 5: Query execution for the timeline cache join, includ-
ing installation of data structures for later incremental mainte-
nance. Changes from Figure 3 are in black.

status ranges are logically attached to output ranges and
form a disjoint cover of key space (every key is asso-
ciated with exactly one join status range). Updaters, in
contrast, logically attach to source ranges. An updater
links a range of source keys with a context—a cache join,
a slot set, and a join status range. The context provides
the information required to maintain its join status range.
For instance, a range of posts [p|bob|180,p|bob|*)
might have an updater for the timeline join with slot set
{user — ann}; this user value lets Pequod map source
key p|bob|200 to output key t|ann|200|bob. Many
updaters can apply to a given key, so we store updaters
in an interval tree. Whenever Pequod modifies its store, it
finds all updaters applicable to the modified key and runs
the indicated incremental maintenance for each. Figure 5
outlines how join status ranges and updaters are installed
during forward query execution.



The notification provided to an updater includes the
modified source key, the new value, the old value, and
the type of change (insert new key, update existing key,
or remove existing key). The updater reacts by modify-
ing either the attached join status or the cache’s value for
some key. The form of this modification depends on the
relevant operator; for example, the updater for copy op-
erators calculates the appropriate output key and inserts
the value there.

Pequod also supports invalidations, which provide a
form of lazy view maintenance [29]. Unlike an eager up-
dater, which updates the cache upon notification, an in-
validating updater just marks its join status range as IN-
vaLD. The invalidity will be detected and corrected when
the output range is queried. There are two kinds of invali-
dation. Complete invalidation removes installed updaters
and requires that a range be recomputed from scratch.
Partial invalidation instead logs the source modification
into an entry on the relevant join status range. The logged
modification—or a subset of it—will be applied later,
when the output range is queried [29]. Lazy mainte-
nance, and especially partial invalidation, shifts some of
the burden of view maintenance back onto read oper-
ations from write operations. Our prototype uses lazy
maintenance (invalidations) for check sources and ea-
ger maintenance for all other sources, a choice that per-
forms well for our applications. For example, Twip sub-
scription changes logically shift many tweets into or out
of a timeline. Thanks to lazy maintenance, however, Pe-
quod shifts only those tweets strictly required by queries.
Since most timeline checks are updates, rather than loads
of past tweets, this can perform much less work than
eager maintenance would. Our policy would not work
equally well for all applications, however, and we would
like to offer users more control over maintenance type.

Several important optimizations improved Pequod’s
performance by large factors. Updaters frequently over-
lap; for example, a Twip user’s posts have one updater
per subscriber. It was especially important to combine
such updaters whenever possible. If a new updater is in-
stalled for the same source range as an existing updater—
or for an overlapping range—Pequod reduces memory
usage and the size of the updater tree by appending in-
formation about the new updater to the existing one.
Other important performance improvements were ob-
tained by compressing or eliminating the context infor-
mation stored with updaters, since in many cases Pequod
can derive an output key completely from the source key
and the relevant join status range. (Consider a timeline-
join updater on source range [p|ren|200,p|ren|*) as-
sociated with join status range [t |ann|100]|,t|ann|*).
The join status range uniquely determines the user slot,
and the source key uniquely determines the poster and
time slots.)

3.3 Resolving missing data

The join query execution algorithm in Figure 5 assumes
that all required source data is present in the cache.
However, this assumption need not hold. A source range
might overlap with the output of another cache join; the
source range might exist in the persistent backing store,
but have expired from the cache; and in distributed Pe-
quod, the source range might be stored on a different
server. Pequod detects these cases and loads the data as
required before executing the join query. The first case
can be handled with a recursive query execution. In the
second and third cases, the data is loaded and metadata
is installed to indicate its presence.

Pequod reduces query latency by loading missing base
data in parallel. When base data is missing, Pequod ini-
tiates an asynchronous fetch request (to the database or
to a home server) and attaches a restart context to the
current join status range. It then continues to execute the
query using any cache-resident data. When all required
fetches complete, the restart contexts are used to restart
the query. The restarted query behaves as if executed
from scratch, so every server query produces results con-
sistent with a snapshot of that server’s state. However,
Pequod doesn’t recompute any parts of the query that
were already completed and haven’t been invalidated
since. In general, a query execution is iteratively eval-
uated until there are no outstanding restart contexts and
the join status range is marked vALID; in most cases, this
requires at most one round of fetches and a cleanup ex-
ecution that fills in gaps. The resulting output range is
scanned to construct a client response.

