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Abstract

Topological groundwater hydrodynamics is an emerging subdiscipline in the mechanics of fluids in porous media whose objective
is to investigate the invariant geometric properties of subsurface flow and transport processes. In this paper, the topological
characteristics of groundwater flows governed by the Darcy law are studied. It is demonstrated that: (i) the topological constraint of
zero helicity density during flow is equivalent to the Darcy law; (ii) both steady and unsteady groundwater flows through aquifers
whose hydraulic conductivity is an arbitrary scalar function of position and time are confined to surfaces on which the streamlines of
the flow are geodesic curves; (iii) the surfaces to which the flows are confined either are flat or are tori; and (iv) chaotic streamlines
are not possible for these flows, implying that they are inherently poorly mixing in advective solute transport. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Theoretical subsurface hydrology is concerned with
the predictive mathematical description of water flow
and solute transport through heterogeneous porous
media. Two principal lines of thinking have guided the
development of this subdiscipline over the past two
decades. One of them appropriates the language and
conceptual underpinnings of fluid dynamics (itself a
subdiscipline of continuum mechanics) to formulate
partial differential equations containing parameters
whose spatial and temporal dependence is prescribed
pointwise in accordance with an observed or an imposed
variability in the properties of a porous medium [1]. The
other viewpoint takes its language and concepts from
the theory of fluid turbulence to formulate stochastic
partial differential equations whose parameters are
modeled randomly in accordance with geostatistical in-
ference from field-scale studies of a porous medium [2].
Both of these methodologies, deterministic and sto-
chastic, have been applied with success to a variety of
important problems in vadose-zone and groundwater
hydrology, thanks in no small measure to the avail-
ability of high-performance computational algorithms
and hardware [3-5].
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chastic theories of subsurface flow and transport, While
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spatial heterogeneity in porous formations, are not
thereby rendered wholly random constructs, immune to
the constraints and mechanisms implied by fluid
dynamics, because this physical information still must
be used to select the correct probabilistic ensemble with
which to calculate observable quantities [6]. For exam-
ple, any stochastic theory of tracer plume movement
through an aquifer must utilize model probability den-
sity functions that respect solute mass conservation and
incorporate properly the known physics of passive sol-
ute advection in a heterogeneous porous medium [7-9].
Otherwise, there is a decided risk of spurious parametric
modeling of the plume spatial moments, which in fact
have no intrinsic stochastic character, but are entirely
deterministic quantities whose time evolution is gov-
erned by Darcy-scale fluid dynamics [10,11].

Recent theoretical research on fluid motions has
brought into sharper view the geometric constraints that
fluid kinematics alone impose on complex flow behavior
[12-14]. Knowledge of these constraints is important in
the context of fluid mixing, a purely advective process in
which material filaments and surfaces in a fluid are
stretched and folded, leading to complexity in their
spatial configuration and to the spreading of a passively
advected solute plume [11,12], an essential precursor to
solute dilution [15,16]. The generality of the geometric
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approach to fluid motions derives from its use of purely
kinematical concepts that are independent of constitu-
tive properties (such as viscosity) or dynamical variables
(such as pressure), [17] and from its focus on the topol-
ogy of fluid flows, i.e., geometrical characteristics of
fluid pathlines in three-dimensional space that persist
despite the continual deformation of fluid volume ele-
ments during motion [18]. As pointed out by Aref [13],
the passive advection of a solute by fluid motions is
described mathematically by an ordinary differential
equation relating fluid pathlines to the fluid velocity field
— a kinematical relationship — and the question as to
whether these pathlines can become chaotic — which
greatly enhances solute mixing [11-13] —is predicated on
the negative outcome of a search for topological con-
straints that would preclude chaos.

The present paper is an investigation of geomet
constraints of this kind for groundwater flows gover
by the Darcy law, under the condition that hyd
conductivity and hydraulic head are continuously dif-
ferentiable scalar functions of position and time coor-
dinates. In Section 2, an important topological
invariant, helicity [19], is found to have a one-to-one
mathematical relationship to the Darcy law for both
steady and unsteady groundwater flows. In Section 3,
this relationship is shown to lead to the conclusion that
groundwater flows are constrained always to liec on
surfaces that either are flat or are surfaces of revolution,
irrespective of the details of aquifer spatial variability as
expressed in the dependence of the hydraulic conduc-
tivity on position coordinates. This broad result/extends
a similar conclusion for steady groundwater, flows based
on an analysis of the gradient of hydraulic conductivity
in a heterogeneous aquifer [20].- In the present.paper, the
method of proof is less abstract and more inclusive (it
encompasses unsteady groundwater flows), relying on
some basic concepts in differential geometry that are
outlined in Appendix A. In Section 4, a condition for the
existence of chaotic pathlines in a smooth groundwater
velocity field is defined and then shown to be precluded
by the existence of the surfaces described in Section 3.
Thus, groundwater flows governed by the Darcy law are
geometrically constrained against becoming chaotic,
thereby severely restricting their ability to spread a sol-
ute plume by mixing. Stochastic theories must neces-
sarily reflect this constraint in the construction of model
probability density functions that represent ground-

