
Modular Data Storage with Anvil
Mike Mammarella Shant Hovsepian Eddie Kohler

UCLA UCLA UCLA/Meraki
mikem@cs.ucla.edu shant@cs.ucla.edu kohler@cs.ucla.edu

http://www.read.cs.ucla.edu/anvil/

ABSTRACT
Databases have achieved orders-of-magnitude performance im-
provements by changing the layout of stored data – for instance,
by arranging data in columns or compressing it before storage.
These improvements have been implemented in monolithic new
engines, however, making it difficult to experiment with feature
combinations or extensions. We present Anvil, a modular and ex-
tensible toolkit for building database back ends. Anvil’s storage
modules, called dTables, have much finer granularity than prior
work. For example, some dTables specialize in writing data, while
others provide optimized read-only formats. This specialization
makes both kinds of dTable simple to write and understand. Uni-
fying dTables implement more comprehensive functionality by lay-
ering over other dTables – for instance, building a read/write store
from read-only tables and a writable journal, or building a general-
purpose store from optimized special-purpose stores. The dTable
design leads to a flexible system powerful enough to implement
many database storage layouts. Our prototype implementation of
Anvil performs up to 5.5 times faster than an existing B-tree-based
database back end on conventional workloads, and can easily be
customized for further gains on specific data and workloads.

Categories and Subject Descriptors: D.2.11 [Software Engi-
neering]: Software Architectures—Domain-specific architectures;
H.2.2 [Database Management]: Physical Design
General Terms: Design, Performance
Keywords: databases, software architecture, modular design

1 INTRODUCTION
Database management systems offer control over how data is phys-
ically stored, but in many implementations, ranging from embed-
dable systems like SQLite [23] to enterprise software like Ora-
cle [19], that control is limited. Users can tweak settings, select
indices, or choose from a short menu of table storage formats, but
further extensibility is limited to coarse-grained, less-flexible in-
terfaces like MySQL’s custom storage engines [16]. Even recent
specialized engines [7, 26] – which have shown significant bene-
fits from data format changes, such as arranging data in columns
instead of the traditional rows [11, 24] or compressing sparse or
repetitive data [1, 31] – seem to be implemented monolithically.
A user whose application combines characteristics of online trans-
action processing and data warehousing may want a database that
combines storage techniques from several engines, but database
systems rarely support such fundamental low-level customization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 . . . $10.00.

We present Anvil, a modular, extensible toolkit for building
database back ends. Anvil comprises flexible storage modules that
can be configured to provide many storage strategies and behaviors.
We intend Anvil configurations to serve as single-machine back-end
storage layers for databases and other structured data management
systems.

The basic Anvil abstraction is the dTable, an abstract key-value
store. Some dTables communicate directly with stable storage,
while others layer above storage dTables, transforming their con-
tents. dTables can represent row stores and column stores, but their
fine-grained modularity offers database designers more possibili-
ties. For example, a typical Anvil configuration splits a single “ta-
ble” into several distinct dTables, including a log to absorb writes
and read-optimized structures to satisfy uncached queries. This split
introduces opportunities for clean extensibility – for example, we
present a Bloom filter dTable that can slot above read-optimized
stores and improve the performance of nonexistent key lookup. It
also makes it much easier to construct data stores for unusual or
specialized types of data; we present several such specialized stores.
Conventional read/write functionality is implemented by dTables
that overlay these bases and harness them into a seamless whole.

Results from our prototype implementation of Anvil are promis-
ing. Anvil can act as back end for a conventional, row-based query
processing layer – here, SQLite – and for hand-built data process-
ing systems. Though Anvil does not yet support some important
features, including full concurrency and aborting transactions, our
evaluation demonstrates that Anvil’s modularity does not signifi-
cantly degrade performance. Anvil generally performs about as well
as or better than existing back end storage systems based on B-trees
on “conventional” workloads while providing similar consistency
and durability guarantees, and can perform better still when cus-
tomized for specific data and workloads.

The contributions of this work are the fine-grained, modular
dTable design, including an iterator facility whose rejection fea-
ture simplifies the construction of specialized tables; several core
dTables that overlay and manage other dTables; and the Anvil im-
plementation, which demonstrates that fine-grained database back
end modularity need not carry a severe performance cost.

The rest of this paper is organized as follows. Section 2 surveys
related work. Section 3 describes Anvil’s general design. Section 4
describes the Anvil transaction library, which provides the rest of
the system with transactional primitives. Section 5 describes many
of Anvil’s individual dTables. Finally, we evaluate the system in
Section 6, discuss future work in Section 7, and conclude in Sec-
tion 8.

2 RELATED WORK
In the late 1980s, extensible database systems like Genesis [2]
and Starburst [13] explored new types of data layouts, indices,
and query optimizers. Starburst in particular defines a “storage
method” interface for storage extensibility. This interface features
functions for, for example, inserting and deleting a table’s rows.

1

http://www.read.cs.ucla.edu/anvil/

Each database table has exactly one storage method and zero or
more “attachments,” which are used for indexes and table con-
straints. Anvil’s modularity is finer-grained than Starburst’s. Anvil
implements the functionality of a Starburst storage method through
a layered collection of specialized dTables. This increased modular-
ity, and in particular the split between read-only and write-mostly
structures, simplifies the construction of new storage methods and
method combinations.

Like Starburst, recent versions of MySQL [15] allow users to
specify a different storage engine to use for each table. These en-
gines can be loaded dynamically, but again, are not composable.
They are also not as easily implemented as Anvil dTables, since
they must be read-write while providing the correct transactional
semantics. Postgres [25] supported (and now PostgreSQL supports)
user-defined index types, but these cannot control the physical lay-
out of the data itself.

Monet [5] splits a database into a front end and a back end, where
the back end has its own query language. While it does not aim to
provide the database designer with any modular way of configuring
or extending the back end, it does envision that many different front
ends should be able to use the same back end.

Stasis [21] is a storage framework providing applications with
transactional primitives for an interface very close to that of a disk.
Stasis aims for a much lower-level abstraction than Anvil, and ex-
pects each application to provide a large part of the eventual storage
implementation. Anvil could be built on top of a system like Sta-
sis. This is not necessary, however: Anvil specifically tries to avoid
needing strong transactional semantics for most of its data, both for
simplicity and to allow asynchronous writes and group commit.

Anvil’s split between read-only and write-mostly structures re-
lates to read-optimized stores [11, 22] and log-structured file sys-
tems [20]. In some sense Anvil carries the idea of a read-optimized
store to its limit. Several systems have also investigated batching
changes in memory or separate logs, and periodically merging the
changes into a larger corpus of data [6, 18, 22]. The functional split
between read and write is partially motivated by the increasing dis-
crepancies between CPU speeds, storage bandwidth, and seek times
since databases were first developed [10, 26].

We intend Anvil to serve as an experimental platform for special-
ized stores. Some such stores have reported orders-of-magnitude
gains on some benchmarks compared to conventional systems [24].
These gains are obtained using combinations of techniques, includ-
ing relaxing durability requirements and improving query process-
ing layers as well as changing data stores. We focus only on data
stores; the other improvements are complementary to our work.
Specifically, Anvil’s cTable interface uses ideas and techniques
from work on column stores [11, 24],

Bigtable [7], the structured data store for many Google products,
influenced Anvil’s design. Each Bigtable “tablet” is structured like
an Anvil managed dTable configuration: a persistent commit log
(like the Anvil transaction library’s system journal), an in-memory
buffer (like that in the journal dTable), and an overlay of several
sorted read-only “SSTables” (like a specific kind of linear dTable).
Anvil table creation methods and iterators generalize Bigtable com-
pactions to arbitrary data formats. Anvil’s fine-grained modularity
helps it support configurations Bigtable does not, such as transpar-
ent data transformations and various indices. Bigtable’s extensive
support for scalability and distribution across large-scale clusters is
orthogonal to Anvil, as is its automated replication via the Google
File System.

Many of these systems support features that Anvil currently
lacks, such as aborting transactions, overlapping transactions, and
fine-grained locking to support high concurrency. However, we be-

class dtable {
bool contains(key_t key) const;
value_t find(key_t key) const;
iter iterator() const;
class iter {

bool valid() const;
key_t key() const;
value_t value() const;
bool first(); // return true if new position is valid
bool next();
bool prev();
bool seek(key_t key);
bool reject(value_t *placeholder); // create time

};
static int create(string file, iter src);
static dtable open(string file);
int insert(key_t key, value_t value);
int remove(key_t key);

};

Figure 1: Simplified pseudocode for the dTable interface.

lieve their techniques for implementing these features are comple-
mentary to Anvil’s modularity.

Anvil aims to broaden and distill ideas from these previous sys-
tems, and new ideas, into a toolkit for building data storage layers.

3 DESIGN
Two basic goals guided the design of Anvil. First, we want Anvil
modules to be fine-grained and easy to write. Implementing behav-
iors optimized for specific workloads should be a matter of rear-
ranging existing modules (or possibly writing new ones). Second,
we want to use storage media effectively by minimizing seeks, in-
stead aiming for large contiguous accesses. Anvil achieves these
goals by explicitly separating read-only and write-mostly compo-
nents, using stacked data storage modules to combine them into
read/write stores. Although the Anvil design accommodates mono-
lithic read/write stores, separating these functions makes the indi-
vidual parts easier to write and easier to extend through module
layering. In this section, we describe the design of our data storage
modules, which are called dTables.