We always resolve missing base data by loading it into
server memory. This allows us to execute cache joins lo-
cally. Other strategies, such as executing cache joins in
partitioned fashion and aggregating the results [5], could
benefit some applications by reducing data movement.

3.4 Performance annotations

Cache joins contain annotations that affect evaluation
performance. First, the maintenance type defines whether
and how a join is kept up to date. The default push
type asks for the incremental maintenance described in
§3.2. A pull join, in contrast, is calculated from scratch
on each query using the procedure in §3.1. As we saw
for Twitter celebrities (§2.3), this can save memory for
some applications and data patterns. Finally, a snapshot
T join implements deferred view maintenance. Pequod
calculates the join from scratch, but caches the result—
without further updates—for T seconds. Snapshot joins
induce less maintenance overhead than push joins and
less computation overhead than pull joins. Second, the
order of sources is a performance annotation. Pequod
examines the source descriptions in a cache join in or-
der, and different source orders can perform quite differ-
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Figure 6: Pequod internal data structure for Twip. The logical
store divides into tables (the rectangle layer) and, when appro-
priate, subtables (the lowest layer).

ently. Joins are generally more efficient when the small-
est ranges are examined first, since this reduces the data
to be examined later. It’s usually best to arrange sources
so that slots are encountered in the same order as in the
output key, since this leads to small containing ranges.
The user may be able choose an even better order using
their knowledge of key counts and update frequencies.

4 Implementation

Pequod is a single-threaded, event-driven C++ program.
Pequod uses red-black trees to store key-value pairs
and bookkeeping information, such as updaters and join
status ranges. Several optimizations use auxiliary data
structures such as hash tables to reduce tree lookups, im-
proving performance significantly for some workloads.
This section describes Pequod’s implementation, focus-
ing on these optimizations and when they are useful. Fig-
ure 6 shows the overall arrangement of Pequod’s internal
data structures as configured for Twip.

4.1 Structure

Pequod stores data in several layers of tree visible to
clients as a single ordered key-value store. The first tree
layer separates logical tables, such as p| and t|, into
separate subtrees. Each table stores the relevant key-
value pairs and bookkeeping structures (an interval tree
of updaters and a tree of join status ranges). By sepa-
rating concerns for different ranges, this design sped up
Pequod significantly relative to a one-level store.

Tables can themselves be subdivided. Many applica-
tions have natural key boundaries across which scans are
rare; for example, Twip scans mostly lie within a time-
line range. If developers mark these boundaries, Pequod
will use them to break the store into subtables. Thanks
to a hash table that indexes the subtables, operations that
lie entirely within a subtable can jump to that subtable

in O(1) time (rather than O(log N)). However, the entire
key-value store is still ordered, and operations that cross
subtable boundaries will execute as expected. The use of
subtables improves the runtime of our Twip benchmark
by a factor of 1.55x, but increases memory consumption
by a factor of 1.17x, a consequence of additional book-
keeping.

4.2 Output hints

In many of our applications, each update to a join status
range either modifies the same key as the previous update
(as is common for the count operator) or inserts a new
key immediately after the previous update (as when in-
serting a fresh post into a Twip timeline). Both types of
modification can be performed in O(1) amortized time
given a pointer to the last-updated key. Each join status
range therefore maintains a pointer to its last updated
key. We call this pointer the output hint. A reference
counting scheme ensures that the hint stays valid even if
the underlying key-value pair is removed from the tree.
This optimization avoids tree lookups in our Twip bench-
mark, and improves its performance by a factor of 1.11x.

4.3 Value sharing

The copy operator often requires Pequod to install multi-
ple copies of a value into multiple output ranges. For ex-
ample, Twip inserts a copy of each tweet into each of the
interested followers’ timelines. To reduce memory over-
head, Pequod allows multiple output ranges to share the
source’s value. This optimization fits in naturally with
server computation and might not work as naturally if
sharing was entirely directed by application clients. This
optimization reduces memory consumption by a factor
of 1.14x on our Twip benchmark. Value sharing is only
useful for copy joins, but it introduces no overhead on
other joins.