Helzczty is deﬁned [19] as the integral of the scalar
product of vorticity with velocity over a region of space
enclosed by a material surface (i.e., a surface that moves
with a fluid as it flows and, therefore, always contains

1€=

within it the same set of moving spatial points advected
by the fluid velocity field [21]). The meaning of helicity
can be understood physically by consideration of the
prototypical steady (Eulerian) velocity field [22]:

B(F) = f]—i—%(f)xic’), (1)

where U and Q are uniform vectors and ¥ denotes a
spatial point in a fluid. The fluid acceleration corre-
sponding to this velocity field is found by calculating the
material derivative of both sides of Eq. (1):
Dy 1,2
—=—(Q2 x 7). 2
b =33 %7 (2)
Eq. (2) implies that the velocity vector simply rotates
with the angular speed 1Q around an axis along the fixed
direction of Q . Moving spatial points in the fluid thus
paths resulting from the superposition of this

mtar}} motion onto the constant rectilinear motion

produced by the fixed velocity U. Consistent with this
picture are the solenoidal character of #(¥) and of its
vorticity @ = V x # = Q, both properties following di-
rectly from Eq. (1). The helicity density [22] in this ex-
ample is accordingly a uniform scalar quantity

&-1=0-0.
The geometric implications of Eq. (3);
parent after applying conventional eq
ential geometry [23] to calculate the
torsion T of the streamlines of ¥(¥):

K= |z x D3/Dt|| _ Li/e
v’ 2

(v x Dv/Dt) D%

& x D7/De||? D2~ 2 @2

If K = 0, the fluid velocity and acceleration are parallel
vectors and the streamlines are merely straight lines [23].
This would occur if 2 =0 in Eq. (4a). If T=0 (and
K # 0), #, Di/Dt, and D*5/D#* are coplanar vectors [23]
and the streamlines must lie in a plane, which occurs in
the present example if the helicity density is everywhere
equal to zero. Thus, helicity endows streamlines with
torsion, twisting them around an axis along the direc-
tion of fluid advection, and winding them into helical
curves in three-dimensional space [22]. The bending of
these curves, as measured by K in Eq. (4a), depends on
the component of their vorticity Q that is not along the
direction of advection by the uniform velocity U. We
note that both K and 7-in Egs. (4a), (4b) are invariants
of the fluid motion described by Eq. (1) because ¢? is an
invariant of the fluid-motion [Dv/D¢ = 0 follows from
Eq. (2)]. But the only possible twisted curve with con-
stant K and 7 is the circular helix [23]. Some concepts of
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differential geometry that are useful to the interpretation
of streamline topology are summarized in Appendix A.

The most important topological characteristic of
groundwater flows governed by the Darcy flux law, [1]

J(®1) = K& 1)V$(, 1), (5)

(where J [LT™'] is volumetric flux density, K [LT] is
hydraulic conductivity, and ¢ [L] is hydraulic head) is
the complete absence of helicity. This property emerges
directly from a calculation of the velocity and vorticity
fields corresponding to Eq. (5):

U3, 1) = J(%,0)/0F 1) = —(K/0)V, (6)

DE )=V xi=Ve¢xV(EK/), (7)

where 0(%,¢)[L’L™%] is the porosity of the medium
through which groundwater moves. The helicity density
in a groundwater flow is calculated as the scalar prod-
uct,

&-5=—(K/O)V- (Vo x V(K/0)) =0, (8)

where use is made of a standard identity in vector
analysis [20,23], A - (4 x B) = B - (4 x B) = 0. Note that
vorticity exists in a groundwater flow because of spatial
inhomogeneity in the physical properties of the porous
medium Eq. (7) [1].

Helicity is a kinematical property of broad physical
significance in fluid mechanics, because it provides a
quantitative measure of spatial complexity in flow fields
and it remains constant as material elements (those
always comprising the same set of spatial points ad-
vected by a velocity field [21]) are continuously de-
formed through fluid motions [22]. In groundwater flow
fields governed by the Darcy law in Eq. (5), this con-
stancy of helicity is perforce true, because the helicity
density is identically equal to zero everywhere, quite ir-
respective of whether the flow is steady.