3.1 dTables
dTables implement the key-value store interface summarized in Fig-
ure 1. For reading, the interface provides both random access by key
and seekable, bidirectional iterators that yield elements in sorted or-
der. Some dTables implement this interface directly, storing data in
files, while others perform additional bookkeeping or transforma-
tions on the data and leave storage up to one or more other dTables
stacked underneath.

To implement a new dTable, the user writes a new dTable class
and, usually, a new iterator class that understands the dTable’s
storage format. However, iterators and dTable objects need not be
paired: some layered dTables pass through iterator requests to their
underlying tables, and some iterators are not associated with any
single table.

Many dTables are read-only. This lets stored data be optimized
in ways that would be impractical for a writable dTable – for in-
stance, in a tightly packed array with no space for new records, or
compressed using context-sensitive algorithms [34]. The creation
procedure for a read-only dTable takes an iterator for the table’s in-
tended data. The iterator yields the relevant data in key-sorted order;
the creation procedure stores those key-value pairs as appropriate.
A read-only dTable implements creation and reading code, leaving
the insert and remove methods unimplemented. In our current
dTables, the code split between creation and reading is often about

2

int arraydt::create(string file, iter src) {
wrfile output(file);
output.append(src.key()); // min key
while (iter.valid()) {

value_t value = iter.value();
if (value.size() != configured_size

&& !iter.reject(&value))
return false;

output.append(value);
iter.next();

}
return true;

}

Figure 2: Simplified pseudocode for the array dTable’s create
method. (This minimal version does not, among other things, check
that the keys are actually contiguous.)

even. Specific examples of read-only dTables are presented in more
detail in Section 5.

Specialized dTables can refuse to store some kinds of data. For
example, the array dTable stores fixed-size values in a file as a
packed array; this gives fast indexed access, but values with unex-
pected sizes cannot be stored. Specialized dTables must detect and
report attempts to store illegal values. In particular, when a creation
procedure’s input iterator yields an illegal value, the creation proce-
dure must reject the key-value pair by calling the iterator’s reject
method. This explicit rejection gives other Anvil modules an oppor-
tunity to handle the unexpected pair, and allows the use of special-
ized dTables for values that often, but not always, fit some special-
ized constraints. The rejection notification travels back to the data
source along the chain of layered iterators. If a particular layer’s it-
erator knows how to handle a rejected pair, for instance by storing
the true pair in a more forgiving dTable, its reject function will
store the pair, replace the offending value with a placeholder, and
return true. (This placeholder can indicate at lookup time when to
check the more forgiving dTable for overrides.) If the rejected pair
is not handled anywhere, reject will return false and the creation
operation will fail. We describe the exception dTable, which han-
dles rejection notifications by storing the rejected values in a sep-
arate (more generic) dTable, in Section 5.5. Figure 2 shows pseu-
docode for the array dTable’s create method, including its use of
reject.

Anvil iterators are used mostly at table creation time, which
stresses their scanning methods (key, value, valid, and next,
as well as reject). However, external code, such as our SQLite
query processing interface, can use iterators as database cursors.
The seeking methods (seek, prev) primarily support this use.

Other dTables are designed mostly to support writing. Writable
dTables are usually created empty and populated by writes.

Although arbitrarily complex mechanisms can be built into a
single dTable, complex storage systems are better built in Anvil
by composing simpler pieces. For instance, rather than building
a dTable to directly store U.S. state names and postal abbrevia-
tions efficiently (via dictionary lookup) in a file, a dTable can trans-
late state names to dictionary indices and then use a more generic
dTable to store the translated data. Likewise, instead of designing
an on-disk dTable which keeps a B-tree index of the keys to im-
prove lookup locality, a passthrough B-tree dTable can store, in a
separate file, a B-tree index of the keys in another dTable. Further,
these two dTables can be composed, to get a B-tree indexed dTable
that stores U.S. states efficiently. Similar examples are discussed
further in Sections 5.2 and 5.4.

Managed dTable

Overlay dTable

reads

Writable dTable

writes,
digests

Read−only dTable(s)

combines

reads reads

Figure 3: The relationships between a managed dTable and the dTables
it uses.

3.2 Data Unification
An Anvil table representation will usually consist of several read-
only dTables, created at different times, and one writable dTable.
Using this representation directly from client code would incon-
veniently require consultation of all the dTables. In addition, the
periodic conversion of write-optimized dTables to read-only dTa-
bles requires careful use of transactions, something that applica-
tions should be able to avoid. Anvil includes two key dTables which
deal with these chores, combining the operations of arbitrary read-
able and writable dTables into a single read/write store. We intro-
duce these dTables here; they are discussed in greater detail in Sec-
tion 5.3.

The overlay dTable builds the illusion of a single logical dTable
from two or more other dTables. It checks a list of subordinate
dTable elements, in order, for requested keys, allowing dTables ear-
lier in the list to override values in later ones. This is, in principle,
somewhat like the way Unionfs [32] merges multiple file systems,
but simpler in an important way: like most dTables, the overlay
dTable is read-only. The overlay dTable also merges its subordi-
nates’ iterators, exporting a single iterator that traverses the unified
data. Significantly, this means that an overlay dTable iterator can be
used to create a single new read-only dTable that combines the data
of its subordinates.

The managed dTable automates the use of these overlay dTa-
bles to provide the interface of a read/write store. This dTable is an
essential part of the typical Anvil configuration (although, for ex-
ample, a truly read-only data store wouldn’t need one). It is often
a root module in a dTable module subgraph. Its direct subordinates
are one writable dTable, which satisfies write requests, and zero or
more read-only dTables, which contain older written data; it also
maintains an overlay dTable containing its subordinates. Figure 3
shows a managed dTable configuration.

Each managed dTable periodically empties its writable dTable
into a new read-only dTable, presumably improving access times.
We call this operation digesting, or, as the writable dTable we cur-
rently use is log-based, digesting the log. The managed dTable also
can merge multiple read-only dTables together, an operation called
combining. Without combining, small digest dTables would accu-
mulate over time, slowing the system down and preventing recla-
mation of the space storing obsoleted data. Combining is similar
in principle to the “tuple mover” of C-Store [24], though imple-
mented quite differently. In C-Store, the tuple mover performs bulk
loads of new data into read-optimized (yet still writable) data stores,
amortizing the cost of writing to read-optimized data structures. In
Anvil, however, the managed dTable writes new read-only dTables
containing the merged data, afterwards deleting the original source
dTables, a process corresponding more closely to Bigtable’s merg-
ing and major compactions.

The managed dTable also maintains metadata describing which
other dTables it is currently using and in what capacity. Metadata

3

class ctable {
bool contains(key_t key) const;
value_t find(key_t key, int col) const;
iter iterator(int cols[], int ncols) const;
int index_of(string name) const;
string name_of(int index) const;
int column_count() const;
class iter {

bool valid() const;
key_t key() const;
value_t value(int col) const;
bool first();
bool next();
bool prev();
bool seek(key_t key);

};
static int create(string file);
static ctable open(string file);
int insert(key_t key, int col, value_t value);
int remove(key_t key);

};

Figure 4: A simplified, pseudocode version of the cTable interface.

updates are included in atomic transactions when necessary (using
the transaction library described later), largely freeing other dTables
from this concern.

3.3 Columns
Another Anvil interface, cTable, represents columnated data. It dif-
fers from the dTable interface in that it deals with named columns
as well as row keys. cTables use dTables as their underlying storage
mechanism. Like writable dTables, they are created empty and pop-
ulated by writes. Figure 4 shows a simplified version of the cTable
interface.

Anvil contains two primitive cTable types (though like the
dTable interface, it is extensible and would support other feature
combinations). The first primitive, the row cTable, packs the values
for each column together into a single blob, which is stored in a sin-
gle underlying dTable. This results in a traditional row-based store
where all the columns of a row are stored together on disk. The sec-
ond, the column cTable, uses one underlying dTable per column;
these dTables can have independent configurations. A row cTable’s
iterator is a simple wrapper around its underlying dTable’s iterator,
while a column cTable’s iterator wraps around n underlying itera-
tors, one per column.

In a column-based arrangement, it is possible to scan a subset
of the columns without reading the others from disk. To support
this, cTable iterators provide a projection feature, where a subset of
the columns may be selected and iterated. A list of relevant column
indices is passed to the iterator creation routine; the returned iterator
only provides access to those columns. A column cTable’s iterator
does not iterate over unprojected columns, while a row cTable’s
iterator ignores the unwanted column data when it is unpacking the
blob for each row. We compare the merits of these two cTables in
Section 6.3.

3.4 Discussion
Anvil is implemented in C++, but also provides an API for access
from C. All dTable implementations are C++ classes. There is also
a dTable iterator base class from which each of the dTables’ iterator
classes inherit.1

1This is a departure from the STL iterator style: iterators for differ-
ent types of dTables need different runtime implementations, but must
share a common supertype.

An Anvil instance is provided at startup with a configuration
string describing the layout pattern for its dTables and cTables. The
initialization process creates objects according to this configuration,
which also specifies dTable parameters, such as the value size ap-
propriate for an array dTable. The dTable graph in a running Anvil
data store will not exactly equal the static configuration, since dTa-
bles like the managed dTable can create and destroy subordinates
at runtime. However, the configuration does specify what kinds of
dTables are created.

dTables that store data on disk do so using files on the underlying
file system; each such dTable owns one or more files.