5 Evaluation

This section evaluates Pequod’s performance. Pequod
performs well compared with related systems, its ma-
terialization strategy works well on our workloads, and
unconventional features of its data model (interleaved
cache joins) can benefit real applications. Furthermore,
distributed Pequod can scale across multiple servers to
handle large workloads.

5.1 Experimental setup

We evaluate Pequod using two hardware configurations,
a multiprocessor and a cluster of Amazon EC2 vir-
tual machines. The multiprocessor is an Amazon EC2
crl.8xlarge instance with 32 logical processors and
244GB of RAM running Ubuntu Linux 13.04. The Ama-
zon EC2 cluster, used to evaluate scalability, consists



of cc2.8xlarge and crl.8xlarge VM instances con-
nected by a 10Gbps network. Each VM has 32 cores,
60-244GB of RAM, and runs Amazon Linux 2013.09.2.

Application clients communicate with Pequod servers
using RPC. Experiments on the multicore machine use
TCP over the loopback interface for RPC invocation.
Clients are event-driven processes that keep many RPCs
outstanding. We run enough clients to saturate the Pe-
quod servers.

In most of our experiments, Pequod is configured to
run Twip. The underlying data is derived from a Twit-
ter social graph obtained in 2009 [21]. The full graph,
which contains 40 million users and 1.4 billion relation-
ships, is used in the scalability experiment (§5.5). All
other Twip experiments use a sampled subgraph contain-
ing 1.8M users and 72M relationships.

Our clients model the actions of individual Twip users.
Each modeled user (1) “logs in,” obtaining a list of many
recent tweets; (2) repeatedly checks for new tweets, sub-
scribes to other users, and posts tweets of their own; and
(3) logs out (though they may log in again later). The in-
cremental timeline updates in step (2) return many fewer
tweets than the initial scans at login time. These events
occur in the rough ratio 5% initial timeline scans, 9%
new subscriptions, 85% incremental timeline updates,
and 1% posts, which we derived using information on the
real Twitter [20]. Users post with different likelihoods.
The probability that a user posts a message is propor-
tional to the log of their follower count, so more popular
users tweet more often. In one common workload, 70%
of users are active (the remainder never check their time-
lines) and each active user checks their timeline 50 times.
This results in approximately 62M timeline checks, 6.2M
new relationships, and 620K new posts over the course of
the experiment.

We do not evaluate database interaction or eviction.
Pequod is deployed as a look-aside cache: applications
send it updates directly. Notification bottlenecks in the
database made the performance of our write-around de-
ployment uninteresting. Although we enable eviction, it
never triggers in our experiments.

We ran most experiments several times and observed
little to no performance variability. Confidence intervals
would not be visible on our graphs.

5.2 System comparison

Pequod aims to improve the programmability of
application-level caches by offering developers more in-
teresting semantics. These semantics do not compromise
performance: Pequod performs no worse than compara-
ble caches.

We evaluate two Twip implementations. The first, ‘“Pe-
quod,” is the Twip application described above; time-
lines are fetched via the timeline join. In the second,

System Runtime

Pequod 197.06 s (1.00x)
Redis 262.62 s (1.33x)
Client Pequod ~ 323.29 s (1.64x)
memcached 784.43 s (3.98x)
PostgreSQL 1882.78 s (9.55x)

Figure 7: Time to process a Twip experiment to completion
using Pequod and related systems. Smaller numbers are better.

“client Pequod,” application clients are responsible for
maintaining timelines. There are no cache joins. After
making a post, the posting client sends a timeline update
for every subscribed user. Client Pequod lets us evaluate
the performance impact of server-managed computation
in isolation. We also evaluate the Redis (version 2.8.5)
and memcached (version 1.4.16) key-value caches and
a traditional database, PostgreSQL (version 9.1). Each
system runs the same workload to completion as fast
as possible. Redis and memcached don’t support server-
side computation, so as in client Pequod, their clients ac-
tively manage user timelines; Redis stores timelines as
sorted sets of tweets, memcached as a string to which
tweets are appended. PostgreSQL, in contrast, does sup-
port server-side computation. Although our test version
lacks automatically-updated materialized views, we use
triggers to get a similar effect. Each system is given six
cores in our multicore machine. PostgreSQL runs a sin-
gle process with multiple threads, while the other sys-
tems partition the store and use one process per core. The
machine’s remaining cores run client processes; for each
system, we used the number of client processes that pro-
duced the best system runtime. We configure all systems
so that data is stored in memory and consistency is re-
laxed as much as possible.”