Eq. (8) indicates an absence of local helical motions
in a groundwater flow. The effect of vorticity @ on a flow
field is to induce local rotation of a streamline around an
axis specified by the direction of & [21]. If the vorticity is
everywhere perpendicular to the fluid velocity, as in Eq.
(8), there can be no rotation of the latter vector around
an axis along the direction of flow and, therefore, no
winding of streamlines into helical strands [19]. All local
rotations of the velocity vector are confined to a plane
perpendicular to its vorticity, making com I?Xi}?quléd.
flow fields impossible [19]. Eq. (8) also iﬁéﬁéondiﬁoﬁ

3. Lamb surfaces
3.1. Existence

Lamb surfaces are smooth, orientable two-dimen-
sional manifolds that contain both the streamlines and
the vorticity lines in a spatial domain of flow, excluding
sources, sinks, and stagnation points [17]. These surfaces
were discovered by Lamb [24], who proved their
existence in any steady flow of an inviscid, incompress-
ible fluid (see also the more technical proofs given by
Poincaré [25] and Arnol’d [26]). Koslov [27] generalized
this result to include homentropic fluids (those with
uniform entropy fields) and Sposito [28] has done the
same for any steady fluid flow in which vorticity field
lines are material (i.e., field lines that always contain the
same set of moving spatial points advected by the ve-
locity field [21]). In these cases, Lamb surfaces partition
the spatial domain of flow into nonintersecting, material
streamsurfaces, the normal vectors to which are parallel
with @ x ¥, accordingly termed the Lamb vector [17].

A continuously differentiable vector field is every-
where parallel to a family of surface-normals if and only
if it is everywhere perpendicular to its curl [23]. Thus, for
example, Eq. (8) is necessary and sufficient for the Darcy
velocity vector ¥(¥,¢) to be everywhere parallel with the
normal vectors to the equipotential surfaces (level sur-
faces) of the hydraulic head, as is well known [1]. The
existence of Lamb surfaces imposes the same math-
ematical condition on the Lamb vector [17]

V x (@ x B) - (& x ) = 0. (9)

Sposito [28] has suggested that Eq. (8) implies Eq. (9),
based on the fact that a network of smooth orthogonal
curves is always sufficient to define a surface on which
they are its lines of curvature. Lines of curvature, by
definition [29], follow along the directions in which the
bending of a surface is extremal (e.g., the meridians and
the parallels on a surface of revolution) and, therefore,
they prescribe the shape of a surface in three-dimen-
sional space. A direct demonstration of equivalence
between Egs. (8) and (9) will be given in the present
paper, inspired by an argument due originally to For-
syth [30].

Let ¢ be a unit vector tangent at time ¢ to a streamline
at a point X in the spatial domain of a groundwater flow

“ o fiesTHQY, 1) = v(X, 1)g (X, 1)] and similarly let 7i be a unit
““Yector tangent at time ¢ to a vorticity line that intersects

both necessary and sufficient for any velocity field E(f;_t) “the streamline orthogonally at the same point X [i.e.,

to be proportional to the gradient of a scalar function
[1], a fact evident from combining Egs. (7) and (8),
noting that & (¥, ¢) is always a solenoidal vector field [21].
Therefore, the topological constraint, that a groundwater
velocity field exhibits zero helicity density everywhere, is
equivalent to the Darcy law.

B, 1) =V x T = o, t)n(*,1)]. Now let (%, ) be a unit
vector lying in the plane that is perpendicular to (¥, ¢)
and let b(%, 1) be a similar unit vector in the plane that is
perpendicular to g(%,¢), as illustrated in Fig. 1. Finally,
let 7 = m x ¢ be a unit vector perpendicular at time t to
both 7 and ¢ at the point X.
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m q
vorticity line

streamline

Fig. 1. An intersecting streamline and vorticity line, showing the unit
tangent vectors g and 7, the unit normal vector 7 and the constructed
vectors orthogonal to ¢ and 7, b and 4, respectively.

This construction easily leads to the orthogonality
conditions §-b=im-a=g-A=m-i=0. It is also
straightforward then to demonstrate parallel directions
between the vectors ¢ and 7 x b, as well as between 7
and d x n:

Gx (ixb)=(b-q)ii—(i-3)b

0, (10a)

i x (@x i) = (- m)d—(a mi=0, (10b)

where a standard identity for the triple vector product
[23] has been applied in each case. The vectors d, b, and 7
cannot be coplanar because 7 - § = 0. Therefore [23],

V=(bxad)-i=a-(ixb)=b-(dxi) (11)

does not vanish at any time for any &, 5, 7

The objective now is to show that the vector 7 satisfies
an “integrability condition”, like Eq. (8), since, by hy-
pothesis, & x ¥ = wv 7 and, therefore, Eq. (9) is the
same as the expression