Although our current dTables ensure that iteration in key-sorted
order is efficient, this requirement is not entirely fundamental. It-
eration over keys is performed only by dTable create methods,
whereas most other database operations use lookup and similar
methods. In particular, the dTable abstraction could support a hash
table implementation that could not yield values in key-sorted or-
der, as long as that dTable’s iterators never made their way to a
conventional dTable’s create method.

Anvil was designed to make disk accesses largely sequential,
avoiding seeks and enabling I/O request consolidation. Its per-
formance benefits relative to B-tree-based storage engines come
largely from sequential accesses. Although upcoming storage tech-
nologies, such as solid-state disks, will eventually reduce the rela-
tive performance advantage of sequential requests, Anvil shows that
good performance on spinning disks need not harm programmabil-
ity, and we do not believe a new storage technology would require
a full redesign.

Our evaluation shows that the Anvil design performs well on sev-
eral realistic benchmarks, but in some situations its logging, digest-
ing, and combining mechanisms might not be appropriate no matter
how it is configured. For instance, in a very large database which
is queried infrequently and regularly overwritten, the work to di-
gest log entries would largely be wasted due to infrequent queries.
Further, obsolete data would build up quickly as most records in
the database are regularly updated. Although combine operations
would remove the obsolete data, scheduling them as frequently as
would be necessary would cause even more overhead.

4 TRANSACTION LIBRARY

Anvil modules use a common transaction library to access persis-
tent storage. This library abstracts the file-system-specific mecha-
nisms that keep persistent data both consistent and durable. Anvil
state is always kept consistent: if an Anvil database crashes in a fail-
stop manner, a restart will recover state representing some prefix
of committed transactions, rather than a smorgasbord of commit-
ted transactions, uncommitted changes, and corruption. In contrast,
users choose when transactions should become durable (committed
to stable storage).

The transaction library’s design was constrained by Anvil’s mod-
ularity on the one hand, and by performance requirements on the
other. dTables can store persistent data in arbitrary formats, and
many dTables with different requirements cooperate to form a con-
figuration. For good performance on spinning disks, however, these
dTables must cooperate to group-commit transactions in small num-
bers of sequential writes. Our solution is to separate consistency
and durability concerns through careful use of file-system-specific
ordering constraints, and to group-commit changes in a shared log
called the system journal. Separating consistency and durability
gives users control over performance without compromising safety,
since the file system mechanisms used for consistency are much
faster than the synchronous disk writes required for durability.

4

4.1 Consistency
The transaction library provides consistency and durability for a set
of small files explicitly placed in its care. Each transaction uses a
file-system-like API to assign new contents to some files. (The old
file contents are replaced, making transactions idempotent.) The li-
brary ensures that these small files always have consistent contents:
after a fail-stop crash and subsequent recovery, the small files’ con-
tents will equal those created by some prefix of committed trans-
actions. More is required for full data store consistency, however,
since the small library-managed files generally refer to larger files
managed elsewhere. For example, a small file might record the
commit point in a larger log, or might name the current version
of a read-only dTable. The library thus lets users define consis-
tency relationships between other data files and a library-managed
transaction. Specifically, users can declare that a transaction must
not commit until changes to some data file become persistent. This
greatly eases the burden of dealing with transactions for most dTa-
bles, since they can enforce consistency relationships for their own
arbitrary files.

The library maintains an on-disk log of updates to the small files
it manages. API requests to change a file are cached in memory;
read requests are answered from this cache. When a transaction
commits, the library serializes the transaction’s contents to its log,
mdtx.log. (This is essentially a group commit, since the transac-
tion might contain updates to several small files. The library cur-
rently supports at most one uncommitted transaction at a time, al-
though this is not a fundamental limitation.) It then updates a com-
mit record file, mdtx.cmt, to indicate the section of mdtx.log that
just committed. Finally, the library plays out the actual changes to
the application’s small files. On replay, the library runs through
mdtx.log up to the point indicated by mdtx.cmt and makes the
changes indicated.

To achieve consistency, the library must enforce a dependency
ordering among its writes: mdtx.log happens before (or at the
same time as) mdtx.cmt, which happens before (or at the same
time as) playback to the application’s small files.

This ordering could be achieved by calls like fsync, but such
calls achieve durability as well as ordering and are extremely ex-
pensive on many stable storage technologies [14]. Anvil instead
relies on file-system-specific mechanisms for enforcing orderings.
By far the simpler of the mechanisms we’ve implemented is the
explicit specification of ordering requirements using the Feather-
stitch storage system’s patchgroup abstraction [9]. The transaction
library’s patchgroups define ordering constraints that the file sys-
tem implementation must obey. Explicit dependency specification
is very clean, and simple inspection of the generated dependencies
can help verify correctness. However, Featherstitch is not widely
deployed, and its implementation has several limitations we wished
to avoid.

Anvil can therefore also use the accidental [30] write ordering
guarantees provided by Linux’s ext3 file system in ordered data
mode. This mode makes two guarantees to applications. First, meta-
data operations (operations other than writes to a regular file’s data
blocks) are made in atomic epochs, 5 seconds in length by default.
Second, writes to the data blocks of files, including data blocks al-
located to extend a file, will be written before the current metadata
epoch. In particular, if an application writes to a file and then re-
names that file (a metadata operation), and the rename is later ob-
served after a crash, then the writes to the file’s data blocks are
definitely intact.

Anvil’s transaction library, like the Subversion [27] working
copy library, uses this technique to ensure consistency. Concretely,
the mdtx.cmt file, which contains the commit record, is written

elsewhere and renamed. This rename is the atomic commit point.
For example, something like the following system calls would com-
mit a new version of a 16-byte sysjnl.md file:
pwrite("mdtx.log", [sysjnl.md => new contents], ...)
pwrite("mdtx.cmt.tmp", [commit record], ...)
rename("mdtx.cmt.tmp", "mdtx.cmt") <- COMMIT
pwrite("sysjnl.md.tmp", [new contents], ...)
rename("sysjnl.md.tmp", "sysjnl.md")

The last two system calls play out the changes to sysjnl.md itself.
Writing to sysjnl.md directly would not be safe: ext3 might com-
mit those data writes before the rename metadata write that com-
mits the transaction. Thus, playback also uses the rename technique
to ensure ordering. (This property is what makes the transaction li-
brary most appropriate for small files.)

The library maintains consistency between other data files and
the current transaction using similar techniques. For example, in
ext3 ordered data mode, the library ensures that specified data file
changes are written before the rename commits the transaction.

As an optimization, the transaction library actually maintains
only one commit record file, mdtx.cmt.N. Fixed-size commit
records are appended to it, and it is renamed so that N is the num-
ber of committed records. Since the transaction library’s transac-
tions are small, this allows it to amortize the work of allocating and
freeing the inode for the commit record file over many transactions.
After many transactions, the file is deleted and recreated.

Much of the implementation of the transaction library is shared
between the Featherstitch and ext3 versions, as most of the library’s
code builds transactions from a generic “write-before” dependency
primitive. When running Anvil on Featherstitch, we used depen-
dency inspection tools to verify that the correct dependencies were
generated. Although dependencies remain implicit on ext3, the ex-
periments in Section 6.5 add confidence that our ext3-based consis-
tency mechanisms are correct in the face of failures.

4.2 Durability
As described so far, the transaction library ensures consistency, but
not durability: updates to data are not necessarily stored on the disk
when a success code is returned to the caller, or even when the Anvil
transaction is ended. Updates will eventually be made durable, and
many updates made in a transaction will still be made atomic, but
it is up to the caller to explicitly flush the Anvil transaction (forc-
ing synchronous disk access) when strong durability is required.
For instance, the caller might force durability for network-requested
transactions only just before reporting success, as is done automat-
ically in the xsyncfs file system [17].

When requested, Anvil makes the most recent transaction
durable in one of two ways, depending on whether it is using Feath-
erstitch or ext3. With Featherstitch, it uses the pg sync API to
explicitly request that the storage system flush the change corre-
sponding to that transaction to disk. With ext3, Anvil instead calls
futimes to set the timestamp on an empty file in the same file sys-
tem as the data, and then fsync to force ext3 to end its transaction
to commit that change. (Using fsyncwithout the timestamp change
is not sufficient; the kernel realizes that no metadata has changed
and flushes only the data blocks without ending the ext3 transac-
tion.) Even without an explicit request, updates are made durable
within about 5 seconds (the default duration of ext3 transactions),
as each ext3 transaction will make all completed Anvil transactions
durable. This makes Anvil transactions lightweight, since they can
be batched and committed as a group.