Figure 7 shows the results. Pequod, which uses mate-
rialized views, runs a factor of 1.64x faster than client
Pequod, which doesn’t. The penalty is roughly equally
divided between RPC overhead (client Pequod makes
many more RPCs) and insertion overhead (client Pequod
doesn’t benefit from output hints or value sharing). Al-
though a more optimized client-managed caching system
could beat Pequod (perhaps by implementing Pequod-
like functionality specialized for the application), RPC
overhead and program complexity remain as challenges
for any client-managed or special-purpose system. Pe-
quod runs a factor of 1.33x faster than Redis: join support
does not sacrifice the performance advantages of key-

2We disable Redis disk checkpoints and avoid triggering eviction
in memcached by configuring the amount of available memory. For
PostgreSQL, we allocate a shared memory buffer large enough to hold
our entire data set, place the data store in an in-memory file system,
and tune for performance: we disable fsync, synchronous commit, and
full page writes and set bgwriter lru maxpages to zero.
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Figure 8: Pequod’s dynamically materialized views generally
outperform other strategies on the Twip benchmark.

value caches. Redis runs a factor of 1.23x faster than
client Pequod, however. This difference is due to Re-
dis’s hash table data structure, which offers O(1) lookups.
Though tree optimizations could speed up client Pe-
quod somewhat, unordered stores offer fundamental per-
formance advantages over ordered stores. memcached
runs a factor of 3x slower than Redis: the Twip work-
load has more writes than memcached prefers. The tra-
ditional database, despite running in memory with re-
laxed ACID guarantees, is not a suitable replacement
for an application-level cache. Pequod outperforms Post-
greSQL by nearly an order of magnitude (9.55x).

To summarize, Pequod performs no worse than widely
available key-value caches; for this workload, it even of-
fers a small performance improvement. The additional
semantics provided by Pequod simplify application de-
velopment without compromising performance.

5.3 Materialization strategy

Pequod implements cache joins using a dynamic mate-
rialization strategy: queries are computed on demand,
but recently-accessed ranges are eagerly and incremen-
tally updated. We compare this strategy with the obvi-
ous alternatives, namely no materialization (where no
ranges are cached) and full materialization (where all
ranges are cached and kept up to date). We create a Twip
workload comprising only timeline check and post op-
erations. 1 million posts are distributed among all 1.8M
users as described above (proportionally to the log of the
follower count). We then vary p, the percentage of “ac-
tive” users, between 1 and 100. Each workload performs
p million timeline checks spread uniformly across the
1.8M x p/100 active users, resulting in a check:post ra-
tio between 1:1 and 100:1. We use five clients and one
server, run the workload to completion as fast as possi-
ble, and measure the elapsed time.

Figure 8 shows the results. As expected, the no-
materialization strategy performs relatively well with

3Widely-available databases with true materialized view support
were also evaluated; they performed similarly to PostgreSQL.
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Figure 9: Newp interleaved cache joins perform better than
fetching article data in separate RPCs, except when writes are
very common.

few active users, but as timeline scans increase, material-
ization quickly becomes important for performance. Be-
cause it avoids materializing data in which no one is in-
terested, Pequod’s dynamic materialization outperforms
full materialization up to approximately 90% active
users. After that, full materialization performs slightly
better (a factor of 1.08x better at 100% active users).
This performance difference is due to the join computa-
tion dynamic materialization must perform when a user
first logs in. Full materialization keeps all timelines up to
date at all times; though this avoids login overhead, it in-
evitably uses more memory when users can be inactive.

5.4 Cache join choice

Pequod leaves view selection and query planning to the
application developer; this flexibility, and the design flex-
ibility offered by the key-value context, can improve ap-
plication performance.