Vxit-ii=0. (12)

Suppose that 7 shifts direction by an arbitrary infini-
tesimal amount at some instant. This shift, di, can be
expressed in terms of its components along the three
mutually orthogonal unit vectors, ¢, 7, and 7#:

dii = Ag + B + Ci, (13)

where A4,B, and C are scalar functions of ¥ and 7. Be-
cause 7 is a unit vector, d(7i-7) =2dr -7 =0 and the
coefficient C = 0. The remaining two coefficients can be
determined by the equations:

dii-@=Ag-a, dii-b=Bin-b. (14)

It is evident that only the component of di along the
direction of ¢ contributes to d7 - @ and only that along
the direction of 7 contributes to dii - b, given the or-
thogonality conditions on these vectors. Therefore, d7 in
Eq. (14) can be replaced by two equivalent relations,
respectively,

dii, = —k,qdl, di, = —k,md4, (15)

d/ and dZ being increments of arc length measured
along a streamline and a vorticity line, respectively.
The scalar coefficients, k,(#%) and k, (% & [L™'], are
defined by Eq. (15): -In general, ‘both™of Egs. %(15)
would comprise two differential terms, one for each
increment of ard length, reflecting the possibility that
dri,/dA and dr,/dl need not be equal to.0 [23]. These
latter two derivatives, however, are-equal to 0.if the
streamlines and veorticity lines are both: lines of cur-
vature on a Lamb surface [23,29]. Eq. (1) anticipate
this fact by defining only the scalar coefficients-k, and
k., subject to their later interpretation after the proof
of Eq. (12) is completed. In general, the product of %,
or k, with a corresponding arc length increment, d/
or d/, expresses the angle through which 7 1s"swept as
it shifts infinitesimally along the direction of § or
[23].

The combination of Egs. (10a), (10b), (11), (13), and
(14) yields the differential expression:
dﬁ:%[dﬁq-a‘(ﬁxl;)+dﬁm~5(Zz’><ﬁ)}. (16)
Eq. (16) is consistent with the constraints on d#; with the
orthogonality conditions on d, b, and 7; and with the
expressions derived for the coefficients 4 and B. Calcu-
lation of the curl of 7 is then facilitated by using a dyadic
equation [23] that is equivalent to Eq. (16):

Vi = —%[Zz"kq(ii X b)) + Bk, (@ x 7)), (17)
where the primes,

b =b—(b-)i (18)
define vectors that are still perpendicular to 7 or ¢, re-
spectively, but without components along 7 . It is veri-
fied readily that V is invariant in value under
substitution of @ and &' for @ and b, as are Eqgs. (10a)
and (10b). The use of the primed vectors is required in
the dyadic V7 in order to suppress terms arising from
the operation, 7 - ﬁﬁ, which has no counterpart in

Eq. (16), but is a possible operation on the dyadic V7.
The definitions

d=a—(a-ii,

L =, did, =, di,
connect Eq. (17) to Eq. (16), given Eq. (15) and the
orthogonality relations among ¢, 7, and 7.

The curl of # then follows conventionally [23] as the

vector product of the pairs in the dyadic:
1

Vxii= —?[qui’ X (i X B) + kb’ x (@ x i)
1 - -
=7 [(k — k) (@ - b)ii + ky(7F - @ )b’
— k(7 - B)@). (20)
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Therefore,

= km_k - T N
Vxi-i="—2[@-b)— @G- -a)i-b)). (21)
The significance of this result is evident after enlisting

Egs. (10a),(10b) to calculate the scalar product of m and
q

mog=0=(
= (

where the last step again makes use of a standard iden-
tity in vector algebra [20,23]. Eq. (22) implies that the
right side of Eq. (21) is zero and, therefore, that Eq. (9) is
demonstrated, given that @& x ¥ = wv . Note the key
role of perpendicularity between @ and ¥ in proving that
the Lamb vector is parallel to a surface-normal.

x7i)- (A xb)= (@ x7i)-(7Axb),

@by — @ - b)), (22)

QU

4

QL

3.2. Geometry

The coeflicients k,, k,, in Eq. (15) are termed principal
normal curvatures of the streamline and vorticity line to
which they refer [23,29]. Formally, these parameters
each are equal to the product of the curvature [Egs. (4a)
and (A.1)] of a vector line with the cosine of the angle
between the principal normal vector of the vector line [N
in Eq. (A.1)] and the unit normal vector to a surface that
contains the vector line (#), this angle being measured
conventionally along a counterclockwise direction
around an axis through the unit tangent vector to the
line (i.e., g or m). Thus, if the thumb of the right hand
points along the unit tangent vector, the fingers of the
hand curl in the direction along which the angle is
measured from N to 7 [23]. In the present case the sur-
face to which # is the normal vector is a Lamb surface.