4.3 System Journal
Rather than using the transaction library directly, writable dTables
use logging primitives provided by a shared logging facility, the

5

Class dTable Writable? Description Section
Storage Linear No Stores arbitrary keys and values in sorted order 5.1

Fixed-size No Stores arbitrary keys and fixed-size values in sorted order 5.4
Array No Stores consecutive integer keys and fixed-size values in an array 5.4
Unique-string No Compresses common strings in values 5.1
Empty No Read-only empty dTable 5.1
Memory Yes Non-persistent dTable 5.1
Journal Yes Collects writes in the system journal 5.1

Performance B-tree No Speeds up lookups with a B-tree index 5.2
Bloom filter No Speeds up nonexistent key lookups with a Bloom filter 5.2
Cache Yes Speeds up lookups with an LRU cache 5.2

Unifying Overlay No Combines several read-only dTables into a single view 5.3
Managed Yes Combines read-only and journal dTables into a read/write store 5.3
Exception No Reroutes rejected values from a specialized store to a general one 5.5

Transforming Small integer No Trims integer values to smaller byte counts 5.4
Delta integer No Stores the difference between integer values 5.4
State dictionary No Maps state abbreviations to small integers 5.4

Figure 5: Summary of dTables. Storage dTables write data on disk; all other classes layer over other dTables.

system journal. The main purpose of this shared, append-only log
is to group writes for speed. Any system component can acquire
a unique identifier, called a tag, which allows it to write entries to
the system journal. Such entries are not erased until their owner
explicitly releases the corresponding tag, presumably after the data
has been stored elsewhere. Until then, whenever Anvil is started (or
on demand), the system journal will replay the log entries to their
owners, allowing them to reconstruct their internal state. Appends
to the system journal are grouped into transactions using the trans-
action library, allowing many log entries to be stored quickly and
atomically.

To reclaim the space used by released records, Anvil periodi-
cally cleans the system journal by copying all the live records into
a new journal and atomically switching to that version using the
transaction library. As an optimization, cleaning is automatically
performed whenever the system journal detects that the number of
live records reaches zero, since then the file can be deleted with-
out searching it for live records. In our experiments, this actually
happens fairly frequently, since entire batches of records are relin-
quished together during digest operations.

Writing records from many sources to the same system journal
is similar to the way log data for many tablets is stored in a single
physical log in Bigtable [7]; both systems employ this idea in order
to better take advantage of group commit and avoid seeks. Cleaning
the system journal is similar to compaction in a log-structured file
system, and is also reminiscent of the way block allocation logs
(“space maps”) are condensed in ZFS [33].

5 DTABLES
We now describe the currently implemented dTable types and their
uses in more detail. The sixteen types are summarized in Figure 5.
We close with an example Anvil configuration using many of these
dTables together, demonstrating how simple, reusable modules can
combine to implement an efficient, specialized data store.

5.1 Storage dTables
The dTables described in this section store data directly on disk,
rather than layering over other dTables.

Journal dTable The journal dTable is Anvil’s fundamental
writable store. The goal of the journal dTable is thus to make writes
fast without slowing down reads. Scaling to large stores is explic-
itly not a goal: large journals should be digested into faster, more

compressed, and easier-to-recover forms, namely read-only dTa-
bles. Managed dTables in our configurations collect writes in jour-
nal dTables, then digest that data into other, read-optimized dTables.

The journal dTable stores its persistent data in the system jour-
nal. Creating a new journal dTable is simple: a system journal tag
is acquired and stored in a small file managed by the transaction
library (probably one belonging to a managed dTable). Erasing a
journal dTable requires relinquishing the tag and removing it from
the small file. These actions are generally performed at a managed
dTable’s request.

Writing data to a journal dTable is accomplished by appending
a system journal record with the key and value. However, the sys-
tem journal stores records in chronological order, whereas a jour-
nal dTable must iterate through its entries in sorted key order. This
mismatch is handled by keeping an in-memory balanced tree of the
entries. When a journal dTable is initialized during Anvil startup, it
requests its records from the system journal and replays the previ-
ous sequence of inserts, updates, and deletes in order to reconstruct
this in-memory state. The memory this tree requires is one reason
large journal dTables should be digested into other forms.

Linear dTable The linear dTable is Anvil’s most basic read-only
store. It accepts any types of keys and values without restriction,
and stores its data as a simple file containing first a 〈key, offset〉
array in key-sorted order, followed by the values in the same order.
(Keys are stored separately from values since most of Anvil’s key
types are fixed-size, and thus can be easily binary searched to al-
low random access. The offsets point into the value area.) As with
other read-only dTables, a linear dTable is created by passing an it-
erator for some other dTable to a create method, which creates a
new linear dTable on disk containing the data from the iterator. The
linear dTable’s create method never calls reject.

Others The memory dTable keeps its data exclusively in memory.
When a memory dTable is freed or Anvil is terminated, the data is
lost. Like the journal dTable, it is writable and has a maximum size
limited by available memory. Our test frameworks frequently use
the memory dTable for their iterators: a memory dTable is built up
to contain the desired key-value pairs, then its iterator is passed to
a read-only dTable’s create method.

The empty dTable is a read-only table that is always empty. It is
used whenever a dTable or iterator is required by some API, but the
caller does not have any data to provide.

6

The unique-string dTable detects duplicate strings in its data and
replaces them with references to a shared table of strings. This
approach is similar to many common forms of data compression,
though it is somewhat restricted in that it “compresses” each blob
individually using a shared dictionary.

5.2 Performance dTables
These dTables aim to improve the performance of a single underly-
ing dTable stack by adding indexes or caching results, and begin to
demonstrate benefits from layering.

B-tree dTable The B-tree dTable creates a B-tree [3] index of
the keys stored in an underlying dTable, allowing those keys to be
found more quickly than by, for example, a linear dTable’s binary
search.2 It stores this index in another file alongside the underlying
dTable’s data. The B-tree dTable is read-only (and, thus, its under-
lying dTable must also be read-only). Its create method constructs
the index; since it is given all the data up front, it can calculate the
optimal constant depth for the tree structure and bulk load the re-
sulting tree with keys. This bulk-loading is similar to that used in
Rose [22] for a similar purpose, and avoids the update-time com-
plexity usually associated with B-trees (such as rebalancing, split-
ting, and combining pages).

Bloom Filter dTable The Bloom filter dTable’s create method
creates a Bloom filter [4] of the keys stored in an underlying read-
only dTable. It responds to a lookup request by taking a 128-bit hash
of the key, and splitting it into a configurable number of indices into
a bitmap. If any of the corresponding bits in the bitmap are not set,
the key is guaranteed not to exist in the underlying dTable; this re-
sult can be returned without invoking the underlying table’s lookup
algorithm. This is particularly useful for optimizing lookups against
small dTables, such as those containing recent changes, that over-
lay much larger data stores, a situation that often arises in Anvil.
The Bloom filter dTable keeps the bitmap cached in memory, as the
random accesses to it would not be efficient to read from disk.

Cache dTable The cache dTable wraps another dTable, caching
looked up keys and values so that frequently- and recently-used
keys need not be looked up again. If the underlying dTables perform
computationally expensive operations to return requested data, such
as some kinds of decompression, and some keys are looked up
repeatedly, a cache dTable may be able to improve performance.
When the underlying dTable supports writing, the cache dTable
does as well: it passes the writes through and updates its cache if
they succeed. Each cache dTable can be configured with how many
keys to store; other policies, such as total size of cached values,
would be easy to add.

5.3 Unifying dTables
This section describes the overlay and managed dTables in more de-
tail, explaining how they efficiently unify multiple underlying dTa-
bles into a seamless-appearing whole.

Overlay dTable The overlay dTable combines the data in several
underlying dTables into a single logical dTable. It does not store
any data of its own. An overlay dTable is not itself writable, al-
though writes to underlying dTables will be reflected in the com-
bined data. Thus, overlays must deal with two main types of access:
keyed lookup and iteration.

Keyed lookup is straightforward: the overlay dTable just checks
the underlying dTables in order until a matching key is found, and
returns the associated value. However, a dTable early in the list

2The asymptotic runtime is the same, but the constant is different:
logn x instead of log2 x.

should be able to “delete” an entry that might be stored in a later
dTable. To support this, the remove implementation in a writable
dTable normally stores an explicit “nonexistent” value for the key.
These values resemble Bigtable’s deletion entries and the whiteout
directory entries of Unionfs [32]. Storage dTables are responsible
for translating nonexistent values into the appropriate persistent bit
patterns, or for rejecting nonexistent values if they cannot be stored.
A nonexistent value tells the overlay dTable to skip later dTables
and immediately report that the key’s value does not exist. Creating
a read-only dTable from the writable dTable will copy the nonex-
istent value just like any other value. When a key-value pair is ig-
nored by an overlay dTable because another value for the key exists
earlier in the list, we say that the original key-value pair has been
shadowed.

Composing an overlay dTable iterator is more difficult to do effi-
ciently. Keys from different underlying iterators must be interleaved
together into sorted order, and keys which have been shadowed
must be skipped. However, we want to minimize the overhead of
doing key comparisons – especially duplicate key comparisons –
since they end up being the overlay’s primary use of CPU time. The
overlay iterator therefore maintains some additional state for each
underlying iterator: primarily, whether that iterator points at the cur-
rent key, a shadowed key, an upcoming key, or a previous key. This
information helps the overlay iterator to avoid many duplicate com-
parisons by partially caching the results of previous comparisons.
(A more advanced version might also keep the underlying iterators
sorted by the next key each will output.)

Managed dTable We now have most of the basic mechanisms re-
quired to build a writable store from read-only and write-optimized
pieces. The managed dTable handles the combination of these
pieces, automatically coordinating the operation of subordinate
dTables to hide the complexity of their interactions. For instance,
all all other dTables can ignore transactions, leaving the managed
dTable to take care of any transaction concerns using the transaction
library.

The managed dTable stores its metadata as well as the files
for its underlying dTables in a directory. It keeps a single journal
dTable to which it sends all writes, and zero or more other dTables
which, along with the journal dTable, are composed using an over-
lay dTable. Periodically, a special maintenance method digests the
journal dTable to form a new read-only dTable, or combines several
dTables to form a new single dTable. As in system journal cleaning,
the actual data is written non-transactionally, but the transaction li-
brary is used to atomically “swap in” the newly digested or com-
bined tables.