We evaluate two versions of the Hacker News-like
Newp application that use different joins. The first uses
separate ranges for aggregate data (karma and vote
counts); constructing an article requires many RPCs in
two round trips. The second uses the interleaved cache
join from §2.3 to colocate this data. Reading an article
requires a single scan, but more server computation and
storage overhead is incurred (upon each vote aggregate
values are copied into each page| range). The shared
workload has three types of operation: reading an arti-
cle, commenting, and voting. The Pequod data store is
pre-populated with 100K articles, SOK users, 1M com-
ments, and 2M votes. We simulate 20M user sessions;
each user reads a random article; with a varying chance
votes on the article; and independently with a 1% chance
comments on the article. The experiment is run using a
single server and multiple clients. We expect the inter-
leaved approach to perform well when article reads far
outnumber votes and comments.

The results, shown in Figure 9, indicate that inter-
leaved cache joins are superior for most vote rates tested.



The non-interleaved implementation issues many gets
per article (e.g., for karma), each of which incurs over-
heads including an O(log N) lookup. The interleaved join
improves overall performance until the cost of precom-
putation outweighs the cost of processing many gets
(90% vote rate). Storing votes and karma in a hash ta-
ble might shift the crossover to the left, but the inter-
leaved join would preserve its main advantage, namely
code simplicity.

5.5 Scalability

Our evaluation of distributed Pequod focuses on a prob-
lem inherent in cache joins, namely the CPU overhead of
cache join execution. Pequod can do more work per re-
quest than would a simpler cache, putting pressure on
server CPUs. We show that distributed Pequod scales
well enough that adding servers reduces this pressure.
Our experimental setup involves a large backing store,
which holds the full 2009 Twitter social graph, and a
variable number of Pequod compute servers, which ex-
ecute the timeline join in response to client timeline
checks. Both backing store and compute servers are Pe-
quod processes, but the backing store absorbs all writes
while the compute servers absorb all reads. Each exper-
iment runs the same Twip workload: 28M active users
issue 1.4B timeline checks, make 140M new subscrip-
tions, and generate 14M new posts. We run the work-
load as fast as possible to ensure that the bottleneck is
within Pequod. Measurements indicate that for the server
setups measured, in each case, the bottleneck is Pequod
compute server CPU. All of a user’s compute requests
are directed to the same compute server, minimizing un-
necessary data duplication. To warm the cache servers,
each active user is logged into the system prior to the
experiment, ensuring that a join status range exists, base
data are present, updaters are installed, and subscriptions
are established between the compute and base servers.
We use up to 30 virtual machines on the Amazon EC2
testbed. 6 VMs run 32 Pequod servers for the backing
store and up to 48 client processes, while the remaining
24 VMs run between 12 and 48 Pequod compute servers.
Figure 10 shows the result. Throughput increases by
3x (from 1.42M to 4.27M qps) as the number of com-
pute servers increases from 12 to 48. Perfect scalabil-
ity would increase throughput by 4x; unfortunately, some
Pequod overheads (such as base data required per com-
pute server) do not drop linearly with the number of com-
pute servers. Total memory consumption increased from
290GB to 297GB at the base servers, a consequence of
storing duplicate subscription information. The compute
servers stored more total data thanks to base data duplica-
tion; total memory used by all compute servers increased
from 1.2TB to 1.5TB. Likewise, a larger fraction of the
consumed network bandwidth is dedicated to inter-server
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Figure 10: Adding computational capacity results in a speedup
for a fixed Twip workload.

subscription maintenance, increasing from roughly 10%
to 16% between 12 and 48 compute servers (the rest is
client communication). Though these overheads are po-
tential bottlenecks to system scalability, Pequod still per-
forms and scales well overall.

6 Related work

Application caches Pequod’s key-value design was in-
spired by existing application-level caches [2, 3].

Pequod is an ordered store. This helped make cache
joins simple and useful, but unordered hash table
stores, such as Redis and memcached, offer faster O(1)
operations. Several of our implementation tricks and
optimizations—some of them enabled by the cache join
abstraction—reduce the cost of tree walking. To speed
up Pequod further, we could replace its binary trees with
more cache-efficient structures [24] or, better, investi-
gate cache join variants for unordered stores. (This would
probably require structured values a la Redis.)