The Gaussian curvature of a Lamb surface is equal to
the product, k,k, [23,31]. This topological characteristic
retains its value at a given point on a surface irrespective
of any smooth deformation of the surface that does not
involve stretching, wﬂ%king, or tearing [23,29,31]. Un-
der this kind of canfintious deformation (termed bend-
ing), and evidefitly: i‘;ﬁany wholesale translation or
rotation of a surface, ‘i;'ﬁ?d'i'sg‘fance between two points on
a line on the sur g_e%;;d the angle between any two unit
vectors on it remginjunaffected along with the Gaussian
curvature [23,29,31].

Points on a surface are termed elliptic if they have
positive Gaussian curvature and Ayperbolic if they have
negative Gaussian curvature [29]. Spheres are closed
surfaces with constant positive Gaussian curvature (the
only ones with this intrinsic geometric property), equal
to the inverse-square of their radii [29]. Surfaces of
revolution can have either a positive or negative
Gaussian curvature, which varies in value only along a
meridian [29]. A surface is termed flar if its Gaussian
curvature is zero [29,31]. If the flatness derives from only

one of the principal curvatures having zero value, the
points on the surface are parabolic (an example being the
cylinder), whereas if both principal curvatures are zero,
the points on the surface are planar [29]. Flat surfaces
are those which can be bent into a plane through some
continuous deformation process. They include cylinders,
cones, planes, and the surfaces generated by a sequence
of tangent lines to a curve in space [23,29]. It is a direct
consequence of Eq. (15) that the surfaces swept out by
moving the Lamb vector along either a vorticity line or a
streamline are always flat [29].

Sposito [28] and Marris [32] independently have

demonstrated an important geometric property of Lamb
surfaces bearing steady fluid flows with zero helicity
density everywhere: the streamlines on them are geo-
desics. This means that the distance between any two
sufficiently close points on a Lamb surface is shortest
when measured along a streamline connecting them as
compared to any other curve that can be drawn between
the two points [29,31]. Physically, this minimal charac-
teristic exists because the groundwater speed [the mag-
nitude of the vector ¥ in Eq. (6)] is uniform along
vorticity lines [28], implying that moving points on
streamlines emanating from a single vorticity line reach
any other single vorticity line intersecting them at the
same instant, an identifying property of geodesics and
their parallels [29]. Given the standard kinematic iden-
tity [21]
%’Ev%vu@xa (23)
for the acceleration in any steady fluid motion, it follows
that the forces in a steady groundwater flow must
always act perpendicularly to the vorticity vector:
@ - D¥/Dt = 0. Therefore, moving points in such a flow
are accelerated only along streamlines or along Lamb
vectors.

A technical summary of the proof that streamlines
are geodesics on Lamb surfaces is given in Appendix A.
There it is shown that this property of the streamlines
implies that the principal normal vector N is always
parallel to the surface normal vector #, which then
makes the principal normal curvature k, become iden-
tical to the curvature K, of a streamline [Eqs. (4a) and
(A.1)]. Moreover, this intrinsic property of geodesics
also means that the streamlines have zero torsion [as
defined in Egs. (4a) and (A.3)] and, therefore, that the
streamlines of a steady groundwater flow always lie in
planes. (The absence of streamline torsion can be ap-
preciated in light of the fact that the twisting of a line of
curvature is what causes the angle between N and 7 to
vary at different points on a Lamb surface [23].) This
important constraint is, in fact, sufficient to show that
Lamb surfaces for steady groundwater flows are either
surfaces of revolution or are flat. This result, whose
derivation also is outlined in Appendix A, is consonant
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with the topological theorem [26,33] that Lamb surfaces
for smooth, steady fluid flows that are confined.to a
bounded region of three-dimensional space must be ei-
ther tori or cylinders, both of which have lines of cur-
vature that lie in planes [30].

A vorticity line on a Lamb surface bearing a zero
helicity fluid flow will be a geodesic on that surface only
if there is no stretching or shrinking of the vorticity line
by the velocity field, [28]. This condition is met if the
velocity field is confined to a family of parallel planes in
space (or to a single plane, as in many groundwater flow
problems exhibiting translational or rotational sym-
metry [1]). Although this behavior cannot be presumed
to exist universally in steady groundwater flows, Sposito
and Weeks [8] found it to obtain for steady flows
through the Borden aquifer as a consequence of the
strong stratification of hydraulic conductivity with
depth. The Lamb surface in this case was a cylinder,
with a streamline as its base curve and a vorticity line as
its linear generator. Quite generally, if both streamlines
and vorticity lines are geodesics on a Lamb surface, it will
always be flat. A technical summary of the proofs for
these conclusions about the geometry of Lamb surfaces
also is given in Appendix A.