The current managed dTable schedules digest operations at fixed,
configurable intervals. A digest will occur soon after the interval
has elapsed. Combines are more expensive than digests, since they
must scan possibly-uncached dTables and create single, larger ver-
sions; further, the overlay dTable necessary to merge data from un-
combined dTables is costly as well. To amortize the cost of com-
bining, combines are scheduled using a “ruler function” some-
what reminiscent of generational garbage collection. A combine
operation is performed every k digests (k = 4 in our current im-
plementation). The combine takes as input the most recent k di-
gests, plus a number of older dTables according to the sequence
xi = 0,1,0,2,0,1,0,3,0,1,0,2, . . . , where xi is one less than the
number of low-order zero bits in i. This performs small combines
much more frequently than large combines, and the average num-
ber of dTables grows at most logarithmically with time. The result
is very similar to Lester et al.’s “geometric partitioning” mecha-
nism [12]. A more advanced version of the managed dTable would
involve more carefully tuned parameters and might instead decide

7

C

B

A

1: NE 2: NE 3: NE 4: baz

2: NE 3: foo 4: foo

2: baz 3: baz

Figure 6: dTables C, B, and A in an overlay configuration; explicitly
nonexistent values are shown as “NE.” Digesting C should keep the
nonexistent value for key 3, but not those for keys 1 and 2, since the
combination of the other dTables already hold no values for those keys
(B takes precedence over A). Combining C and B, on the other hand,
must keep the nonexistent values for both keys 2 and 3. The arrows
point from required nonexistent values to their shadowed versions.

when to perform these tasks based on, for instance, the amount of
data involved.

When digesting, an iterator for the journal dTable is passed to a
suitable create method to create a new read-only dTable. When
combining, an overlay dTable is created to merge the dTables to be
combined, and an iterator for that is passed to the create method
instead. To allow the omission of unnecessary nonexistent values,
an additional dTable can be passed to create methods that con-
tains all those keys that might need to be shadowed by the nonexis-
tent values. The create method can look up a key with a nonexis-
tent value in this “shadow dTable” to see if the nonexistent value is
still required. The shadow dTable is simply an overlay dTable that
merges all the dTables which are not being combined, but which the
newly created dTable might shadow. Figure 6 shows an example set
of dTables to help illustrate this algorithm.

Currently, client code is responsible for periodically calling a
maintenance method, which in turn will trigger digesting and com-
bining as the schedule requires. Most parts of Anvil are currently
single-threaded; however, a managed dTable’s digesting and com-
bining can be safely done in a background thread, keeping these
potentially lengthy tasks from blocking other processing. As a com-
bine operation reads from read-only dTables and creates a new
dTable that is not yet referenced, the only synchronization required
is at the end of the combine when the newly-created dTable replaces
the source dTables. Digests read from writable journal dTables, but
can also be done in the background by creating a new journal dTable
and marking the original journal dTable as “effectively” read-only
before starting the background digest. Such read-only journal dTa-
bles are treated by a managed dTable as though they were not jour-
nal dTables at all, but rather one of the other read-only dTables.

The current managed dTable implementation allows only one di-
gest or combine operation to be active at any time, whether it is
being done in the background or not. Background digests and com-
bines could also be done in a separate process, rather than a separate
thread; doing this would avoid the performance overhead incurred
by thread safety in the C library. Section 6.4 evaluates the costs as-
sociated with digesting and combining, and quantifies the overhead
imposed by using threads.

5.4 Specialized dTables
Although a linear dTable can store any keys and values, keys and
values that obey some constraints can often be stored in more effi-
cient ways. For instance, if all the values are the same size, then file
offsets for values can be calculated based on the indices of the keys.
Alternately, if the keys are integers and are likely to be consecutive,
the binary search can be optimized to a constant time lookup by us-
ing the keys as indices and leaving “holes” in the file where there
is no data. Or, if the values are likely to compress well with a spe-

cific compression algorithm, that algorithm can be applied. Anvil
currently provides a number of specialized dTables that efficiently
store specific kinds of data.

Array dTable The array dTable is specialized for storing fixed-
size values associated with contiguous (or mostly contiguous) in-
teger keys. After a short header, which contains the initial key and
the value size, an array dTable file contains a simple array of val-
ues. Each value is optionally preceded by a tag byte to indicate
whether the following bytes are actually a value or merely a hole
to allow the later values to be in the right place despite the missing
key. Without the tag byte, specific values must be designated as the
ones to be used to represent nonexistent values and holes, or they
will not be supported. (And, in their absence, the array dTable’s
create method will fail if a nonexistent value or non-contiguous
key is encountered, respectively.)

Fixed-size dTable The fixed-size dTable is like the array dTable
in that it can only store values of a fixed size. However, it accepts
all Anvil-supported key types, and does not require that they be
contiguous. While the direct indexing of the array dTable is lost,
the size advantage of not saving the value size with every entry is
retained.

Small Integer dTable The small integer dTable is designed for
values which are small integers. It requires that all its input values
be 4 bytes (32 bits), and interprets each as an integer in the native
endianness. It trims each integer to a configured number of bytes
(one of 1, 2, or 3), rejecting values that do not fit in that size, and
stores the resulting converted values in another dTable.

Delta Integer dTable Like the small integer dTable, the delta in-
teger dTable works only with 4-byte values interpreted as integers.
Instead of storing the actual values, it computes the difference be-
tween each value and the next and passes these differences to a
dTable below. If the values do not usually differ significantly from
adjacent values, the differences will generally be small integers –
perfect for then being stored using a small integer dTable.

Storing the differences, however, causes problems for seeking to
random keys. The entire table, from the beginning, would have to
be consulted in order to reconstruct the appropriate value. To ad-
dress this problem, the delta integer dTable also keeps a separate
“landmark” dTable which stores the original values for a config-
urable fraction of the keys. To seek to a random key, the landmark
dTable is consulted, finding the closest landmark value. The delta
dTable is then used to reconstruct the requested value starting from
the landmark key.

State Dictionary dTable Dictionary dTables compress data by
transforming user-friendly values into less-friendly values that re-
quire fewer bits. As a toy example, Anvil’s state dictionary dTable
translates U.S. state postal codes (CA, MA, etc.) to and from one-
byte numbers. During creation, it translates input postal codes into
bytes and passes them to another dTable for storage; during read-
ing, it translates values returned from that dTable into postal codes.
The array or fixed-size dTables are ideally suited as subordinates
to the state dictionary dTable, especially (in the case of the array
dTable) if we use some of the remaining, unused values for the byte
to represent holes and nonexistent values.

5.5 Exception dTable
The exception dTable takes advantage of Anvil’s modularity and it-
erator rejection to efficiently store data in specialized dTables with-
out losing the ability to store any value. This can improve the per-
formance or storage space requirements for tables whose common
case values fit some constraint, such as a fixed size.

8

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

B-tree dTable

Linear dTable

Figure 7: A simple dTable graph for the customer state example.

Like an overlay dTable, an exception dTable does not store any
data of its own; it merely combines data from two subordinate dTa-
bles into a single logical unit. These are a general-purpose dTable,
such as a linear dTable, which stores exceptional values, and a spe-
cialized dTable, such as an array dTable, which is expected to hold
the majority of the dTable’s data. On lookup, the exception dTable
checks the special-purpose dTable first. If there is no value there,
it assumes that there is also no exception, and need not check. (It
ensures that this will be the case in its create method.) If there
is a value, and it matches a configurable “exception value,” then it
checks the general-purpose dTable. If a value is found there, then it
is used instead.

The exception dTable’s create method wraps the source itera-
tor in an iterator of its own, adding a reject method that collects
rejected values in a temporary memory dTable. This wrapped itera-
tor is passed to the specialized dTable’s create method. When the
specialized dTable rejects a value, the wrapped iterator stores the
exception and returns the configurable exception value to the spe-
cialized dTable, which stores that instead. The exception dTable is
later created by digesting the temporary memory dTable.

5.6 Example Configurations
To show how one might build an appropriate configuration for
a specific use case, we work through two simple examples that
demonstrate Anvil’s modularity and configurability. First, suppose
we want to store the states of residence of customers for a large
company. The customers have mostly sequential numeric IDs, and
occasionally move between states.

We start with a managed dTable, since nearly every Anvil config-
uration needs one to handle writes. This automatically brings along
a journal dTable and overlay dTable, but we must configure it with
a read-only dTable. Since there are many customers, but they only
occasionally move, we are likely to end up with a very large data
set but several smaller read-only “patches” to it (the results of di-
gested journal dTables). Since most keys looked up will not be in
the small dTables, we add a Bloom filter dTable to optimize nonex-
istent lookups. Underneath the Bloom filter dTable, we use a B-
tree dTable to speed up successful lookups, reducing the number
of pages read in from disk to find each record. To finish our first
attempt at a configuration for this scenario, we use a linear dTable
under the B-tree dTable. This configuration is shown in Figure 7.