Previous work has tracked dependencies among
cached data in application-level caches [15, 31]. The ap-
plication developer specifies these dependencies explic-
itly, either by item or by item class; the systems re-
spond to updates by invalidating dependent objects. In
TxCache [25], dependency tracking is automatic, rather
than explicit. TxCache provides transactional consis-
tency, which Pequod does not, and can invalidate cached
objects that are computed by arbitrary pure functions,
rather than SPJ queries. Compared to these systems, Pe-
quod’s cache joins define dependencies in a particularly
natural way, and Pequod can update dependent objects,
which we found faster than invalidating them.

DBProxy [7, 8] is a distributed database cache that
can store partial query results in edge cache nodes and
service later queries from those caches. The caches are
incrementally maintained by a master backend database;
new results are produced by re-executing queries (with
an exception for some aggregates, which are also stored
as exact-match results). Pequod, in contrast, uses eager
view maintenance to avoid costly computation on the



read path. DBProxy transparently populates its cache by
inspecting queries. Pequod is not transparent: developers
decide what data is cached and describe how to maintain
that data.

Materialized views Pequod borrows joins and mate-
rialized views [11, 16] from relational databases. Many
production databases offer materialized views for data
warehousing, replication, and storing results of expen-
sive computations. Most views are meant to be transac-
tionally consistent with the underlying data, and are kept
up to date either by synchronous updates when base data
changes (eager update) or by refreshing the view when
it is read (lazy update). We borrow from work on effi-
ciently maintaining views with incremental updates and
batch processing [10, 13, 18, 27-29, 32].

Materialized views in Pequod are eventually consis-
tent with respect to base data and are maintained through
asynchronous, incremental updates. Views in Pequod can
also be partially and dynamically materialized [28, 30],
a relatively advanced feature.

Several research systems have applied one or more
of these techniques. Agrawal et al. [5] added material-
ized views to PNUTS [17], a distributed key-value store.
Like Pequod, views are implemented as partitioned ta-
bles, are eventually consistent, and are maintained with
asynchronous, incremental computation. However, this
work did not support partial materialization or some of
Pequod’s performance annotations. Interestingly, the au-
thors use a different execution strategy for aggregate
joins, which use a distributed query to reduce data move-
ment. Pequod might benefit from a similar strategy.

Dynamic materialized views (DMV) [30] can partially
materialize a view based on data access patterns. In
DMY, the selection of rows to materialize can be spec-
ified manually or handled at runtime by a feedback loop
with policies for admission and eviction. Pequod’s dy-
namic materialized views borrow from DMV, but imple-
ment a simple selection policy based on access time.

DBToaster [6] presents a method for deriving incre-
mental update triggers from relational view queries, but
only works on aggregate queries and does not partially
materialize views.

Luo’s partial materialized views (PMVs) cache por-
tions of frequently-executed queries with the goal of al-
lowing early access to partial query results [23]. PMVs
are restricted—for instance, they do not support inser-
tions on base data—but a similar feature might be useful
for some Pequod applications.

Applications The real Twitter service actively updates
the timelines of logged-in users as tweets arrive [20]; this
was one inspiration for Pequod’s hybrid pull/push archi-
tecture. The load on Twitter’s service is high: Twitter has
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more than 150M active users that generate 300K time-
line reads per second on average. On a typical day Twit-
ter handles 4-6K new tweets per second (340M per day),
resulting in 300K deliveries per second (2.6B per day)
to user timelines [20]. Twitter scales its timeline service
by partitioning its users amongst an expandable set of
cache servers. Our Twip application uses the same strat-
egy. Twip does not support other Twitter features, such as
search; we have not investigated whether these features
would benefit from Pequod.

Silberstein et al. [26] describe the importance of bal-
ancing “pull” and “push” strategies in social networking
services, an insight we borrow for celebrity join. Given a
Twitter-like application, their system determines at run-
time which tweets should be materialized into followers’
timelines and which should not. A more complex join
operator could conceivably support their algorithm in Pe-
quod.

7 Conclusion

Pequod is a distributed key-value cache that uses a new
abstraction, the cache join, to automatically rearrange
and transform cached data in ways useful for applica-
tions. By understanding how cached data is computed,
Pequod is able to keep cached data fresh and provide
performance benefits while presenting a simple API to
users. As future work, we hope to improve Pequod fur-
ther by optimizing its data structure design and explor-
ing options for configuration changes and recovery from
server failure.
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