4. Chaotic streamlines

Eq. (9) implies the existence of a scalar function
H(%,t) whose gradient is proportional to the Lamb
vector and whose values define the level surfaces
[H(X,t) = constant] in three-dimensional space upon
which streamlines and vorticity lines both lie:

VH = u(d % B), (24)

where p(¥,¢) is an integrating factor [23] for the Lamb
vector, @ x 7. Evidently #- VH = & - VH = 0, illustrat-
ing the uniformity of H (%, ¢) on streamlines and vorticity
lines. For the case of steady fluid flow, the inverse of
integrating factor u(¥X) is equal to the Lagrangian vor-
ticity [w(X, ¢) is an Eulerian vorticity that is related to its
Lagrangian counterpart through a conventional Piola
transformation [33,34]]. For any fluid flow exhibiting
steady material vorticity lines with D¥/D¢ parallel to a
surface-normal [i.e., D¥/Ds satisfies an “integrability”
condition like that in Eq. (9)], the inverse of u(X,¢) is
also equal to the Lagrangian vorticity [35].

Eq. (23) imposes severe constraints on the spatial
distribution of fluid streamlines. Although streamlines
may meander in complex ways on a Lamb surface, they
can never leave it and, therefore, they cannot wander
over time through the entire volume of a three-dimen-
sional flow domain to explore it exhaustively. By con-
trast, streamlines that are not confined to sets of smooth
nonintersecting surfaces in three-dimensional space are
termed chaotic [14,36]. Chaotic streamlines exhaustively

fill a spatial domain of flow [12,13], allowing the solutes
they advect to mix well throughout the three-dimen-
sional region the flow explores.

Evidently streamlines cannot become chaotic if
H(¥,¢) is nonuniform within a domain of flow, for then
VH # 0-and Eq. (23) applies. However, if VH =0 in the
domain of flow, Lamb surfaces are vitiated. In this case,
the flow. is termed Beltrami [12,17] and Eq. (23) leads to
the condition:

B, 1) = e@ 0T, 1), (25)

where ¢(X,?) is a smooth scalar function subject to the
constraint,

T-Ve+ @OV =0 (26)

as follows from the solenoidal nature of @ (¥, ¢).

If a fluid motion is steady, then Eq. (25) implies that
the product ¢/ is uniform on streamlines and vorticity
lines, where J > 0 is the determinant of the deformation
gradient tensor that connects a material line element in a
Lagrangian reference configuration to its counterpart in
the present configuration of the fluid [17,34]. (Recall
that - V.J =JV - 7 in a steady flow [21].) In this case,
streamlines will lie on level surfaces determined by
constant values of ¢J and, therefore, they cannot be-
come chaotic. It follows that ¢/ must be uniform
throughout the domain of flow (VeJ = 6) if chaotic
streamlines are to exist. The present result extends a
theorem of Ginzburg and Khesin [14,36], who showed
that Eq. (24) with a uniform c¢ is a necessary condition
for chaotic streamlines in steady fluid flows for which
Eq. (23) applies with u=1, J =1 (e.g., inviscid, in-
compressible fluids). A comparison of Egs. (8) and (24)
then leads to the conclusion that chaotic streamlines are
not possible for groundwater flows governed by the Darcy
law [Eq. (5)]. Vorticity and velocity vectors cannot be
simultaneously perpendicular and parallel; a flow with
vorticity and zero helicity density everywhere can never
be Beltrami.

5. Conclusion

Groundwater flows through heterogeneous aquifers
whose hydraulic conductivity is a scalar function of
position and time coordinates are characterized topo-
logically by zero helicity density everywhere. This geo-
metric constraint is equivalent to the Darcy law as
expressed in Eq. (5). It is also a sufficient condition to
prove that groundwater flows governed by Eq. (5) lie on
smooth surfaces containing the streamlines and vorticity
lines of the flows. The streamlines are geodesic curves on
these surfaces and, if the flow is steady, they lie in
planes. Thus, the surfaces either are flat (e.g., a cylinder,
as found for the Borden aquifer by Sposito and
Weeks [8]) or they are tori. This strong restriction of
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groundwater flows to a surface, imposed by the zero
helicity density constraint, means also that they cannot
have chaotic streamlines and, therefore, they are inher-
ently poorly mixing for advective solute transport. We
note in passing that this conclusion does not apply to
zero helicity flows in general (i.e., those for which the
space integral of @ -¥ is zero while @ -¥ # 0), since
chaotic zero helicity flows have been identified, [39].
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Appendix A. Differential geometry of streamlines and
lamb surfaces in groundwater flows

The fundamental theorem of the local theory of
curves in three-dimensional space [37] states that the
curvature and torsion parameters of any smooth
oriented curve are sufficient to characterize it uniquely,
except for its absolute position and orientation. It is this
theorem that can be applied to show that Egs. (4a), (4b)
and the invariance of the speed v under fluid motion lead
to helical streamlines.