While this arrangement will work, there are two properties of the
data we haven’t yet used to our advantage. First, the data is nearly
all U.S. states, although some customers might live in other coun-
tries. We should therefore use the state dictionary dTable combined

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

Exception dTable

State Dict. dTable

special

B-tree dTable

 generic

Array dTable
hole=254, NE=255

Linear dTable

Figure 8: An example dTable graph for storing U.S. states efficiently,
while still allowing other locations to be stored.

with an exception dTable for international customers. We could
place these dTables under the B-tree dTable, but we instead insert
the exception dTable directly under the Bloom filter dTable and use
the B-tree dTable as its generic dTable. The reason is related to
the final property of the data we want to use: the customer IDs are
mostly sequential, so we can store the data in an array dTable much
more efficiently. We therefore use the state dictionary dTable on
top of the array dTable as the exception dTable’s special-purpose
dTable, and configure the array dTable with otherwise unused val-
ues to use to represent holes and nonexistent values.

This configuration is shown in Figure 8, although at runtime, the
managed dTable might create several Bloom filter dTable instances,
each of which would then have a copy of the subgraph below.

In a different scenario, this configuration might be just a single
column in a column-based store. To see how such a configuration
might look, we work through a second example. Suppose that in ad-
dition to updating the “current state” table above, we wish to store a
log entry whenever a customer moves. Each log entry will be iden-
tified by a monotonically increasing log ID, and consist of the pair
〈timestamp, customer ID〉. Additionally, customers do not move at
a uniform rate throughout the year – moves are clustered at specific
times of the year, with relatively few at other times.

We start with a column cTable, since we will want to use differ-
ent dTable configurations for the columns. For the second column,
we can use a simple configuration consisting of a managed dTable
and array dTables, since the customer IDs are fixed-size and the log
IDs are consecutive.

The first column is more interesting. A well-known technique
for storing timestamps efficiently is to store the differences between
consecutive timestamps, since they will often be small. We there-
fore begin with a managed dTable using delta integer dTables. The
delta integer dTable needs a landmark dTable, as mentioned in Sec-
tion 5.4; we use a fixed dTable as the values will all be the same size.
But merely taking the difference in this case is not useful unless we
also store the differences with a smaller amount of space than the
full timestamps, so we connect the delta integer dTable to a small
integer dTable. Finally, we use an array dTable under the small in-
teger dTable to store the consecutively-keyed small integers.

This initial configuration works well during the times of year
when many customers are moving, since the differences in times-
tamps will be small. However, during the other times of the year,

9

Column cTable

Managed dTable

column 1

Managed dTable

 column 2

Overlay dTable

 overlay

Journal dTable

 journal

Delta Int dTable

 read-only

Array dTable

 read-only

Overlay dTable

 overlay

Journal dTable

journal

Fixed dTable

landmark

Exception dTable

Small Int dTable
size:1

special

Fixed dTable

 generic

Array dTable
hole=254, NE=255

Figure 9: An example configuration for a cTable storing differentially
timestamped log entries consisting of fixed-size customer IDs.

when the differences are large, the delta integer dTable will pro-
duce large deltas that the small integer dTable will refuse to store.
To fix this problem, we need an exception dTable between the delta
integer dTable and the small integer dTable. Finally, we can use a
fixed dTable to store the exceptional values – that is, the large deltas
– as they are all the same size. The revised configuration, complete
with the configuration for the second column and the containing
column cTable, is shown in Figure 9.

6 EVALUATION

Anvil decomposes a back-end storage layer for structured data into
many fine-grained modules which are easy to implement and com-
bine. Our performance hypothesis is that this modularity comes at
low cost for “conventional” workloads, and that simple configura-
tion changes targeting specific types of data can provide significant
performance improvements. This section evaluates Anvil to test our
hypothesis and provides experimental evidence that Anvil provides
the consistency and durability guarantees we expect.

All tests were run on an HP Pavilion Elite D5000T with a
quad-core 2.66 GHz Core 2 CPU, 8 GiB of RAM, and a Seagate
ST3320620AS 320 GB 7200 RPM SATA2 disk attached to a SiI
3132 PCI-E SATA controller. Tests use a 10 GB ext3 file system
(and the ext3 version of the transaction library) and the Linux 2.6.24
kernel with the Ubuntu v8.04 distribution. All timing results are the
mean over five runs.

TPM Disk util Reqsz W/s
Original, full 905 94.5% 8.52 437.2
Original, normal 920 93.2% 8.69 449.1
Original, async 3469 84.7% 8.73 332.4
Anvil, fsync 5066 31.4% 24.68 1077.5
Anvil, delay 8185 3.2% 439.60 9.7

Figure 10: Results from running the DBT2 test suite. TPM represents
“new order Transactions Per Minute”; larger numbers are better. Disk
util is disk utilization, Reqsz the average size in KiB of the issued re-
quests, and W/s the number of write requests issued per second. I/O
statistics come from the iostat utility and are averaged over samples
taken every minute.

6.1 Conventional Workload
For our conventional workload, we use the DBT2 [8] test suite,
which is a “fair usage implementation”3 of the TPC-C [28] bench-
mark. In all of our tests, DBT2 is configured to run with one ware-
house for 15 minutes; this is long enough to allow Anvil to do many
digests, combines, and system journal cleanings so that their effect
on performance will be measured. We also disable the 1% random
rollbacks that are part of the standard benchmark as Anvil does
not yet support rolling back transactions. We modified SQLite, a
widely-used embedded SQL implementation known for its gener-
ally good performance, to use Anvil instead of its original B-tree-
based storage layer. We use a simple dTable configuration: a linear
dTable, layered under a B-tree dTable (for combines but not di-
gests), layered under the typical managed and journal dTable com-
bination.

We compare the results to unmodified SQLite, configured to dis-
able its rollback journal, increase its cache size to 128 MiB, and
use only a single lock during the lifetime of the connection. We
run unmodified SQLite in three different synchronicity modes: full,
which is fully durable (the default); normal, which has “a very small
(though non-zero) chance that a power failure at just the wrong time
could corrupt the database”; and async, which makes no durabil-
ity guarantees. We run SQLite with Anvil in two different modes:
fsync, which matches the durability guarantee of the original full
mode by calling fsync at the end of every transaction, and de-
lay, which allows larger group commits as described in Section 4.2.
Both of these modes, as well as the first two unmodified SQLite
modes, provide consistency in the event of a crash; SQLite’s async
mode does not.

The DBT2 test suite issues a balance of read and write queries
typical to the “order-entry environment of a wholesale supplier,”
and thus helps demonstrate the effectiveness of using both read-
and write-optimized structures in Anvil. In particular, the system
journal allows Anvil to write more data per second than the orig-
inal back end without saturating the disk, because its writes are
more contiguous and do not require as much seeking. (Anvil actu-
ally writes much less in delay mode, however: the average request
size increases by more than an order of magnitude, but the num-
ber of writes per second decreases by two orders.) For this test,
Anvil handily outperforms SQLite’s default storage engine while
providing the same durability and consistency semantics. The per-
formance advantage of read- and write-optimized structures far out-
weighs any cost of separating these functions into separate mod-
ules.

6.2 Microbenchmarks
We further evaluate the performance consequences of Anvil’s
modularity by stress-testing Anvil’s most characteristic modules,

3This is a legal term. See the DBT2 and TPC websites for details.

10

Time (s)
Digest Lookup Size (MiB)

linear 2.03 63.37 49.6
btree 2.45 23.58 80.2
array 1.59 8.81 22.9
excep+array 1.71 9.15 23.0
excep+fixed 2.09 56.46 34.4
excep+btree+fixed 2.50 23.87 65.0

Figure 11: Exception dTable microbenchmark. A specialized array
dTable outperforms the general-purpose linear dTable, even if the latter
is augmented with a B-tree index. When most, but not all, data fits the
specialized dTable’s constraints, the exception dTable achieves within
4% of the specialized version while supporting any value type.

namely those dTables that layer above other storage modules.

Exception and Specialized dTables To determine the cost and
benefit associated with the exception dTable, we run a model work-
load with several different dTable configurations and compare the
results. For our workload, we first populate a managed dTable with
4 million values, a randomly selected 0.2% of which are 7 bytes in
size and the rest 5 bytes. We then digest the log, measuring the time
it takes to generate the read-only dTable. Next we time how long it
takes to look up 2 million random keys. Finally, we check the total
size of the resulting data files on disk.

We run this test with several read-only dTable configurations.
The linear configuration uses only a linear dTable. The btree con-
figuration adds a B-tree dTable to this. The array configuration uses
an array dTable instead, and, unlike the other configurations, all
values are 5 bytes. The remaining configurations use an exception
dTable configured to use a linear dTable as the generic dTable. The
excep+array configuration uses a 5-byte array dTable as the spe-
cialized dTable; the excep+fixed configuration uses a 5-byte fixed
dTable. Finally, the excep+btree+fixed configuration uses a B-tree
dTable over a fixed dTable. The results are shown in Figure 11.

Comparing the linear and btree configurations shows that a B-
tree index dramatically improves random read performance, at the
cost of increased size on disk. For this example, where the data is
only slightly larger than the keys, the increase is substantial; with
larger data, it would be smaller in comparison. The array configura-
tion, in comparison, offers a major improvement in both speed and
disk usage, since it can locate keys directly, without search. The ex-
cep+array configuration degrades array’s lookup performance by
only approximately 3.9% for these tests, while allowing the combi-
nation to store any data value indiscriminately. Thus, Anvil’s mod-
ularity here offers substantial benefit at low cost. The excep+fixed
configurations are slower by comparison on this benchmark – the
fixed dTable must locate keys by binary search – but could offer
substantial disk space savings over array dTables if the key space
was more sparsely populated.