By definition, the direction of a unit tangent vector ¢
to a streamline is that along which arc length increases
with time [29]. Changes in this direction occur if the
streamline is not rectilinear, and these changes are
quantified by its curvature [29,31]

q o —
Dr = vK,N, (A1)
where N is a unit vector, termed the principal normal
vector to the streamline, and K, is the curvature of the
streamline. The left side of Eq. (A.1) prescribes the de-
rivative of ¢ with respect to time following the motion
along the streamline to which ¢ is tangent-[29,37]. The

right side of Eq. (A.l)prescribes a vector along the di-
rection of

(5)-

[29], which is the co onyht‘_“@ﬁﬂuid‘ aeceleration that
lies in a plane perpendi€ular to . If 'this component is
equalteszero, the direction of ¢ is constant and the fluid
motion-is rectilinear, the signature of which is K, =0
[37].
A second direction perpendicular to ¢ is specigled by
Dy q

that along the vector # x 3/ or, equivalently g x 3% It is

defined formally by the vector product [29,37].

B=GxN (A.2)

and is termed the binormal vector to the streamline. The
change in direction of B with time is described anal-
ogously to Eq. (A.1) [29,31]:

Dt = —V’Tq]\[7 (A3)
where T, is the torsion of the streamline. (That the di-
rection of DE/ Dt is along N follows after calculating the
material derivative of ¢ . B, noting that it must equal
zero and that DB /Dt must always be perpendicular to B
because the latter is a unit vector.) If B does not change
direction, by Eq. (A.2) the streamline must always lie in
the plane containing § and N. This plane is then fixed in
space because of Eq. (A.1) and the restriction a constant
B imposes on DN /Dt to be parallel with g , as follows
from calculating the material derivative of both sides of
Eq. (A.2) [29]. The signature of a planar fluid motion is
thus 7, = 0 in Eq. (A.3). Note that Egs. (A.1) and (A.3)
may be summarized in a generic expression [23,28]:

%j =v(), xé) (é=4,N,B), (A.4)
where € is any unit vector either tangent (¢) or perpen-
dicular (N, B) to a curve in space and

o =T,G+K,B (A.5)

is termed the Darboux vector for §,N,B. [23] The form
of Eq. (A.4) shows that the vector € rotates with angular
speed vd, = U(K; +T (]2)1/ * around an axis along the di-
rection of the Darboux vector, [23] Marris and Passman
[38] and, more briefly, Sposito [28] have summarized the
relationship of Egs. (A.4) and (A.5) to the existence of
Lamb surfaces for steady fluid flows with zero helicity
density everywhere (e.g., steady groundwater flows).

Marris [32] demonstrates the existence of Lamb sur-
faces and derives their geometric properties for steady
fluid flows governed by Eq. (8), starting from the
premise that vorticity lines are material (his Theorem 3.3
[32]). The mathematical statement of this premise is
termed the Helmholtz—Zoraski criterion [17].

[V x (&x8)]xd=0 (A.6)

from which Eq. (9) and the existence of Lamb surfaces
are an immediate consequence. Egs. (8) and (A.1) imply
the condition, [32]

Vx(@xT8)-§=0 (A7)

from whose expression in terms of the components of @
Marris [32] demonstrates that

& = (K,v— N - V), (A.8)

where K, is the curvature and N is the principal normal
vector of the streamline for which @ is the curl; i.e.,

G-Vi=KN (A.9)
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and B is the bin of the streamline, defined in

Eq. (A.2). Eq. (A.9) is the special case of Eq. (A.1) thai*’“?"*a;

is applicable to steady fluid flows. It can be relate
Eq. (A.4) by calculating the gradient of G- § usingt
standard vector identities [23]:

V(d:d)=2[d-VA+4 x (VxA), (A.10a)
VxAd=(Vxd -AHA+4Ax[(VxA4) x4, (A.10b)
Ax (BxC)=(4-C)B—(4-B)C. (A.10c)

Egs. (A.6) and (A.8) are sufficient to prove that N
satisfies a condition of the same form.as Eq. (8) and,
therefore, that N is parallel to.the. B X T
[32] This means that the streamlines‘a
Lamb surfaces on which they he [23 29].

Sposito [28] derives Eq. (A.7) from the premise that
the Frobenius integrability condition [40].