Overlay dTable All managed dTable reads and combines go
through an overlay dTable, making it performance sensitive. To
measure its overhead, we populate a managed dTable with 4 mil-
lion values using the excep+array configuration. We digest the log,
then insert one final key so that the journal dTable will not be empty.
We time how long it takes to look up 32 million random keys, as
well as how long it takes to run an iterator back and forth over the
whole dTable four times. (Note that the same number of records
will be read in each case.) Finally, we open the digested excep-
tion dTable within the managed dTable directly, thus bypassing the
overlay dTable, and time the same actions. (As a result, the single
key we added to the managed dTable after digesting the log will be
missing for these runs.)

Lookup Scan
direct 140.2 s 13.95 s
overlay 147.9 s 15.34 s
overhead 5.49% 9.96%

Figure 12: Overlay dTable microbenchmark: looking up random keys
and scanning tables with and without an overlay. Linear scan overhead
is larger percentagewise; a linear scan’s sequential disk accesses are so
much faster that the benchmark is more sensitive to CPU usage.

Time (s)
Even keys Odd keys Mixed keys

direct 30.36 24.95 27.70
bloom 32.08 1.05 16.63

Figure 13: Bloom filter dTable microbenchmark. A Bloom filter dTable
markedly improves lookup times for nonexistent (odd) keys while
adding only a small overhead for keys that do exist.

The results are shown in Figure 12. While the overhead of the
linear scans is less than that of the random keys, it is actually a
larger percentage: the disk accesses are largely sequential (and thus
fast) so the CPU overhead is more significant in comparison. As
in the last test, the data here is very small; as the data per key be-
comes larger, the CPU time will be a smaller percentage of total
time. Nevertheless, this is an important area where Anvil stands to
improve. Since profiling indicates key comparison remains expen-
sive, the linear access overhead, in particular, might be reduced by
storing precomputed key comparisons in the overlay dTable’s iter-
ator, rather than recalculating them each time next is called.

Bloom Filter dTable To evaluate the Bloom filter dTable’s ef-
fectiveness and cost, we set up an integer-keyed linear dTable with
values for every even key in the range 0 to 8 million. (We configure
the Bloom filter dTable’s hash to produce five 25-bit-long indices
into a 4 MiB bitmap.) We then look up 1 million random even keys,
followed by 1 million random odd keys, either using a Bloom fil-
ter dTable or by accessing the linear dTable directly. The results
are shown in Figure 13. The Bloom filter dTable adds about 5.6%
overhead when looking up existing keys, but increases the speed of
looking up nonexistent keys by nearly a factor of 24. For workloads
consisting of many queries for nonexistent keys, this is definitely a
major benefit, and the modular dTable design allows it to be used
nearly anywhere in an Anvil configuration.

To summarize the microbenchmarks, Anvil’s layered dTables
add from 4% to 10% overhead for lookups. However, their func-
tionality can improve performance by up to 24 times for some work-
loads. The combination of small, but significant, overhead and oc-
casional dramatic benefit argues well for a modular design.

6.3 Reconfiguring Anvil
Many of Anvil’s dTable modules do their work on single columns
at a time, so they can best be used when Anvil is configured as
a column-based store. Other recent work proposing column stores
has turned to TPC-H [29], or variants of it, to show the advantages
of the approach. However, being a back end data store and not a
DBMS in its own right, Anvil provides no structured query lan-
guage. Although we have connected it to SQLite to run the TPC-C
benchmark, SQLite is a thoroughly row-based system. Thus, in or-
der to demonstrate how a column-based Anvil configuration can be
optimized for working with particular data, we must build our own
TPC-H-like benchmark, as in previous work [11, 22]. We adapt the
method of Harizopoulos et al. [11], as it does not require building a
query language or relational algebra.

11

 0

 4

 8

 12

 16

 20

 24

R1 R16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
la

ps
ed

 ti
m

e
(s

ec
)

of attributes selected

Figure 14: Time to select different numbers of columns from a row
store (left bars; 1 and 16 columns) and a column store (right bars).

We create the lineitem table from TPC-H, arranged as either
a row store or a column store. This choice is completely controlled
by the configuration blurb we use. We populate the table with the
data generated by the TPC dbgen utility. In the column store ver-
sion, we use an appropriate dTable configuration for each column:
a fixed-size dTable for columns storing floating point values, for in-
stance, or an exception dTable above a small-integer dTable above
a fixed-size dTable for columns storing mostly small integers. (We
can actually use an array dTable as the fixed-size dTable, since the
keys are contiguous.) After populating the table, the column store is
910 MiB while the row store is 1024 MiB (without customizations,
the column store is 1334 MiB). We then iterate through all the rows
in the table, performing the Anvil equivalent of a simple SQL query
of the form:

SELECT C1, ... FROM lineitem WHERE pred(C1);

We vary the number of selected columns, using a predicate se-
lecting 10% of the rows. We use the cTable iterator projection fea-
ture to efficiently select only the columns of interest in either a row
or column store. The results, shown in Figure 14, are very similar
to previous work [11], demonstrating that Anvil’s modular design
provides effective access to the same tradeoffs.

6.4 Digesting and Combining
Figure 15 shows the number of rows inserted per second (in thou-
sands) while creating the row-based database used for the first two
columns of Figure 14. Figure 16 shows the same operation, but
with digests and combines run in the foreground, blocking other
progress. (Note that the x axes have different scales.) The periodic
downward spikes in Figure 16 are due to digests, which take a small
amount of time and therefore lower the instantaneous speed briefly.
The longer periods of inactivity correspond to combine operations,
which vary in length depending on how much data is being com-
bined. In Figure 15, since these operations are done in the back-
ground, progress can still be made while they run.

Insertions become slower after each digest, since the row-based
store must look up the previous row data in order to merge the new
column data into it. (It does not know that the rows are new, al-
though it finds out by doing the lookup.) After the combines, the
speed increases once again, as there are fewer dTables to check for
previous values. The effect is clearer when digests and combines
are done in the foreground, as in Figure 16.

In this test, running digests and combines in the background
takes about 40% less time than running them in the foreground.
Most of our other benchmarks do not show such a significant im-
provement from background digests and combines; while there is
still generally an improvement, it is much more modest (on the or-
der or 5%). For this experiment, we configured the digests to occur
with a very high frequency, to force them to occur enough times
to have a performance effect on such a short benchmark. When a

 0

 50

 100

 150

 200

 0 10 20 30 40 50

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 15: Rows inserted per second over time while creating the row-
based TPC-H database, with digests and combines done in the back-
ground.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 16: Rows inserted per second over time while creating the row-
based TPC-H database. The discontinuities correspond to digests and
combines done in the foreground.

background digest or combine is already in progress and the next
digest is requested, the new digest request is ignored and the orig-
inal background operation proceeds unchanged. As a result, fewer
digests, and thus also fewer combines, occur overall. In more realis-
tic configurations, background operations would overlap much less
frequently with digest requests, and so the overall amount of work
done would be closer to the same.

The entire database creation takes Anvil about 50 seconds with
background digesting and combining and 82 seconds without, both
in delay mode. In comparison, loading the same data into unmodi-
fied SQLite in async mode takes about 64 seconds, and about 100
seconds in full and normal modes. Even though Anvil spends a large
amount of time combining dTables, the managed dTable’s digesting
and combining schedule keeps this overhead in check. Further, the
savings gained by contiguous disk access are larger than these over-
heads, and Anvil creates the database slightly faster overall for this
test.

Finally, as a measurement of the overhead automatically im-
posed by the C library to make itself thread-safe after the first
thread is created, we also run this experiment without even creating
the background thread. In this configuration, the load takes about
77 seconds, indicating that the C library thread-safety overhead is
about 6% for this workload. Using a separate process rather than a
thread should eliminate this overhead.

6.5 Consistency and Durability Tests
To test the correctness of Anvil’s consistency mechanisms, we set
up a column store of 500 rows and 50 columns. We store an integer
in each cell of the table and initialize all 25,000 cells to the value
4000. Thus, the table as a whole sums to 100 million. We then pick
a cell at random and subtract 100 from it, and pick 100 other cells at
random and add 1 to each. We repeat this operation 2000 times, and
end the Anvil transaction. We then run up to 500 such transactions,
which would take about 3 minutes if we allowed it to complete.

12

Instead, after initializing the table, we schedule a kernel mod-
ule to load after a random delay of between 0 and 120 seconds.
The module, when loaded, immediately reboots the machine with-
out flushing any caches or completing any in-progress I/O requests.
When the machine reboots, we allow ext3 to recover its journal,
and then start up Anvil so that it can recover as well. We then scan
the table, summing the cells to verify that they are consistent. The
consistency check also produces a histogram of cell values so that
we can subjectively verify that progress consistent with the amount
of time the test ran before being interrupted was made. (The longer
the test runs, the more distributed the histogram will tend to be, up
to a point.)

During each transaction, the table is only consistent about 1%
of the time: the rest of the time, the sum will fall short of the cor-
rect total. As long as the transactions are working correctly, these
intermediate states should never occur after recovery. Further, the
histograms should approximately reflect the amount of time each
test ran. The result of over 1000 trials matches these expectations.

Finally, as evidence that the test itself can detect incorrectly im-
plemented transactions, we note that it did in fact detect several
small bugs in Anvil. One, for instance, occasionally allowed trans-
action data to “leak” out before its containing transaction commit-
ted. The test generally found these low-frequency bugs after only a
few dozen trials, suggesting that it is quite sensitive to transaction
failures.

As a durability test, we run a simpler test that inserts a random
number of keys into a managed dTable, each in its own durable
transaction. We also run digest and combine operations occasion-
ally during the procedure. After the last key is inserted, and its
transaction reported as durable, we use the reboot module men-
tioned above to reboot the machine. Upon reboot, we verify that
the contents of the dTable are correct. As this experiment is able
to specifically schedule the reboot for what is presumably the worst
possible time (immediately after a report of durability), we only run
10 trials by hand and find that durability is indeed provided. Run-
ning the same test without requesting transaction durability reliably
results in a consistent but outdated dTable.

7 FUTURE WORK

There are several important features that we have not yet imple-
mented in Anvil, but we do have plans for how they could be
added. In this section, we briefly outline how two of these features,
abortable transactions and independent concurrent access, could be
implemented within the Anvil design.

Abortable transactions Anvil’s modular dTable design may fa-
cilitate, rather than hinder, abortable transactions. Each abortable
transaction could create its own journal dTable in which to store its
changes, and use local overlay dTables to layer them over the “of-
ficial” stores. This should be a small overhead, as creating a new
journal dTable is a fast operation: it has no files on disk, and merely
involves incrementing an integer and allocating object memory. (A
simple microbenchmark that creates journal and overlay dTables
and then destroys them can create about 1.24 million such pairs
per second on our benchmark machine.) To abort the transaction,
these temporary journals would be discarded and removed from
the corresponding managed dTables. To commit, the journal data
would instead be folded into the official journal dTables by writing
small records to that effect to the system journal and merging the
in-memory balanced trees. The transaction’s data would later to be
digested as usual.

Independent concurrent access The design for abortable trans-
actions already contains part of the mechanism required for inde-
pendent concurrent access. Different transactions would need in-
dependent views of the dTables they are using, with each transac-
tion seeing only its changes. By creating a separate journal dTable
and overlay dTable for each transaction, and having more than one
such transaction at a time, the different transactions would automat-
ically be isolated from each other’s changes. Independent transac-
tions could be assigned IDs on request or automatically. Commit-
ting one of the transactions could either roll its changes into the
official journal dTable immediately, making those changes visible
to other transactions, or append its journal dTable to the official list
and merge the changes once no other transactions require a view of
the data before the commit. The major challenges in implementing
this proposal would seem to be shared with any system with concur-
rent transactions, namely detecting conflicts and adding locks. Un-
fortunately, some concurrency disciplines seem perhaps difficult to
add as separate modules; for example, every storage dTable might
require changes to support fine-grained record locking.

8 CONCLUSION

Anvil builds structured data stores by composing the desired func-
tionality from sets of simple dTable modules. Simple configuration
changes can substantially alter how Anvil stores data, and when
unique storage strategies are needed, it is easy to write new dTa-
bles. While Anvil still lacks some important features, they do not
appear to be fundamentally precluded by our design.

The overhead incurred by Anvil’s modularity, while not com-
pletely negligible, is small in comparison to the performance ben-
efits it can offer, both due to its use of separate write-optimized
and read-only dTables and to the ability to use specialized dTables
for efficient data storage. Our prototype implementation of Anvil
is faster than SQLite’s original back end based on B-trees when
running the TPC-C benchmark with DBT2, showing that its perfor-
mance is reasonable for realistic workloads. Further, we can easily
customize it as a column store for a benchmark loosely based on
TPC-H, showing that optimizing it for specific data is both simple
and effective.

ACKNOWLEDGMENTS

We would like to thank the members of our lab, TERTL, for sit-
ting through several meetings at which ideas much less interest-
ing than those in this paper were discussed at length. In particular,
we would like to thank Petros Efstathopoulos, whose comments on
early versions of this paper inspired several useful major changes,
and Steve VanDeBogart, who modified DBT2 to work with SQLite
(allowing us to run TPC-C). We would also like to thank the anony-
mous reviewers and our shepherd, David Andersen, for the time
they dedicated to providing valuable feedback on drafts of this pa-
per. Our work was supported by the National Science Foundation
under Grant Nos. 0546892 and 0427202; by a Microsoft Research
New Faculty Fellowship; by a Sloan Research Fellowship; and by
an equipment grant from Intel. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation. Finally, we would like to thank our lab
turtles, Vi and Emacs, for being turtles in a lab whose acronym is
homophonic with the name of their species, and for never having
complained about their names.Toilet

Paper

13

REFERENCES

[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating
compression and execution in column-oriented database systems.
In Proc. SIGMOD ’06, pages 671–682, 2006.

[2] Don Steve Batory, J. R. Barnett, Jorge F. Garza, Kenneth Paul
Smith, K. Tsukuda, C. Twichell, and T. E. Wise. GENESIS: an
extensible database management system. IEEE Transactions on
Software Engineering, 14(11):1711–1730, 1988.

[3] Rudolf Bayer and Edward M. McCreight. Organization and main-
tenance of large ordered indices. In SIGFIDET Workshop, pages
107–141, July 1970.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[5] Peter Alexander Boncz. Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications. PhD thesis, Universiteit van
Amsterdam, Amsterdam, The Netherlands, May 2002.

[6] CDB Constant DataBase. http://cr.yp.to/cdb.html.
[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: a distributed storage sys-
tem for structured data. In Proc. OSDI ’06, pages 205–218,
November 2006.

[8] DBT2. http://sf.net/projects/osdldbt/.
[9] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew

de los Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei
Zhang. Generalized file system dependencies. In Proc. SOSP
’07, pages 307–320, 2007.

[10] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and
Michael Stonebraker. OLTP through the looking glass, and what
we found there. In Proc. SIGMOD ’08, pages 981–992, 2008.

[11] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel
Madden. Performance tradeoffs in read-optimized databases. In
Proc. VLDB ’06, pages 487–498, 2006.

[12] Nicholas Lester, Alistair Moffat, and Justin Zobel. Efficient on-
line index construction for text databases. ACM Transactions on
Database Systems, 33(3):1–33, 2008.

[13] Bruce Lindsay, John McPherson, and Hamid Pirahesh. A
data management extension architecture. SIGMOD Record,
16(3):220–226, 1987.

[14] David E. Lowell and Peter M. Chen. Free transactions with Rio
Vista. In Proc. SOSP ’97, pages 92–101, 1997.

[15] MySQL. http://www.mysql.com/.
[16] MySQL Internals Custom Engine. http://forge.mysql.com/

wiki/MySQL_Internals_Custom_Engine.
[17] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen,

and Jason Flinn. Rethink the sync. In Proc. OSDI ’06, pages
1–14, November 2006.

[18] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. The log-structured merge-tree (LSM-tree). Acta Infor-
matica, 33(4):351–385, 1996.

[19] Oracle. http://www.oracle.com/.
[20] Mendel Rosenblum and John K. Ousterhout. The design and im-

plementation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):1–15, 1992.

[21] Russell Sears and Eric Brewer. Stasis: flexible transactional stor-
age. In Proc. OSDI ’06, pages 29–44, November 2006.

[22] Russell Sears, Mark Callaghan, and Eric Brewer. Rose: Com-
pressed, log-structured replication. In Proc. VLDB ’08, August
2008.

[23] SQLite. http://www.sqlite.org/.
[24] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong

Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson
Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga
Tran, and Stan Zdonik. C-store: a column-oriented DBMS. In
Proc. VLDB ’05, pages 553–564, 2005.

[25] Michael Stonebraker and Greg Kemnitz. The POSTGRES next
generation database management system. Communications of the
ACM, 34(10):78–92, 1991.

[26] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros

Harizopoulos, Nabil Hachem, and Pat Helland. The end of an
architectural era (It’s time for a complete rewrite). In Proc. VLDB
’07, pages 1150–1160, 2007.

[27] Subversion. http://subversion.tigris.org/.
[28] TPC-C. http://www.tpc.org/tpcc/.
[29] TPC-H. http://www.tpc.org/tpch/.
[30] Theodore Ts’o. Delayed allocation and the zero-length file prob-

lem. Theodore Ts’o’s blog. http://tinyurl.com/dy7rgm (re-
trieved March 2009).

[31] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Mo-
erkotte. The implementation and performance of compressed
databases. SIGMOD Record, 29(3):55–67, 2000.

[32] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan,
David P. Quigley, Erez Zadok, and Mohammad Nayyer Zubair.
Versatility and Unix semantics in namespace unification. ACM
Transactions on Storage, 2(1):74–105, February 2006.

[33] ZFS Space Maps. http://blogs.sun.com/bonwick/entry/
space_maps.

[34] Jacob Ziv and Abraham Lempel. A universal algorithm for se-
quential data compression. IEEE Transactions on Information
Theory, 23(3):337–343, May 1977.

14

	Introduction
	Related Work
	Design
	dTables
	Data Unification
	Columns
	Discussion

	Transaction Library
	Consistency
	Durability
	System Journal

	dTables
	Storage dTables
	Performance dTables
	Unifying dTables
	Specialized dTables
	Exception dTable
	Example Configurations

	Evaluation
	Conventional Workload
	Microbenchmarks
	Reconfiguring Anvil
	Digesting and Combining
	Consistency and Durability Tests

	Future Work
	Conclusion