G- Vi —ii - NG = 9,4 + 7y, (A.11)

applies to, the vector ¢ and i , where y,,7,, are termed
the geadesic curvatures of the intersecting streamline or
vorticity line to which ¢ or 7 is a unit tangent vector.
Eq.(A.13) is necessary and sufficient for the existence of
a Lamb, surface through Eq. (9), to which it is equiv-
alent, [28]-The geodesic curvature y, is defined as the
productofithe curvature K, Eq. (A.1) and the sine of the
angle between N and the Lamb vector, this angle being
positive when measured counterclockwise relative to an
observer toward whom ¢ points, [23] The sameg concept
applies to y,,. A curve is a geodesic on a surface if its
geodesic curvature is zero, [29] a sufficient condition for
which is that N' and 7 x g are parallel'Vectors (i.c., zero
sine of the angle between them). Sposito [28] demon-
strated that y, =0 follows from Eg. (8) and the
Frobenius condition, whereas Marris [32] showed that N
in Eq. (A.9) and m x ¢ are parallel vectors.

The fundamental theorem of the local theory of sur-
faces in three-dimensional space |37} states that the
geometric properties of any smooth surface (except for
its absolute position and orientation) are determined
fully by a set of three coupled partial differential equa-
tions known collectively as the Mainardi—-Codazzi
equations and the G
these equations take

-V, =0, §-Vky
= Vm(km - kq)

ﬁ ! V_tym = ’yfn + kmkq (Gauss) (A13)

given that streamlines and vorticity lines are lines of
curvature on Lamb surfaces, and that the streamlines
are geodesics on these surfaces as well if the velocity field
exhibits zero helicity density everywhere. Because of this
latter property of the streamlines, &k, = K, the curvature
(i.e., the cosine of the angle between the Lamb vector

(Mainardi-Codazzi) (A.12)
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and the principal normal vector of a streamline is equal
to 1.0), and the first of Eq. (A.14) then shows that the
curvature of the streamlines crossing a given vorticity

“line is the same at all points of intersection. Eq. (Atl)

implies that curvature is a measure of the strength of
fluid acceleration along the Lamb vector and, therefore;
the uniformity of K, along vorticity lines expresses that
same property for the force causing streamlines to bend
in three-dimensional space. We note in passing that the
geodesic property of streamlines also implies that the
Darboux vector [Eq. (A.5)] is parallel to the vorticity
vector [Eq. (A.8)], thus imparting to K, v a familiar
physical meaning as the angular speed of rotation of a
streamline around a vorticity line, [23] This angular
speed is uniform along the latter because the streamlines
crossing it are geodesic curves on a Lamb surface. After
making the substitutions,

ky =Ky, ky = K,y 08 0,,,7,, = K, sin 0,,

in Egs. (A.12) and (A.13), where 6,, is the angle betwecn
the principal normal vector of the vorticity line to which
m refers and the Lamb vector, one can derive an ordi-
nary differential equation for K,, the curvature of a
vorticity line:

dK,, 1
do, K2

=K, sin0,,. (A.15)

This differential equation is satisfied by a surface of
revolution obtained fromrotating a planar ci rve (in the

I‘

a Car-
fficient

present case, a streamline) around the zsas
tesian coordinate system [23,29]. Eq (AT15)
to conclude that the Lamb surfagg
or a cylinder, because these
smooth surfaces possible fo
singularities or stagnatién g
finite domain in threg-d ‘# 3

P
Stbe.gither a torus
3&.}"& obrientable
[“that has no
occupies’a’]
33] Phe f

mer surface is obtaifie otating 4 ciielearo pﬂ fhé

axis whereas the latfe ¢ result of rofa a CUTve 1

the same fashion. Strictlytspea &, the Lam hﬁ w,_
described by Eq. (A.15) fided not look exactly Z o NN

torus or a cylinder, but.peed only be transformable into
one of these two surfaﬁs e)f revolution by a continuous
deformation process. | _,93"

Eq. (A.13), the (,}amss equation for a surface [23],
includes the @gu%lamcurvature knk, [23,31]. If the
vorticity lines on~a Lamb surface are also geodesic
curves, like the streamlines, their geodesic curvature
v, =0, by definition [29], and the two terms in
Eq. (A.13) containing y,, must then vanish identically [as
will the right sides of Egs. (A.11) and (A.15)]. It follows
that k,k, also must vanish in this case, implying a flat
Lamb surface [23,29,31]. Eq. (A.15)*then describes a
cylinder. The Lamb surface accordlnéflgyL W111 be the cyl-
inder that comprises straight Vortlé?f es extending
from a base curve that is formed b?s tneamhne as

_. xs®
oy

-___.,
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observed in steady groundwater flows through the
Borden aquifer [8].
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